Deterministic Equivalent Form 000 Python Implementation

Optimality Gap

Model Risk

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

References 0

STOR608 Sprint 1: Optimisation Under Uncertainty

Group 2: Theo Crookes, Max Howell, Robert Lambert, James Neill Sprint Lead: Jamie Fairbrother

25 November 2022

Model Risk 000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References 0

Network Planning with Random Demand

• We construct a model for networks that provide private line services.

Model Risk

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References 0

Network Planning with Random Demand

- We construct a model for networks that provide private line services.
- Due to the stochastic nature of the demands, they are treated as random variables.

lodel Risk 00000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References 0

Network Planning with Random Demand

- We construct a model for networks that provide private line services.
- Due to the stochastic nature of the demands, they are treated as random variables.
- In order to carry out an optimisation, we treat the problem as a two-stage stochastic programme.

Model Risk

Network Planning with Random Demand

Figure: Graphical representation of the network planning problem Sen et al. (1994). ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Python Implementation

Optimality Gap

Model Risk 000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

References O

Notation

Symbol	Explanation				
n	Number of links/edges in the graph				
$x \in \mathbb{R}^n$	A vector denoting the amount of				
	additional capacity for each link j				
т	The number of point-to-point pairs				
	served by the network				
$\tilde{a} \subset \mathbb{D}^m$	A r.v. that represents the demands				
$u \in \mathbb{R}$	for the <i>m</i> point-to-point pairs				
b	Total capacity in the system				

Introduction	
0000	

Python Implementation

Optimality Gap

Model Risk

References 0

More Notation

Symbol	Explanation				
R(i)	denote a set of routes (r) that can				
	be used for connections associated				
	with point-to-point pair <i>i</i>				
$A_{ir} \in \mathbb{R}^n$	An indicator vector where $(A_{ir})_j$ is 1 if				
	link <i>j</i> i is in route <i>r</i> (0 otherwise)				
$e \in \mathbb{R}^n$	The current link capacities for each link <i>j</i>				
f _{ir}	Number of connections associated				
	with pair i using route $r \in R(i)$				
Si	Number of unserved requests for each pair <i>i</i>				
1					

Python Implementation

Optimality Gap

Model Risk

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

References 0

Model Summary (Level 1)

Using this notation, we formulate the initial problem in the following way:

 $\min_{x} \mathbb{E}[h(x, \tilde{d})],$

subject to

$$\sum_{j=1}^n x_j \leqslant b,$$
$$x \ge 0.$$

Python Implementation

Optimality Gap

Model Risk

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

References 0

Model Summary (Level 2)

Within the first level of the model we must optimise the following linear programme:

$$h(x,d) = \min_{s,f} \sum_{i=1}^m s_i,$$

subject to

$$\sum_{i} \sum_{r \in R(i)} A_{ir} f_{ir} \leq x + e,$$
$$\sum_{r \in R(i)} f_{ir} + s_i = d_i,$$
$$f_{ir}, s_i \ge 0,$$

for all $i \in \{1, \ldots, m\}$ and $r \in R(i)$.

Python Implementation

Optimality Gap

Model Risk

References

Deterministic Equivalent Form

We can solve the previous problem as a single linear programme by converting the problem into Deterministic Equivalent form over T scenarios, each with probability $p^{(t)}$:

$$\min_{\mathbf{x},s,f} \left\{ \sum_{t=1}^{T} p^{(t)} \left(\sum_{i=1}^{m} s_{i}^{(t)} \right) \right\}$$

subject to

$$\sum_{i=1}^{m} \sum_{r \in R(i)} A_{ir} f_{ir}^{(t)} \leq x + e, \qquad \sum_{j=1}^{n} x_j \leq b,$$
$$\sum_{r \in R(i)} f_{ir}^{(t)} + s_i^{(t)} = d_i^{(t)}, \qquad x, f, s \geq 0,$$

for all $i \in \{1, ..., m\}$, $t \in \{1, ..., T\}$.

・ロト・4回ト・ミン・4回ト ヨー・ 99(で)

Python Implementation

Optimality Gap

Model Risk

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

References 0

Python Implementation

Using the previous formulation allows the problem to be minimised using a single optimisation over the three variables x, s, f.

We chose $p^{(t)} = 1/T$ as we have no prior information on the likelihood of individual scenarios.

Python Implementation

Optimality Gap

Nodel Risk

References 0

Python Implementation

Using the previous formulation allows the problem to be minimised using a single optimisation over the three variables x, s, f.

We chose $p^{(t)} = 1/T$ as we have no prior information on the likelihood of individual scenarios.

Conditional on the number of scenarios T, the number of constraints is T(n + m) + 1 (excluding non-negativity).

Increasing the number of scenarios reduces the variability within the model, at the cost of increased time complexity. The increase in time taken will limit our computational capabilities going forward.

