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Abstract: In Sprint 3 of STOR608 we investigated sequen-
tial decision making and decision making algorithms such
as UCB and Thompson Sampling. In this report I focus on
Thompson Sampling.

The Multi-Armed Bandit Problem

In a multi-armed bandit problem there is a set of K actions (or arms) and T rounds, where K and
T are positive natural numbers. In each round t ∈ {1, . . . ,T } an action at ∈ {1, . . . ,K } is selected.
Choosing action k in round t gives a stochastic reward Xk,t [1].

We will assume that rewards are independent across actions, and that for action k,

Xk,t ∼ νk

are i.i.d. for t ∈ {1, . . . ,T }, where ν is an unknown probability distribution. The aim is to identify a
rule for selecting actions that maximises the expected cumulative reward over T rounds,

max
T∑

t=1
E(Xat ,t ).

At any particular round t ∈ {1, . . . ,T } we cannot look ahead at what reward we will get therefore
choosing an action should depend on the history of actions we have chosen, and rewards that they
gave us, in other rounds. This rule of choosing an action based on the history is called a policy [1].

Formally a policy, π, maps a history, Ht−1 = (a1, Xa1,1, . . . , a1, Xat−1,t−1), to actions. That is,

π :σ(a1, Xa1,1, . . . , a1, Xat−1,t−1) → {1, . . . ,K }.

The optimal policy would be to play the arm with the largest expected value but since we don’t
know the distributions ν1, . . . ,νK we cannot achieve this.

Regret

To measure the gap between the (unattainable) optimal policy and other policies we use a measure
called regret.

Define µk = E(Xk,t ) for k ∈ {1, . . . ,K } and µ∗ = maxk∈{1,...,K }µk . Then the regret of policy π in T is
given by

Regπ(T ) = Tµ∗−
T∑

t−1
Eπ(µat ).

Minimising regret is equivalent to maximising reward [1]. Notice that we often cannot calculate
regret in a real scenario. This is because again we don’t know the distributions ν1, . . . ,νK . We can
however use regret to measure how effective an algorithm is at finding a policy.
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Thompson Sampling

The policy finding algorithm we will consider is called Thompson Sampling (also known as Local
Thompson Sampling [3]). At each time t ∈ {1, . . . ,T } we need a mechanism that can, for each action
k ∈ {1, . . . ,K }, be used to sample from the posterior distribution pk (µk |Xk,1:t−1) of each action k ∈
{1, . . . ,K }. We denote a random variable drawn from this distribution as µ̃k,t .

Algorithm 1: Thompson Sampling [4]

Input: Posterior distributions {pk (µk |Xk,1:t−1) : k ∈ {1, . . . ,K }}
for k=1 to K do

Sample µ̃k,t ∼ pk (µk |Xk,1:t−1)
end
Sample at uniformly from argmaxk∈{1,...,K }µ̃k,t

Deriving Posterior for Thompson Sampling

Suppose we have a 2-armed Bernoulli bandit with mean parameters 0.5 and 0.55. That is to say
that P(X2,t = 1) = 0.55, P(X2,t = 0) = 0.45 and P(X1,t = 1) = P(X1,t = 0) = 0.5 for all t ∈ {1, . . . ,T }. To
create an appropriate posterior to sample from in the Thompson Sampling we require a likelihood
function and a prior.

Since we know that Xk,t ∼ Bernoulli(µk ) where k ∈ {1,2} then the likelihood of observing out-
comes Xk,t for t such that at = k is given by∑

t |at=k
µ

Xk,t

k (1−µk )1−Xk,t .

We now need to select an appropriate prior. As the arms have a Bernoulli distribution then it is
appropriate to select a Beta(ak ,bk ) prior for arm k. This is because the Beta distribution is conju-
gate to the Binomial distribution [2] and the Bernoulli distribution is a special case of a Binomial
distribution.

Using standard results from Bayesian statistics [2] we have that

p1(µ1|X1,1:t−1) ∼ Beta

(
a1 +

t−1∑
i=1

X1,i 1(ai = 1),b1 + t −1−
t−1∑
i=1

X1,i 1(ai = 1)

)
,

p2(µ2|X2,1:t−1) ∼ Beta

(
a2 +

t−1∑
i=1

X2,i 1(ai = 1),b2 + t −1−
t−1∑
i=2

X2,i 1(ai = 2)

)
.

