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Introduction

For data
Y1, . . . ,YT

The location(time) of the n distinct change points is:
0 < t1 < t2 < · · · < tn−1 < tn < T . For each segment partitioned
by the change points, a parametric model with corresponding
parameter vector (Θ) would be constructed.
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Introduction

To determine the optimal location and number of change points
for the time series, we will compare the total cost through different
segmentations. The total cost is the sum of the likelihood for each
segment in a particular segmentation:

min
T

n+1∑
i=1

ℓ
(
Yτi−1:τi−1

)
+ λP(n)
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NOT (Narrowest-over-threshold) Change Point

• We first draw M sub-intervals along the total time span, i.e
(Yp+1, . . . ,Yq).

• Next, we calculate the generalized likelihood ratio statistic for
all the points (i) within one sub-intervals (p, q]:

Ri ,(p,q](Y) = 2 log

[
supΘ1,Θ2{l(Yp+1,...,Yi ;Θ

1)l(Yi+1,...,Yq ;Θ2)}
supΘ l(Yp+1,...,Yq ;Θ)

]
• Set a threshold value λT , compare the R(p,q](Y) with λT and

pick out those significant maximum ratio statistics which are
above the threshold value: R(ps ,qs ](Y).

• Finally, the sub-interval (ps∗ , qs∗ ] leading to a significant ratio
statistic R(ps∗ ,qs∗ ](Y) with narrowest length of the interval is
chosen, i∗ corresponding to maximum generalized likelihood
ratio statistic is the (first) change point that we aim to locate.
Baranowski (2019)
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NOT Changepoint

Yt = ft + σt ∗ ϵt

• Piecewise constant mean:
• Constant variance: σt = σ, f (t) = µk

• Piecewise constant Variance: f (t) = µk , σt = σk

• Constant variance:
• Continuous piecewise linear mean: σt = σ, f (t) = αk + βkt

continuity constraint: αk + βktk = αk+1 + βk+1tk with tk
being the time of the k th change point with k = 1, . . . , n.

• Piecewise linear mean (with possible discontinuity):
σt = σ, f (t) = αk + βkt for all t within the k th segment and
αk + βktk ̸= αk+1 + βk+1tk for some k = 1, . . . , n.
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NOT Changepoint

• Wave 1 Mean Change: length 550, Change-Points at 200,
400, 450 with mean values:0, 0.5, -0.3, 2 between the
Change-Points. Standard deviation σ = 1.

−2

0

2

4

0 200 400
time

W
av

e1

NOT Change−Point Detection on Wave1



Univariate Changepoints Multivariate Anomaly Detection References

NOT Changepoint

• Wave 2 Variance Change: length 550, Change-Points at 100,
300, 450, with standard deviation σ:1, 3, 1.5, 6 between the
Change-Points.
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NOT Changepoint

• Wave 3 length 200, Change-Points at 70, 120, 160 with
values: 0.70, -0.05, 0.03 at the Change-Point and continuous
linear trend in between. Standard deviation: σ = 0.1.
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Changepoint Location
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Changepoint Frequency

• length 10000, changepoints evenly spread, number of the
changepoints:4, 9, 19, 49, 99. Standard deviation: σ = 0.2.
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Changepoint Frequency

• length 10000, changepoints evenly spread, number of the
changepoints:4, 9, 19, 49, 99. Standard deviation: σ = 0.2.
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Changepoint Magnitude

• length 600, changepoints at 200, 400 with change in
mean:0.2, 0.5, 1, 2. Standard deviation: σ = 1.
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Changepoint Magnitude

• length 600,changepoints at 200, 400 with change in mean:0.2,
0.5, 1, 2. Standard deviation: σ = 1
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Changepoint Magnitude

• length 600, changepoints at 200, 400 with change in
Variance:0.2, 0.5, 1, 2. Mean: µ = 0.
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Changepoint Magnitude