Model Risk 000000

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

References 0

Time Taken

Here we see that as the number of scenarios increases, the time taken increases non-linearly.

Python Implementation

Optimality Gap

Model Risk

References 0

3

Time Taken

Here we see that as the number of scenarios increases, the time taken increases non-linearly.

Figure: Optimisation times for varying T

Model Risk

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

References 0

Optimality Gap

We find some feasible value of x using a large value of T',

$$\tilde{x} = \left\{ x \in \mathcal{X} : \min_{x,s,f} \frac{1}{T'} \sum_{t=1}^{T'} h(x, \tilde{\xi}) \right\}.$$

Python Implementation

Optimality Gap

٠

Model Risk

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

References 0

Optimality Gap

We find some feasible value of x using a large value of T',

$$\tilde{x} = \left\{ x \in \mathcal{X} : \min_{x,s,f} \frac{1}{T'} \sum_{t=1}^{T'} h(x, \tilde{\xi}) \right\}$$

Then optimality gap is defined as

$$G_{T}^{i} = \frac{1}{T} \sum_{t=1}^{T} h(\tilde{x}, \xi_{it}) - \min_{x,s,f} \frac{1}{T} \sum_{t=1}^{T} h(x, \xi_{it}).$$

Python Implementation 00 Optimality Gap

Model Risk

References 0

Optimality Gap Results

For sufficiently large T, we know that over k macroreplications

$$\frac{\bar{G}_{T} - \mathbb{E}\left(G_{T}\right)}{\frac{\sigma_{T}}{\sqrt{k}}} \sim t_{k-1},$$

where

$$ar{G}_T = rac{1}{k} \sum_{i=1}^k G_T^k,$$
 $\sigma_T^2 = rac{1}{k-1} \sum_{i=1}^k (G_T^i - ar{G}_T)^2.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Python Implementation 00 Optimality Gap

Model Risk

References 0

Optimality Gap Results

For sufficiently large T, we know that over k macroreplications

$$\frac{\bar{G}_{T} - \mathbb{E}(G_{T})}{\frac{\sigma_{T}}{\sqrt{k}}} \sim t_{k-1},$$

where

$$ar{G}_{T} = rac{1}{k} \sum_{i=1}^{k} G_{T}^{k},$$
 $\sigma_{T}^{2} = rac{1}{k-1} \sum_{i=1}^{k} (G_{T}^{i} - ar{G}_{T})^{2}.$

This means we can calculate a one-sided confidence interval for $\mathbb{E}(G_T)$:

$$\left(0, \bar{G}_T + t_{k-1,\alpha} \frac{\sigma_T}{\sqrt{k}}\right).$$

Python Implementation

Optimality Gap

Model Risk

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References 0

Optimality Gap Results

Using k = 50 macroreplications and T = 20 scenarios we obtain estimates $\bar{G}_T = 5.010$ and $\sigma_T = 0.908$.

Optimality Gap

Model Risk

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References 0

Optimality Gap Results

Using k = 50 macroreplications and T = 20 scenarios we obtain estimates $\bar{G}_T = 5.010$ and $\sigma_T = 0.908$.

This means we have a 95% confidence interval for for $\mathbb{E}(G_T)$ of (0, 5.225).

Python Implementatior

Optimality Gap 000●0 Model Risk

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

References 0

Optimality Gap Results

Plotting a histogram of the standardised outputs, we expect the results to follow the distribution of a *t*-distribution on k - 1 = 49 degrees of freedom.

Python Implementatior 00 Optimality Gap

Model Risk

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

References 0

Optimality Gap Results

Plotting a histogram of the standardised outputs, we expect the results to follow the distribution of a *t*-distribution on k - 1 = 49 degrees of freedom.

Normalised optimality gap values for fixed number of scenarios

Unfortunately this is not the case with our data.

Python Implementation

Optimality Gap

Model Risk

References 0

Optimality Gap Results

Plotting a histogram of the standardised outputs, we expect the results to follow the distribution of a *t*-distribution on k - 1 = 49 degrees of freedom.

Normalised optimality gap values for fixed number of scenarios

Unfortunately this is not the case with our data. :(

Optimality Gap 0000● Model Risk

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References 0

Optimality Gap Results

For fixed number of macroreplications, as T increases, the variance of the estimate of the optimality gap tends to 0.

Python Implementation

Optimality Gap 0000● Model Risk

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

References 0

Optimality Gap Results

For fixed number of macroreplications, as T increases, the variance of the estimate of the optimality gap tends to 0.

Python Implementatior 00 Optimality Gap 0000●

Model Risk 200000 References

Optimality Gap Results

For fixed number of macroreplications, as T increases, the variance of the estimate of the optimality gap tends to 0.

Therefore, as T increases, the estimate of the optimality gap tends to the true optimality gap.

