Cracking the TSP: A Deep Q-Learning Approach

Mark Holcroft
STOR-i, Lancaster University

December 2024

Abstract

Since “learning” to outcompete humans in areas such as chess and the Atari games,
Deep Q-Learning (DQL) has been applied to a growing number of Operational Re-
search problems with varying success. In this report, DQL was applied to the Trav-
elling Salesman Problem (TSP), exploring various combinations of hyper-parameters
including the learning rate («), the discount factor (), and the exploration rate de-
cay (p). Performance was evaluated across 10 TSP instances, demonstrating that all
tested configurations improved upon random solutions. The DQL configuration with
(v = 0.99,a = 0.001, p = 0.9975) achieved the best average performance across these
instances. This optimised DQL model was then compared to a tuned Genetic Algorithm
(GA). While both methods successfully enhanced solution quality across all instances,
the GA consistently outperformed DQL by a significant margin.

Introduction

The Travelling Salesman Problem (TSP) is a classic optimisation problem, with the aim of
finding a minimal distance route between a set of nodes. The problem suffers from the combi-
natorial explosion problem, and as such has traditionally been solved using metaheuristics, a
collection of methods developed to solve such problems efficiently and within a small margin
of error.

Recently, many areas of Operational Research (OR) have benefitted from the reinforce-
ment learning method Deep Q-Learning (DQL). Although the TSP is widely-studied, there
is little literature regarding DQL’s application to the problem. The aim of this report is to
investigate whether DQL can be a valid tool for solving the TSP, and to what degree tuning
a selection of its hyper-parameters can improve its performance, comparing the results to
that of the well-established Genetic Algorithm (GA) metaheuristic.

1 Deep Q-Learning

Deep Q-Learning is an advanced version of Q-Learning (QL), a reinforcement learning method
where an agent learns an optimal policy by navigating a state space and identifying the best
action (a) to take at each state (s). In QL, a Q-matrix stores Q-values (rewards) for each
state-action pair, updated iteratively using the Bellman’s equation:

Q(s,0) = Q(s,0) + alr + Ymax Q(s',a") - Q(s,a),

where Q(s,a) is the currently stored Q-value for the (s, a) state-action pair, « is the learning
rate, r is the immediate reward, v is the discount factor applied to future rewards, and
max, Q(s',a’) is the maximum future reward.

For the Travelling Salesman Problem (TSP), the state space includes visited nodes, un-
visited nodes, and the current node. Note that the reward in this case is denoted by a loss, as
a greater distance is undesirable. The agent selects the next node (action) using an e-greedy
strategy to balance exploration of the state space and exploitation of good routes. However,
as the number of nodes increases, the state space grows exponentially, making the Q-matrix
too large to store and the algorithm impractically slow.

DQL addresses this by replacing the Q-matrix with a neural network to approximate Q-
values, significantly reducing memory requirements and improving scalability for larger TSP
instances. The steps of DQL are as follows:

1. Initialise the Neural Network

e A first, online network for learning the Q-values

e A second, target network for storing the Q-values, updated periodically
2. Experience Replay

e Stores experiences in a replay memory

e Samples from the replay memory to improve learning
3. Action Selection using e-Greedy Algorithm
4. Training

e Compute new Q-value and loss

e Update the neural network weights
5. Update the Target Network
6. Decay ¢, up to a Predetermined Minimum Value
The above algorithm is run iteratively until a sufficient amount of space has been explored
and a good policy acquired.
1.1 The Genetic Algorithm

As there is limited literature surrounding DQL usage for the TSP, we will use the Genetic
Algorithm (GA) as a benchmark against which its performance can be measured. According
to Toaza and Esztergar-Kiss, 2023, the GA is the most common metaheuristic to feature in
published papers. This, alongside its empirical good performance, makes it suitable for use
as a benchmark. We have tuned our GA as follows:

e We choose a population size of 75, following recommendations by Jong and Alan, 1975
to use a population between 50 and 100.

e We use tournament selection to choose parent solutions.

e We use a Modified Order Crossover method, taking a segment from parent A and filling
in the remaining genes in the order they appear in parent B.

e The best 75 solutions are kept after each generation.

e We select a mutation rate of 1/n, where n is the number of nodes, as the mutation rate
should be proportional to the size of the problem.

e We choose the Reverse Sequence Mutation (RSM) as our mutation operator as it em-
pirically outperforms alternatives like the 2-swap operator.

