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Introduction

We will be investigating three problems:

• Part A: Restaurant problem

• Part B: Two-armed bandit problem

• Part C: Expected improvement problem
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Restaurant Data

We have some data on the quality of various restaurants in
Lancaster, rated on a 0-10 scale.

Aquila Bella Italia Cafe Dolce Domino’s

4 2 5 3
5 6 5

6

Which restaurant should we go to?
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Model

For each restaurant k, we assume that r(k) ∼ N(µk , σ
2
k),

independent across restaurants.

We then assume standard priors

σ2
k ∼ Inv-Gamma(α, β),

µk |σ2
k ∼ N(m, σ2

kτ
2),

for some fixed values (hyperparameters) α, β,m, τ2.
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Choice of Hyperparameters

α = 2

β = 1

m = 5

τ2 = 1

We let α = 2 and β = 1 so that the mean of σ2
k was 1, and so it

was unlikely to generate rewards greater than 10.

Since the marks awarded are on a scale from 0-10, we let m = 5.

We let τ2 = 1 so that variance of µk |σ2
k was fixed as σ2

k .
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Posterior Calculation

For any given restaurant k , we derive the posterior distribution of
µk and σ2

k :

p(µk , σ
2
k |xk) ∝ f (xk |µk , σ

2
k)p(µk , σ

2
k)

= f (xk |µk , σ
2
k)p(σ

2
k)p(µk |σ2

k)

...

∝
(
σ2
k

)α+3/2+nk/2

exp

(
− 1

σ2
k

(
β +

1

2τ2
(µk −m)2 +

1

2

nk∑
i=1

(xk,i − µk)
2

))

This is intractable. :(
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Conditional Distributions

Considering the two parameters separately, given that we know the
value of the other, we have

p(σ2
k |µk , xk) ∼ Inv-Gamma (A,B) ,

where

A = α+
1

2
+

nk
2
,

B = β +
1

2τ2
(µk −m)2 +

1

2

nk∑
i=1

(xk,i − µk)
2 ,
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Conditional Distributions

and

p(µk |σ2
k , xk) ∼ N

(
m + τ2

∑nk
i=1 xk,i

1 + τ2nk
,

τ2σ2
k

1 + τ2nk

)
.

This means we can use the Gibbs sampler. For each restaurant, we
use the Gibbs sampler to get 1000 pairs (µk , σ

2
k). Then for each

pair we sample 1000 points from N(µk , σ
2
k), which gives us 106

points for each restaurant to analyse using Monte Carlo methods.
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Results

For each restaurant k, we are interested in the average quality, the
probability of having at least an okay meal, and the probability of
having a great meal.

Aquila Bella Italia Cafe Dolce Domino’s

E(r(k)|D) 4.692 4.384 5.037 4.773
P(r(k) > 3|D) 0.976 0.748 0.981 0.908
P(r(k) > 7|D) 0.011 0.128 0.023 0.061
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Varying τ 2

We found that varying τ2 made no difference to our restaurant
choice, regardless of our decision method. This plot illustrates this
for our first decision method, E(r(k)|D)
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Varying m
We found that varying m did change our restaurant choice, higher
values of m favoured Cafe Dulce for all decision methods. This
plot illustrates this for our second decision method, P(r(k) > 3|D)
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Varying α
We found that varying α did change our restaurant choice at small
values of α - changing α particularly changed the behaviour of
Cafe Dulce’s performance for all decision methods. This plot again
illustrates this for our second decision method, P(r(k) > 3|D).
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Varying β
We found that varying β did change our restaurant choice at small
values of β - changing β particularly changed the behaviour of
Cafe Dulce’s performance for our third decision method,
P(r(k) > 7|D), as this plot illustrates.
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Risk-Sensitivity for Gains

People are often risk-sensitive for gains – rather than choosing the
outcome with the greatest expected reward, they choose an
outcome with a smaller expected reward and smaller variance.

We can quantify this by considering a new utility measure that also
considers the variance, instead of just the expectation. We want a
smaller variance to increase the desirability of the restaurant, so we
consider

E(r(k)|D)√
Var(r(k)|D)

.
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Risk-Sensitivity in the Restaurant Example

We will now use our new utility measure on the restaurant example
(using the original hyperparameters).

Aquila Bella Italia Cafe Dolce Domino’s

E(r(k)|D) 4.692 4.384 5.037 4.773
Var(r(k)|D) 0.886 11.990 1.342 3.279

E(r(k)|D)√
Var(r(k)|D)

4.985 1.266 4.348 2.636
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Risk-Sensitivity Plot

Often the utility derived is not linear, so a smaller expected reward
may sometimes lead to only marginally smaller expected utility.

Utility Function
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Restaurant Problem Conclusion

Ultimately we think we should go to Aquila, since it has the largest
expected value when considering risk-sensitivity (variance) and one
of the largest probabilities of having an at least okay quality meal.

We also think Cafe Dolce is a good choice – it has the largest
expected value and one of the largest probabilities of having an at
least okay quality meal. However, we only have one datapoint and
so treat these results with some skepticism (the results change the
most based on the hyperparameters).

The worst choice is Bella Italia. It has the smallest expected
value, the smallest probability of having an at least okay quality
meal, and by far the smallest expected value when being
risk-sensitive (considering variance).
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Bandits Problem
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Bandits Problem: The Set Up

• Set of K actions/arms.

• There are T rounds, selecting an action at each round.

• Choosing action k ∈ K gives some reward Xk,t .

• Rewards are i.i.d. across actions with Xk ∼ νk where νk is
unknown.

