
Computational Statistics - MCMC
Sprint Lead: Chris Nemeth

Group 2

Max Howell, Robert Lambert, Adam Page, Wanchen Yue

Introduction

What is MC & MC?

Markov Chain:
• Transition kernel K:

K(A|x) = P(Xt ∈ A|Xt−1 = x).

• This kernal then has
transition density p:

K(A|x) =
∫
A
p(y|x)dy

• The chain then has an
invariant distribution Π with
density π(x):

Π(A) =
∫
K(A|x)π(x)dx

Monte Carlo (Integration):
• Mathematically:

θ = E [ϕ(X)] =
∫

ϕ(x)π(x)dx

• Allows us to take a sample
average:

θ̂ =
1
n

n∑
i=1

ϕ(xi)

1

What is MC & MC?

Markov Chain:
• Transition kernel K:

K(A|x) = P(Xt ∈ A|Xt−1 = x).

• This kernal then has
transition density p:

K(A|x) =
∫
A
p(y|x)dy

• The chain then has an
invariant distribution Π with
density π(x):

Π(A) =
∫
K(A|x)π(x)dx

Monte Carlo (Integration):
• Mathematically:

θ = E [ϕ(X)] =
∫

ϕ(x)π(x)dx

• Allows us to take a sample
average:

θ̂ =
1
n

n∑
i=1

ϕ(xi)

1

What is MCMC?

Joining the two MCs together:

• We know a distribution, π(x), up to some constant of
proportionality.

• Construct a Markov Chain whose stationary distribution is π(x).
• Simulate N samples, x1, . . . , xN. Remove the burn-in period.
• Using Monte Carlo we can estimate posterior expectations and
probabilities.

This is the base idea of MCMC.

2

Metropolis-Hastings

For some proposal density, q, we have an acceptance probability that
we ‘move’ states of,

α(x|y) = min

{
1, π(x)q(y|x)
π(y)q(x|y)

}
,

where π is the stationary distribution of our Markov chain.

3

Metropolis-Hastings

Figure 1: Proposal Distribution Illustrated
4

MCMC Algorithms

MCMC Algorithms

There exist a number of algorithms that can give us a proposal
density for our Markov chain’s dynamics.

By using the Metropolis-Hastings algorithm we can obtain an
acceptance probability for each proposed change of state within the
Markov Chain.

5

MCMC Algorithms

There exist a number of algorithms that can give us a proposal
density for our Markov chain’s dynamics.

By using the Metropolis-Hastings algorithm we can obtain an
acceptance probability for each proposed change of state within the
Markov Chain.

5

Random Walk

The most primitive MCMC algorithm is the Random Walk Metropolis
Algorithm - for which the proposal distribution is a random walk.

If in the current state x, the proposed next state x′ is obtained using
the random variable X′:

X′ = x+ ϵ

Where ϵ is a zero mean random variable.

This transition is accepted with probability α(x′ | x), obtained using
the Metropolis-Hastings algorithm.

6

Random Walk

The most primitive MCMC algorithm is the Random Walk Metropolis
Algorithm - for which the proposal distribution is a random walk.

If in the current state x, the proposed next state x′ is obtained using
the random variable X′:

X′ = x+ ϵ

Where ϵ is a zero mean random variable.

This transition is accepted with probability α(x′ | x), obtained using
the Metropolis-Hastings algorithm.

6

Random Walk

The most primitive MCMC algorithm is the Random Walk Metropolis
Algorithm - for which the proposal distribution is a random walk.

If in the current state x, the proposed next state x′ is obtained using
the random variable X′:

X′ = x+ ϵ

Where ϵ is a zero mean random variable.

This transition is accepted with probability α(x′ | x), obtained using
the Metropolis-Hastings algorithm.

6

Random Walk

Figure 2: Visualisation of RWM
7

Random Walk

0 200 400 600 800 1000

−
20

−
10

0
10

20

t

X
t

Figure 3: Trace plot of RW for N(0,1) with starting values: 20,5,0,-5,-20
8

Random Walk

X

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 4: Histogram of RW for N(0,1)
9

Metropolis-adjusted Langevin algorithm

Even with appropriately tuned parameters, RWM proposes a new
state x′ at random.