2 Tuning DQL

For the report, we code DQL in Python using the torch package by Paszke et al., 2019. We
then select a few parameters of DQL to tune. For this, we chose to use the same parameters
used in Sprague, 2015 when famously assessing the performance of DQL on Atari, and modify
the learning rate «, the e-decay rate p, and the discount factor v. We also utilise a key
experience buffer - only high-quality actions associated with low losses are saved to this, and
are sampled from more frequently. The values of the other parameters are as follows:

e The key experience sample ratio is set to a start of 0.1 and a growth of 1.001 per
iteration, with a maximum of 0.8.

e The exploration rate (e) start value was set to 1 to prioritise exploration during the
early stages of training.

e Following a recommendation by Mnih et al., 2013 to have a batch size proportional to
the problem size, the batch size was set to 32, a standard for small datasets.

We selected values of 7 close to 1 (0.9 and 0.99) as it is important in the TSP to consider the
entire route. For «, we selected very small values (0.001 and 0.0001) to allow for smoother
convergence. Finally, we used p values of 0.99 and 0.9975, chosen to be close to 1 for sufficient
exploration.

3 Results

3.1 Selecting the Optimal DQL Hyper-Parameter Configuration

The DQL was run on ten relatively small TSP instances ranging between 14 and 38 nodes,
all selected from The Heidelberg TSP Database and The Waterloo TSP Database. Fuclidean
distances between pairs of cities was used for simplicity. This is justified as, according to
Boyaci et al., 2021, there is a greater than 0.98 correlation between true distances and Eu-
clidean distances. For each instance, we ran the DQL with each combination of parameters
three times and took an average of the final solution values. We also ranked the final value
obtained by each algorithm, using two metrics, their average rank and average Dist, where:

Cost achieved by DQL Configuration ¢ on instance j

Dist;; = -
* Longest route achieved for instance j

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
https://www.math.uwaterloo.ca/tsp/data/index.html

V1,101 | V1,01,P2 | V1,Q2,01 | V1,CQ2,P2 | 72,01, P1 | V2,00, P2 | V2, X2, P1 | Y2, A2, P2

Uly_22 157.0 150.6 130.7 104.3 157.7 145.9 133.5 119.8
Bur_14 38.4 45.5 43.3 37.3 55.7 43.1 41.9 40.9
Dji_38 15209.7 | 13155.7 | 19416.0 | 18755.2 | 17091.1 14662.9 | 19636.8 | 19252.6
Lux_25 4313.4 3974.6 5782.3 5898.4 6210.1 3446.0 5877.9 5962.5
Qat_25 4573.6 3964.3 5840.8 5785.5 5842.8 4463.6 5907.3 6053.0
Rwa_25 11051.4 7994.9 10955.8 | 11826.1 14999.0 | 7519.8 10740.0 | 12093.1
Uly_16 116.9 131.4 110.0 113.4 120.1 105.8 105.1 127.1
Uru-25 9181.0 8058.5 11457.8 | 12937.8 | 10797.3 9156.7 11703.2 | 11279.8

Zim_30 26535.3 | 19361.9 | 28214.0 | 25289.7 | 23865.0 | 18488.6 | 26633.8 | 24955.7
Sah_29 53064.5 | 55253.4 | 86330.0 | 57673.8 | 60337.4 | 57749.1 | 66296.5 | 72473.4

Avg Rank 3.8 3.2 5.4 4.3 6 2.5 5.2 5.6
Avg Rank/8 3rd 2nd 6th 4th 8th 1st 5th Tth

Avg Dist 0.78 0.723 0.895 0.842 0.913 0.709 0.866 0.892
Avg Dist/8 3rd 2nd 7th 4th 8th 1st 5th 6th

Table 1: Average cost and corresponding rank and distance for each hyper-parameter com-
bination applied to each TSP instance.

These values are shown in Table 1. The results give us that our optimal set of hyper-
parameters is (7 = 0.99,a = 0.001,p = 0.9975), with a close second of (y = 0.9,a =
0.001, p = 0.9975). We will hence use the former to compare against the classical GA meta-
heuristic. A greater exploration decay is intuitive, as the algorithm will have the opportunity
to explore a greater number of routes before selecting one, and a greater learning rate could
be preferable as exploration decays quickly and there are only 2000 iterations over which the
algorithm can learn.

