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Introduction



What is MC & MC?

Markov Chain:
• Transition kernel K:

K(A|x) = P(Xt ∈ A|Xt−1 = x).

• This kernal then has
transition density p:

K(A|x) =
∫
A
p(y|x)dy

• The chain then has an
invariant distribution Π with
density π(x):

Π(A) =
∫
K(A|x)π(x)dx

Monte Carlo (Integration):
• Mathematically:

θ = E [ϕ(X)] =
∫

ϕ(x)π(x)dx

• Allows us to take a sample
average:

θ̂ =
1
n

n∑
i=1

ϕ(xi)
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What is MCMC?

Joining the two MCs together:

• We know a distribution, π(x), up to some constant of
proportionality.

• Construct a Markov Chain whose stationary distribution is π(x).
• Simulate N samples, x1, . . . , xN. Remove the burn-in period.
• Using Monte Carlo we can estimate posterior expectations and
probabilities.

This is the base idea of MCMC.
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Metropolis-Hastings

For some proposal density, q, we have an acceptance probability that
we ‘move’ states of,

α(x|y) = min

{
1, π(x)q(y|x)
π(y)q(x|y)

}
,

where π is the stationary distribution of our Markov chain.
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Metropolis-Hastings

Figure 1: Proposal Distribution Illustrated
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MCMC Algorithms



MCMC Algorithms

There exist a number of algorithms that can give us a proposal
density for our Markov chain’s dynamics.

By using the Metropolis-Hastings algorithm we can obtain an
acceptance probability for each proposed change of state within the
Markov Chain.
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Random Walk

The most primitive MCMC algorithm is the Random Walk Metropolis
Algorithm - for which the proposal distribution is a random walk.

If in the current state x, the proposed next state x′ is obtained using
the random variable X′:

X′ = x+ ϵ

Where ϵ is a zero mean random variable.

This transition is accepted with probability α(x′ | x), obtained using
the Metropolis-Hastings algorithm.
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Random Walk

Figure 2: Visualisation of RWM
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Random Walk
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Figure 3: Trace plot of RW for N(0,1) with starting values: 20,5,0,-5,-20
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Random Walk
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Figure 4: Histogram of RW for N(0,1)
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Metropolis-adjusted Langevin algorithm

Even with appropriately tuned parameters, RWM proposes a new
state x′ at random.

If we instead, try to model our Markov chain as a discretised
Langevin diffusion, we can use Langevin dynamics to propose a new
state based upon a random walk displaced by some factor of the
gradient of the proposed density.

x′ = x+ h
2∇log(π(x)) +

√
hϵt

Where ϵt ∼ N (0, 1).
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Metropolis-adjusted Langevin algorithm

If at every timepoint we were to select the proposed x′ then we
would be carrying out the Unadjusted Langevin Algorithm (ULA).

Whilst not producing samples exactly from the proposed density π(x)
it is particularly useful in Big Data settings.

If were instead to accept the proposed x′ with probability α
(obtained from using the MH algorithm) we would be using the
Metropolis-adjusted Langevin algorithm which does sample from the
proposed density π(x).

q (x′ | x) = N
(
x′; x+ h

2∇ log π(x),h
)
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Metropolis-adjusted Langevin algorithm

Figure 5: MALA Visualisation
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Metropolis-adjusted Langevin algorithm
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Figure 6: Trace plot of MALA for N(0,1) with starting values: 20,5,0,-5,-20
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Metropolis-adjusted Langevin algorithm
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Figure 7: Histogram of MALA for N(0,1)
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Gibbs Sampling

For x = (x1, x2, ..., xd) the joint distribution of x may be complicated.
But if some conditional distributions are known this can be taken
advantage of.

We make a proposal of

q(x′ | x) = π(xi | x−i)

.
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Gibbs Sampling

Figure 8: Gibbs Visualisation
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Gibbs Sampling

In the context of Metropolis-Hastings the acceptance probability is
always 1.

α(x′ | x) = min

{
1, π(x

′)q(x | x′)
π(x)q(x′ | x)

}
α(xi | x−i) = min

{
1, π(xi)π(x−i | xi)
π(x−i)π(xi | x−i)

}

= min

1, π(xi)×
π(x−i,xi)
π(xi)

π(x−i)×
π(xi,x−i)
π(x−i)


= min

{
1, π(x)
π(x)

}
= 1
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Gibbs Sampling-Implementation
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Gibbs Sampling-Implementation X1
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Gibbs Sampling-Implementation X2
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Gibbs Sampling - 3D case

µ =

 2
5
10



Σ =

 1 0.5 0.2
0.5 1 0.4
0.2 0.4 1
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Comparisons



Target Distribution

In order to test the limitations of each of the algorithms, we trial
them using a number of different target distributions:

• Skewed distribution
• Heavy tailed distribution
• Multi-mode distribution
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Target Distribution: Gamma(5,1)
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Target Distribution: Student t(1)
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Target Distribution: Bimodal(-10,0) - RW
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Target Distribution: Bimodal(0,3) - MALA

0 2000 4000 6000 8000 10000

−
2

0
2

4
6

t

X
t

X

D
en

si
ty

−4 −2 0 2 4 6

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

X

D
en

si
ty

−2 0 2 4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

X

D
en

si
ty

−4 −2 0 2 4 6

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

26



Target Distribution: Bimodal(0,6) - MALA
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Dimensions: RW d=2,10,100
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Dimensions: MALA d=2,10,100
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Dimensions: Gibbs d=2,10,100
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Dimensions: RW d=2,10,100
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Dimensions: MALA d=2,10,100
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Dimensions: Gibbs d=2,10,100
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Convergence Diagnostics

Asymptotic Distribution
CLT for Markov Chain:

√
n
(
1
n

n∑
i=1

g (Xi)− E(g(X))
)

d→ N
(
0, σ2

)
(n→ ∞)

σ2 =Var (g (X0)) + 2
∞∑
k=1

cov (g (X0) ,g (Xk))

=Var(g(X0)[1+ 2
∞∑
k=1

corr(g(X0),g(Xk))]

Effective Sample Size
Size k of an iid sample Y1, . . . Yk ∼ f whose average 1

k
∑k

i=1 g(Yi) has
the same variance as 1

n−b
∑k

i=1 g(Xi)

k =
n− b

1+ 2
∑∞

k=1 corr (g (X0) ,g (Xk))
34



Step Size Tuning: MALA
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Step Size Tuning: MALA
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Figure 9: Starting h = 10, Effective sample size =
7187

hk+1 = hk+
hk
k (Rk−α̂)

α̂ ≈ 0.576

ĥ ≈ 3.3401
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Correlation
RW
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Correlation
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Gibbs Sampling with High Correlation

X1 X2
24.09 19.48
125.55 113.87
692.36 610.60
1000.00 907.24
1119.07 1000.00
858.51 1000.00
539.68 620.75
109.73 84.94
9.26 9.29
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Conclusion



Summary

• Implementation of RWM, MALA, Gibbs Sampler.
• Experimentation with dimensionality, correlation of variables,
target distributions, hyper-parameter tuning.

• Further research directions.
• Hamiltonian Dynamics - HMC, NUTS
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Thank you for listening. Questions?
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