• length 600, changepoints at 200, 400 with change in
Variance:0.2, 0.5, 1, 2. Mean: µ = 0
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Addition of anomalies

We start with Gaussian behaviour which changes from N(0, 1) to
N(2, 1) at t = 400. We then add anomalies in the following
manner

• A single anomaly, magnitude 10σ, changing the location
w.r.t the changepoint

• A single anomaly, fixed location t = 200, changing the
magnitude

• Fixed magnitude of of anomaly, changing the frequency of
randomly dispersed anomalies

We evaluate the behaviour of the NOT and FPOP [Maidstone
et al. (2017)] methods.
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Anomalies: changing the location

Both NOT and FPOP consistently find a changepoint as the
location of the anomaly changes

Figure: Proportion of the time NOT and FPOP identify a single
changepoint
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Anomalies: changing the location

When the anomaly is close to the changepoint, both NOT and
FPOP can mistake the anomaly for the changepoint location

Figure: Average distance between the observed and actual changepoint
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Anomalies: changing the magnitude

Both NOT and FPOP consistently find a changepoint as the
magnitude of the anomaly changes

Figure: Proportion of the time NOT and FPOP identify a single
changepoint
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Anomalies: changing the magnitude

Both NOT and FPOP consistently find a changepoint very close to
its true location as the magnitude of the anomaly changes

Figure: Average distance between the observed and actual changepoint
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Anomalies: changing the frequency

As we increase the number of anomalies, the FPOP method
consistently finds a single changepoint, whereas NOT gets worse -
it tends to identify multiple changepoints.

Figure: Proportion of the time NOT and FPOP identify a single
changepoint
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Anomalies: changing the frequency

As we increase the number of anomalies, when a single
changepoint is detected, both NOT and FPOP get worse at
identifying the position of the changepoint.

Figure: Average distance between the observed and actual changepoint
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Changepoint detection summary

The NOT method works well in detecting changepoints except
when the frequency of changepoints becomes large.
In the presence of anomalies, the NOT method continues to work
well unless the frequency of anomalies increases.
The FPOP method outperforms the NOT method in the presence
of anomalies.
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Types Of Anomalies

There are three kinds of anomalies:

• Global (Point) Anomalies
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Types Of Anomalies

• Collective Anomalies
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Types Of Anomalies

• Contextual Anomalies
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CAPA

CAPA (Collective and Point Anomalies):

• Can detect change in mean and change in variance

• In practice, has a close to linear computational cost [Fisch
et al. (2018)]

• The package we used assumes that the underlying data is
normal
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Minimising Cost in CAPA

The method is based on finding the points which minimise the
penalised cost

∑
t /∈[ŝi+1,êi ]

C(xt , θ̂0) +
K̂∑
j=1

min
θ̂j

 êj∑
ŝj+1

C(xt , θ̂j)

+ β


for each segment (si , ei ), where C is the negative log-likelihood and
β is a penalty constant (often a scalar multiple of log(n), where n
is the number of datapoints).
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CAPA Algorithm Part 1

Figure: CAPA Algorithm from Fisch et al. (2018)
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CAPA Algorithm Part 2

Figure: CAPA Algorithm from Fisch et al. (2018)
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CAPA Algorithm Part 3

Figure: CAPA Algorithm from Fisch et al. (2018)
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CAPA Algorithm Part 4

Figure: CAPA Algorithm from Fisch et al. (2018)
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CAPA Comparison

There is also a version of the CAPA algorithm for multivariate data.

We will compare the performance of the multivariate algorithm
against using the univariate algorithm on each dimension.
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CAPA Application: Collective Anomalies

We first use CAPA to find collective anomalies on 5-dimensional
data.

We generate each dimension from a standard Gaussian
distribution, apart from subsections of 20 points generated from a
Gaussian distribution with an increased mean µ. These subsections
begin at:

• dimension 1: 100, 300, 500, 700, 900

• dimension 2: 300, 500, 700, 900

• dimension 3: 500, 700, 900

• dimension 4: 700, 900

• dimension 5: 900
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CAPA Application: Collective Anomalies

We first use CAPA to find collective anomalies on 5-dimensional
data.