3.2 DQL vs GA Performance

To illustrate the improvements our tuned DQL is able to make, we run it on the Burma TSP
instance and compare our results to those obtained using a random initial solution. The two
are shown in Figure 1. DQL is clearly able to improve the random solution, with a more
intuitive route and a much reduced cost. However, there remain significant improvements
which can be made. Next, we plot DQL’s average performance at every tenth iteration
against that of GA on the 25-node Uruguay TSP instance. Each line represents an average
of 20 runs of the respective algorithm, and the results are shown in Figure 2. We can see
clear improvements on the initial solution for both algorithms, although the GA is more
successful both in rapidly lowering the route length and achieving a lower final cost. An
average random solution cost is approximately 14,270 for this problem (taking an average
of 100,000 randomly generated solutions), and both methods comfortably outperform this
within the first 500 iterations.

Initial Solution DQL Solution

e Cities s e Cities
— Route

H

Route Cost = 72.41 — [oute Route Cost = 40.45

Latitude

93 £ 95 9% o7 98 93 £ 95 9% o7 98
Longitude Longitude

Figure 1: TSP Solution Using our DQL vs Using a Random Initial Start for the Burma TSP
Instance.

DQL vs GA Performance for the Uruguay TSP instance

16000 1 —— DQL Performance
GA Performance
14000 1
5 12000 1
=]
=
@
-
&
3
2 10000
8000 A
6000 A
T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
Episode

Figure 2: Average Performance of DQL vs GA over 2000 Iterations on the Uruguay TSP
Instance.

4 Conclusion

To conclude, the report found that DQL can be successfully applied to a range of small TSP
instances, yielding solutions of improved quality. The performance of DQL was highly re-
sponsive to adjustments to hyper-parameter selection, namely the learning rate («), discount
factor (), and exploration decay rate (p), although susceptible to poor performance under
sub-optimal hyper-parameter configurations.

Despite its successes, DQL was consistently dominated both in speed and final solution
value by the GA over all tested instances. This is unsurprising, with GA’s dominance in the
metaheuristic field being attributable to its empirical good-performance on such problems,
but it does raise doubt regarding to what degree DQL would be useful for the classic TSP.

This report offers several avenues for improving DQL’s performance on the TSP. Future
work could involve testing more combinations of hyper-parameters, such as the learning rate
(), discount factor (), and exploration decay rate (p). Additionally, tuning other aspects
of the algorithm - such as the initial exploration rate, experience replay ratio and its decay,
batch size, and the neural network architecture itself (e.g., number of hidden layers) - could
yield further enhancements.

While the results presented here are primarily of academic interest given the dominance
of metaheuristics like GA, DQL’s adaptability and ease of application justifies further explo-
ration in other areas of OR. An area for future study could be in investigating whether DQL
can achieve better outcomes in problems where metaheuristics have empirically performed
poorly. With targeted improvements, DQL holds promise as a flexible and innovative tool
for solving complex optimization problems.

References

Boyaci, B., Dang, T. H., & Letchford, A. N. (2021). Vehicle Routing on Road Networks: How
Good is Euclidean Approximation? Computers Operations Research, 129, 105197.
https://doi.org/10.1016/j.cor.2020.105197

Jong, D., & Alan, K. (1975). Analysis of the Behavior of a Class of Genetic Adaptive Systems
[Doctoral dissertation, University of Michigan|. https://deepblue.lib.umich.edu/
handle/2027.42/4507

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, 1., Wierstra, D., & Riedmiller,
M. (2013). Playing Atari with Deep Reinforcement Learning. arXiv, 1-9. https://doi.
org/https://arxiv.org/abs/1312.5602

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., ... Chintala, S. (2019). PyTorch:
An imperative style, high-performance deep learning library. Advances in Neural In-
formation Processing Systems, 32, 8024-8035.

Sprague, N. (2015). Parameter Selection for the Deep Q-Learning Algorithm. Proceedings of
the Deep RL Workshop at NIPS. https://api.semanticscholar.org/CorpusID:29185036

Toaza, B., & Esztergar-Kiss, D. (2023). A Review of Metaheuristic Algorithms for Solving
tsp-based Scheduling Optimization Problems. Applied Soft Computing, 148, 110908.
https://www.sciencedirect.com /science/article /pii/S1568494623009262

https://doi.org/10.1016/j.cor.2020.105197
https://deepblue.lib.umich.edu/handle/2027.42/4507
https://deepblue.lib.umich.edu/handle/2027.42/4507
https://doi.org/https://arxiv.org/abs/1312.5602
https://doi.org/https://arxiv.org/abs/1312.5602
https://api.semanticscholar.org/CorpusID:29185036
https://www.sciencedirect.com/science/article/pii/S1568494623009262

	Deep Q-Learning
	The Genetic Algorithm

	Tuning DQL
	Results
	Selecting the Optimal DQL Hyper-Parameter Configuration
	DQL vs GA Performance

	Conclusion