Prior Hyperparameters

In the above section we have selected priors that are Beta distributions. Since we have two arms
in this example, we have four hyperparameters to specify. These should reflect our initial beliefs
about the arms reward distribution.

a1 b1 a2 b2

Case 1 30 30 36.6 30
Case 2 10.8 2.7 2.7 10.8
Case 3 1.5 1.5 1.8 1.5
Case 4 4.8 1.2 1.2 4.8
Case 5 1 1 1 1

Table 1: Table of the prior parameters for each case.
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We will investigate the effect of the prior parameters on the performance of Thompson Sam-
pling. Five cases are given in Table 1.

Case 1 represents a situation where we have assumed the correct mean for each arm and we
are confident in this assumption (low variance). Case 2 represents a situation in which we have
assumed the wrong mean for each arm and we are confident in this assumption.

Case 3 and Case 4 represent correct and wrong means respectively as in Case 1 and Case 2,
except we are not confident in our assumption (higher variance).

Case 5 is a flat prior, representing the situation where we don’t want to assume the mean of
either arm. Case 1 to Case 4 are illustrated on Figure 5.

Thompson Sampling Experiment

In this section Thompson Sampling is used the priors given earlier and we measure the total regret.
We run the algorithm for 1000 rounds and then 10000 rounds. Once the algorithm determines
which arm gives the higher mean reward the total regret should not change.
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Figure 1: Regret of each case over 1000 rounds.

Figure 1 shows that Case 1 has the least regret and that Case 2 has the highest regret. Case 4 and
5 are nearly identical in regret and Case 3 is between Case 2 and 4. Notice that the high variance
cases are close together in total regret, and the low variance cases are far apart. This suggests that
the confidence in our assumptions effects our policy.

It is surprising that Case 4 has lower regret than Case 3, given that Case 3 has the correct mean
rewards. After running the Thompson Sampling algorithm for Case 3 and Case 4 three hundred
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times we can see from Figure 2 that on average Case 3 gives us a better policy. Therefore, what we
assume about the mean reward for each arm does have an effect on total regret.
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Figure 2: Histogram of total regret at round 1000 in 300 replications.
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Figure 3: Regret of each case over 10000 rounds.

Figure 3 shows that once again Case 1 and Case 2 have the lowest and highest regret respectively.
We notice that Case 2 only pulls Arm 1 for all 10000 rounds, therefore had to be cut from the graph
so we can read the other results.

Case 1 and Case 3 have both plateaued, meaning they have both found an optimal policy (that
is, only choose Arm 2) Case 4 and Case 5 are still increasing in regret after 10000 rounds. We can
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see that Case 4 has accumulated more regret than Case 3 now that we have given the algorithm
more time to run.

What is interesting is that the flat prior (Case 5) has performed better than Case 3, where we
have assumed the correct arm means albeit with little confidence. Figure 4 shows that if we run the
algorithm for 25000 rounds, Case 5 continues to accumulate more regret and eventually overtakes
Case 3 at around 15000 rounds.
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Figure 4: Running Case 3 and Case 5 for 25000 rounds.

Conclusion

When using the Thompson Sampling a prior needs to be chosen and the choice of prior is im-
portant. We found that the variance of the prior distributions played a large role in the decision
making and that a low variance prior is only appropriate when you are confident that the mean of
the prior is close to the mean of the arm.

To extend on that, we found that if you are not confident in your assumptions (right or wrong)
then depending on how many rounds you are considering it may be better to choose a flat prior.
This allows the algorithm to explore the arms and modify the posterior with the data.

The choice of prior only impacts earlier rounds of the algorithm as once you have a lot of data
about the arms the algorithm uses this instead. Therefore, a good prior is useful in an instance
where you have a limited number of rounds.

One way to avoid getting stuck on one arm as in Case 2 would be to implement Optimistic
Bayesian Sampling (OBS), where the chance of playing an arm increases the more uncertain you
are about the payoff of that arm [3].
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Appendix
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Figure 5: Priors for the different cases given in Table 1.
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Figure 6: How the data changes the shape of the prior of Case 4 after 1000 and 10000 rounds.
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