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Network Planning with Random Demand

• We construct a model for networks that provide private line
services.

• Due to the stochastic nature of the demands, they are treated
as random variables.

• In order to carry out an optimisation, we treat the problem as
a two-stage stochastic programme.
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Network Planning with Random Demand

Figure: Graphical representation of the network planning problem Sen
et al. (1994).
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Notation

Symbol Explanation

n Number of links/edges in the graph

x ∈ Rn A vector denoting the amount of
additional capacity for each link j

m
The number of point-to-point pairs

served by the network

d̃ ∈ Rm A r.v. that represents the demands
for the m point-to-point pairs

b Total capacity in the system
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More Notation

Symbol Explanation

R(i)
denote a set of routes (r) that can
be used for connections associated

with point-to-point pair i

Air ∈ Rn An indicator vector where (Air )j is 1 if
link j i is in route r (0 otherwise)

e ∈ Rn The current link capacities for each link j

fir
Number of connections associated
with pair i using route r ∈ R(i)

si Number of unserved requests for each pair i
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Model Summary (Level 1)

Using this notation, we formulate the initial problem in the
following way:

min
x

E[h(x , d̃)],

subject to

n∑
j=1

xj ⩽ b,

x ⩾ 0.
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Model Summary (Level 2)

Within the first level of the model we must optimise the following
linear programme:

h(x , d) = min
s,f

m∑
i=1

si ,

subject to ∑
i

∑
r∈R(i)

Air fir ⩽ x + e,

∑
r∈R(i)

fir + si = di ,

fir , si ⩾ 0,

for all i ∈ {1, . . .m} and r ∈ R(i).
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Deterministic Equivalent Form

We can solve the previous problem as a single linear programme by
converting the problem into Deterministic Equivalent form over T
scenarios, each with probability p(t):

min
x ,s,f

{
T∑
t=1

p(t)

(
m∑
i=1

s
(t)
i

)}
subject to

m∑
i=1

∑
r∈R(i)

Air f
(t)
ir ⩽ x + e,

∑
r∈R(i)

f
(t)
ir + s

(t)
i = d

(t)
i ,

n∑
j=1

xj ⩽ b,

x , f , s ⩾ 0,

for all i ∈ {1, . . . ,m}, t ∈ {1, . . . ,T}.
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Python Implementation

Using the previous formulation allows the problem to be minimised
using a single optimisation over the three variables x , s, f .

We chose p(t) = 1/T as we have no prior information on the
likelihood of individual scenarios.

Conditional on the number of scenarios T , the number of
constraints is T (n +m) + 1 (excluding non-negativity).

Increasing the number of scenarios reduces the variability within
the model, at the cost of increased time complexity. The increase
in time taken will limit our computational capabilities going
forward.
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Time Taken

Here we see that as the number of scenarios increases, the time
taken increases non-linearly.

Figure: Optimisation times for varying T
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Optimality Gap

We find some feasible value of x using a large value of T ′,

x̃ =

{
x ∈ X : min

x ,s,f

1

T ′

T ′∑
t=1

h(x , ξ̃)

}
.

Then optimality gap is defined as

G i
T =

1

T

T∑
t=1

h(x̃ , ξit)− min
x ,s,f

1

T

T∑
t=1

h(x , ξit).
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Optimality Gap Results

For sufficiently large T , we know that over k macroreplications

ḠT − E (GT )
σT√
k

∼ tk−1,

where

ḠT =
1

k

k∑
i=1

G k
T ,

σ2
T =

1

k − 1

k∑
i=1

(G i
T − ḠT )

2.

This means we can calculate a one-sided confidence interval for
E (GT ): (

0, ḠT + tk−1,α
σT√
k

)
.
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Optimality Gap Results

Using k = 50 macroreplications and T = 20 scenarios we obtain
estimates ḠT = 5.010 and σT = 0.908.

This means we have a 95% confidence interval for for E (GT ) of
(0, 5.225).
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Optimality Gap Results

Plotting a histogram of the standardised outputs, we expect the
results to follow the distribution of a t-distribution on k − 1 = 49
degrees of freedom.

Unfortunately this is not the case with our data. :(
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Optimality Gap Results

For fixed number of macroreplications, as T increases, the variance
of the estimate of the optimality gap tends to 0.

Therefore, as T increases, the estimate of the optimality gap tends
to the true optimality gap.
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Risk reduction methods

Possible methods to make the formulation more risk averse:

1. VaR.

2. CVaR

3. Minimise Variance.

4. Minimise Semivariance.

5. Minimise the squared losses.

6. More recent proposals e.g. most probable maximum size of
risk events (MPMR) [Chen and Cheng (2022)]
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β-CVaR

β-CVaR is defined as

β-CVaR(θ) =

∫ 1

β
F−1(u)du

which can be thought of as the expected loss if the worst case
threshold is every passed.
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β-CVaR

β-CVaR quantifies the amount of tail risk in the model.

β-CVaR is tractable.

From Acerbi and Tasche (2002) we know that β-CVaR is a
coherent risk measure, whereas VaR is not.
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Minimising β-CVaR

We previously estimated minE(h(x , ξ)) by

min
x ,s,f

{
T∑
t=1

1

T
h(x , ξ)(t)

}
.

By a theorem from Rockafellar and Uryasev (2002) we have

minβ-CVaR = min

(
α+

1

1− β
E (h(x , ξ)− α)+)

)
,

and so we can similarly estimate minβ-CVaR by

min
α,x ,s,f

{
α+

1

1− β

T∑
t=1

1

T

(
h(x , ξ)(t) − α

)
+

}
.
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Auxiliary Variables

Python cannot compute the minimum of a maximum, so we
introduce a new variable z , a vector of length T . We then
implement

min
α,x ,s,f ,z

{
α+

1

1− β

T∑
t=1

1

T
z(t)

}
,

with additional constraints

z(t) ⩾ h(x , ξ)(t) − α,

z(t) ⩾ 0,

for all t ∈ {1, . . . ,T}.
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Optimality Gap Replications

This shows the minimum 0.95-CVaR as the value of T changes.
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Thank You

Thank you for listening. Any questions?
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