• GOAL: Identify a rule for sequentially selecting actions, which
maximises expected cumulative reward over T rounds

max
T∑
t=1

E(Xat ,t)
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UCB1

UCB1 Algorithm

• For t = 1, . . .K select arm at
• For t = K + 1, . . . ,T ,

• First calculate

µ̄k,t =

∑t−1
s=1 Xk,sI(as = k)∑t−1

s=1 I(as = k)
+

√
2 log(t)∑t−1

s=1 I(as = k)

• Select arm with biggest µ̄k,t
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Thompson Sampling

Algorithm:

• For t = 1, . . . ,T :
• For each arm k draw a sample,

µ̃k,t ∼ p(µk |Xk,1:t−1) .

• Select the arm with the largest sample µ̃k,t and update it’s
posterior.
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Thompson Sampling

For our 2 armed bandit problem with µ1 = 0.5 , µ2 = 0.55 we have,

f (Xk,1:t−1|µk) = µ
∑

Xk,1:t−1

k (1− µk)
t−1−

∑
Xk,1:t−1 ,

p(µk) ∝ µα−1
k (1− µk)

β−1 .

Thus when updating our Beta(α, β) will become:

A←− α+
∑

Xk,1:t−1 ,

B ←− β + t − 1−
∑

Xk,1:t−1 ,

and our posterior distribution for µk |Xk,1:t−1 will be Beta(A,B)
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Thompson Sampling

Starting with a prior Beta(1, 1) our final distributions are shown:
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Regret

Define µk = E(Xk,t) for k ∈ {1, . . . ,K}, and
µ∗ = maxk∈{1,...,K} µk , our regret is then,

Regπ(T ) =
T∑
t=1

µ∗ − Eπ(µat ) .
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Regret
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Regret
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Regret for New Means

For new (µ1, µ2) = (0.05, 0.95),
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Regret for New Means
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Thompson sampling: varying the hyperparameters

Our hyperparameters α and β inform our early estimates of the
means of our 2 armed bandit. As time goes on, are estimates are
influenced by the data we have collected from each arm.

We have changed these hyperparameters and explored how our
Thompson sampling performs as a result.

Our choices for (α, β) are:

(5, 2), (2, 1), (2, 2), (0.5, 0.5), (1, 1), (1, 2), (2, 5).
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Thompson sampling: varying the hyperparameters
For each hyperparameter pair, we ran our algorithm 1000 times for
T=1000, below we illustrate the spread of our final estimates of µ1



A: Restaurant Problem B: Bandits Problem C: Improvement Problem References

Thompson sampling: varying the hyperparameters

Below we illustrate the spread of our final estimates of µ2
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Thompson sampling: varying the hyperparameters
Below we illustrate the spread of our final estimates of µ1, here
letting T = 10, 000
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Thompson sampling: varying the hyperparameters
Below we illustrate the spread of our final estimates of µ2, here
letting T = 10, 000
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The Set Up

Let f : X → R be a black box function. We want to find

x∗ = argmin
x∈X

f (x).

We sample from f (x) n times and so have Dn = ((x1, y1),
(x2, y2), . . . , (xn, yn)) where yi = f (xi ).

Our current best guess of f is f ∗n = mini=1,...,n yi .
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The Set Up

Conditional on the observations, a Gaussian model predicts the
value of f for any x ∈ X as f (x) | Dn ∼ N(µ(x), σ(x)).

To choose where next to evaluate f , we maximize an acquisition
function αn : X → R that estimates the benefit provided by an
evaluation with respect to solving our minimisation.

Now consider an acquisition function of the form
αn(x) = E(u(x) | Dn) where

u(x) = max(0, f ∗n − f (x)).
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Calculating αn(x)

αn(x) = E (u(x)|Dn)

= E (max(0, f ∗n − f (x))|Dn)

=

∫ ∞

−∞
max(0, f ∗n − f ) · N(µn(x), σ

2
n(x))df

=

∫ f ∗n

−∞
(f ∗n − f ) · N(µn(x), σ

2
n(x))df

= f ∗n

∫ f ∗n

−∞
N(µn(x), σ

2
n(x))df −

∫ f ∗n

−∞
f · N(µn(x), σ

2
n(x))df

= f ∗n · P(f (x) ⩽ f ∗n )− E(f (x)|f (x) ⩽ f ∗n )
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=

∫ ∞

−∞
max(0, f ∗n − f ) · N(µn(x), σ

2
n(x))df

=

∫ f ∗n

−∞
(f ∗n − f ) · N(µn(x), σ

2
n(x))df

= f ∗n

∫ f ∗n

−∞
N(µn(x), σ

2
n(x))df −

∫ f ∗n

−∞
f · N(µn(x), σ

2
n(x))df

= f ∗n · P(f (x) ⩽ f ∗n )− E(f (x)|f (x) ⩽ f ∗n )
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Calculating αn(x)

From the inverse Mills ratio (see Greene (2012)) we have

E(f | f ⩽ f ∗n ) = µn(x)− σn(x)
ϕ
(
f ∗n −µn(x)
σn(x)

)
1− Φ

(
f ∗n −µn(x)
σn(x)

) .

Therefore the closed form for αn(x) is

f ∗n · Φ
(
f ∗n − µn(x)

σn(x)

)
− µn(x) + σn(x)

ϕ
(
f ∗n −µn(x)
σn(x)

)
1− Φ

(
f ∗n −µn(x)
σn(x)

) .
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Interpreting αn(x)

αn(x) = f ∗n · P(f (x) ⩽ f ∗n )− E(f (x) | f (x) ⩽ f ∗n )

µ̄k,t =

∑t−1
s=1 Xk,sI(as = k)∑t−1

s=1 I(as = k)
+

√
2 log(t)∑t−1

s=1 I(as = k)
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Thank you for listening

Any questions?
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