We generate each dimension from a standard Gaussian
distribution, apart from subsections of 20 points generated from a
Gaussian distribution with an increased mean µ. These subsections
begin at:

• dimension 1: 100, 300, 500, 700, 900

• dimension 2: 300, 500, 700, 900

• dimension 3: 500, 700, 900

• dimension 4: 700, 900

• dimension 5: 900
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Multivariate Method when µ = 1

Applying CAPA to all the data, we find the following collective
anomalies:

Figure: Anomaly band width: 19-23
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Univariate Method when µ = 1

Applying CAPA to each dimension individually, we find the
following collective anomalies:

Figure: Anomaly band width: 16-27
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Multivariate Method when µ = 2

Applying CAPA to all the data, we find the following collective
anomalies:

Figure: Anomaly band width: 20
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Univariate Method when µ = 2

Applying CAPA to each dimension individually, we find the
following collective anomalies:

Figure: Anomaly band width: 17-25
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CAPA Method Comparison

Using the multivariate version finds more anomalies than using the
univariate version repeatedly – the multivariate version is more
accurate when the anomalous results are less clear.

However, when the anomalous results are clearer, and when the
number of dimensions is increased, the multivariate method is
more likely to overfit and find false positives.

Although difficult to see on the plots, the collective anomalies
selected have closer endpoints to the true anomalies by using the
multivariate method than the repeated univariate method.
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CAPA Method Comparison

Using the multivariate version finds more anomalies than using the
univariate version repeatedly – the multivariate version is more
accurate when the anomalous results are less clear.

However, when the anomalous results are clearer, and when the
number of dimensions is increased, the multivariate method is
more likely to overfit and find false positives.
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selected have closer endpoints to the true anomalies by using the
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CAPA Method Comparison

Using the multivariate version finds more anomalies than using the
univariate version repeatedly – the multivariate version is more
accurate when the anomalous results are less clear.

However, when the anomalous results are clearer, and when the
number of dimensions is increased, the multivariate method is
more likely to overfit and find false positives.

Although difficult to see on the plots, the collective anomalies
selected have closer endpoints to the true anomalies by using the
multivariate method than the repeated univariate method.
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CAPA Method Comparison – Time Taken

Both methods take approximately the same (very small) time to
run, regardless of the number of dimensions:
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CAPA Application: Point Anomalies

We now repeat the above CAPA application on 5-dimensional
data, but with single anomalous points (15 in total) instead of
anomalous ranges.

Again, most of the data is from a standard Gaussian, with
anomalous points from a Gaussian with mean µ.
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CAPA Application: Point Anomalies

The repeated univariate method performs better for any given µ.
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CAPA Application: Contextual Anomalies

Just for completeness, lets see how CAPA copes with a contextual
anomaly in seasonal data (which it is not designed for).
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CAPA Application: Contextual Anomalies
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CAPA with Correlation

Now taking a look at how CAPA copes when there is correlation
between variables...
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CAPA with Correlation – Variable 1
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CAPA with Correlation – Variable 2
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CAPACC – Variable 1

Using capa.cc we can see how it copes when there is correlation.
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CAPACC – Variable 2

Changing the other variable:
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Other Anomaly Detection Methods

• Brutlag’s Anomaly Detection Algorithm using the
Holt-Winters (triple exponential smoothing) Model [Szmit and
Szmit (2012)]

• Grubbs’s test (both univariate and multivariate versions)

• Regression-based analysis (both basic and robust versions)
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Anomaly Detection Conclusion

• We have a method that can detect anomalies in both the
univariate and multivariate case (CAPA)

• We have compared the benefits of the multivariate case
against doing the univariate multiple times

• We have looked at what to do when there could be correlation
between dimensions in multivariate data settings
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Thank you for listening

Any questions?
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