Model Risk •00000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References 0

Risk reduction methods

Possible methods to make the formulation more risk averse:

- 1. VaR.
- 2. CVaR
- 3. Minimise Variance.
- 4. Minimise Semivariance.
- 5. Minimise the squared losses.
- 6. More recent proposals e.g. most probable maximum size of risk events (MPMR) [Chen and Cheng (2022)]

Model Risk

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

References 0

$$\beta$$
-CVaR

 $\beta\text{-}\mathsf{CVaR}$ is defined as

$$\beta$$
-CVaR $(\theta) = \int_{\beta}^{1} F^{-1}(u) du$

which can be thought of as the expected loss if the worst case threshold is every passed.

Introduction 0000	Deterministic Equivalent Form	Python Implementation	Optimality Gap 00000	Model Risk 00●000	References 0
		β -CVaR			

β -CVaR quantifies the amount of tail risk in the model.

Introduction 0000	Deterministic Equivalent Form	Python Implementation	Optimality Gap	Model Risk 00●000	References O
		β -CVaR			

$\beta\text{-CVaR}$ quantifies the amount of tail risk in the model.

 β -CVaR is tractable.

Introduction 0000	Deterministic Equivalent Form	Python Implementation	Optimality Gap 00000	Model Risk oo●ooo	References 0
		β -CVaR			

 β -CVaR quantifies the amount of tail risk in the model.

 β -CVaR is tractable.

From Acerbi and Tasche (2002) we know that β -CVaR is a coherent risk measure, whereas VaR is not.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Python Implementation

Optimality Gap

Model Risk 000€00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

References 0

Minimising β -CVaR

We previously estimated min $\mathbb{E}(h(x,\xi))$ by

$$\min_{x,s,f}\left\{\sum_{t=1}^T \frac{1}{T}h(x,\xi)^{(t)}\right\}.$$

Python Implementatior 00 Optimality Gap

Model Risk 000€00

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

References 0

Minimising β -CVaR

We previously estimated min $\mathbb{E}(h(x,\xi))$ by

$$\min_{x,s,f}\left\{\sum_{t=1}^T \frac{1}{T}h(x,\xi)^{(t)}\right\}.$$

By a theorem from Rockafellar and Uryasev (2002) we have

$$\min \beta$$
-CVaR = $\min \left(\alpha + \frac{1}{1-\beta} \mathbb{E} \left(h(x,\xi) - \alpha \right)_+ \right) \right),$

Python Implementation

Optimality Gap

Model Risk 000€00 References 0

Minimising β -CVaR

We previously estimated min $\mathbb{E}(h(x,\xi))$ by

$$\min_{x,s,f}\left\{\sum_{t=1}^T \frac{1}{T}h(x,\xi)^{(t)}\right\}.$$

By a theorem from Rockafellar and Uryasev (2002) we have

$$\min \beta - \mathsf{CVaR} = \min \left(\alpha + \frac{1}{1 - \beta} \mathbb{E} \left(h(x, \xi) - \alpha \right)_+ \right) \right),$$

and so we can similarly estimate min β -CVaR by

$$\min_{\alpha,x,s,f} \left\{ \alpha + \frac{1}{1-\beta} \sum_{t=1}^{T} \frac{1}{T} \left(h(x,\xi)^{(t)} - \alpha \right)_{+} \right\}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Python Implementation

Optimality Gap

Model Risk

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

References 0

Auxiliary Variables

Python cannot compute the minimum of a maximum, so we introduce a new variable z, a vector of length T. We then implement

$$\min_{\alpha,x,s,f,z} \left\{ \alpha + \frac{1}{1-\beta} \sum_{t=1}^{T} \frac{1}{T} z^{(t)} \right\},\,$$

with additional constraints

$$z^{(t)} \ge h(x,\xi)^{(t)} - \alpha,$$

$$z^{(t)} \ge 0,$$

for all $t \in \{1, ..., T\}$.

Model Risk

References 0

Optimality Gap Replications

This shows the minimum 0.95-CVaR as the value of T changes.

500

Introduction 0000	Deterministic Equivalent Form	Python Implementation	Optimality Gap 00000	Model Risk 000000	References 0

Bibliography

- Acerbi, C. and Tasche, D. (2002). On the coherence of expected shortfall. *Journal of Banking & Finance*, 26(7):1487–1503.
- Chen, K. and Cheng, T. (2022). Measuring tail risks. *The Journal* of Finance and Data Science.
- Rockafellar, R. T. and Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. *Journal of banking & finance*, 26(7):1443–1471.
- Sen, S., Doverspike, R. D., and Cosares, S. (1994). Network planning with random demand. *Telecommunication systems*, 3(1):11–30.

Deterministic Equivalent Form

Python Implementation

Optimality Gap

Model Risk

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

References

Thank You

Thank you for listening. Any questions?