If we instead, try to model our Markov chain as a discretised
Langevin diffusion, we can use Langevin dynamics to propose a new
state based upon a random walk displaced by some factor of the
gradient of the proposed density.

x′ = x+ h
2∇log(π(x)) +

√
hϵt

Where ϵt ∼ N (0, 1).

10

Metropolis-adjusted Langevin algorithm

Even with appropriately tuned parameters, RWM proposes a new
state x′ at random.

If we instead, try to model our Markov chain as a discretised
Langevin diffusion, we can use Langevin dynamics to propose a new
state based upon a random walk displaced by some factor of the
gradient of the proposed density.

x′ = x+ h
2∇log(π(x)) +

√
hϵt

Where ϵt ∼ N (0, 1).

10

Metropolis-adjusted Langevin algorithm

Even with appropriately tuned parameters, RWM proposes a new
state x′ at random.

If we instead, try to model our Markov chain as a discretised
Langevin diffusion, we can use Langevin dynamics to propose a new
state based upon a random walk displaced by some factor of the
gradient of the proposed density.

x′ = x+ h
2∇log(π(x)) +

√
hϵt

Where ϵt ∼ N (0, 1).

10

Metropolis-adjusted Langevin algorithm

If at every timepoint we were to select the proposed x′ then we
would be carrying out the Unadjusted Langevin Algorithm (ULA).

Whilst not producing samples exactly from the proposed density π(x)
it is particularly useful in Big Data settings.

If were instead to accept the proposed x′ with probability α
(obtained from using the MH algorithm) we would be using the
Metropolis-adjusted Langevin algorithm which does sample from the
proposed density π(x).

q (x′ | x) = N
(
x′; x+ h

2∇ log π(x),h
)

11

Metropolis-adjusted Langevin algorithm

If at every timepoint we were to select the proposed x′ then we
would be carrying out the Unadjusted Langevin Algorithm (ULA).

Whilst not producing samples exactly from the proposed density π(x)
it is particularly useful in Big Data settings.

If were instead to accept the proposed x′ with probability α
(obtained from using the MH algorithm) we would be using the
Metropolis-adjusted Langevin algorithm which does sample from the
proposed density π(x).

q (x′ | x) = N
(
x′; x+ h

2∇ log π(x),h
)

11

Metropolis-adjusted Langevin algorithm

If at every timepoint we were to select the proposed x′ then we
would be carrying out the Unadjusted Langevin Algorithm (ULA).

Whilst not producing samples exactly from the proposed density π(x)
it is particularly useful in Big Data settings.

If were instead to accept the proposed x′ with probability α
(obtained from using the MH algorithm) we would be using the
Metropolis-adjusted Langevin algorithm which does sample from the
proposed density π(x).

q (x′ | x) = N
(
x′; x+ h

2∇ log π(x),h
)

11

Metropolis-adjusted Langevin algorithm

Figure 5: MALA Visualisation

12

Metropolis-adjusted Langevin algorithm

0 200 400 600 800 1000

−
20

−
10

0
10

20

t

X
t

Figure 6: Trace plot of MALA for N(0,1) with starting values: 20,5,0,-5,-20
13

Metropolis-adjusted Langevin algorithm

X

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 7: Histogram of MALA for N(0,1)
14

Gibbs Sampling

For x = (x1, x2, ..., xd) the joint distribution of x may be complicated.
But if some conditional distributions are known this can be taken
advantage of.

We make a proposal of

q(x′ | x) = π(xi | x−i)

.

15

Gibbs Sampling

For x = (x1, x2, ..., xd) the joint distribution of x may be complicated.
But if some conditional distributions are known this can be taken
advantage of.

We make a proposal of

q(x′ | x) = π(xi | x−i)

.

15

Gibbs Sampling

Figure 8: Gibbs Visualisation
16

Gibbs Sampling

In the context of Metropolis-Hastings the acceptance probability is
always 1.

α(x′ | x) = min

{
1, π(x

′)q(x | x′)
π(x)q(x′ | x)

}
α(xi | x−i) = min

{
1, π(xi)π(x−i | xi)
π(x−i)π(xi | x−i)

}

= min

1, π(xi)×
π(x−i,xi)
π(xi)

π(x−i)×
π(xi,x−i)
π(x−i)


= min

{
1, π(x)
π(x)

}
= 1

17

Gibbs Sampling-Implementation

18

Gibbs Sampling-Implementation X1

19

Gibbs Sampling-Implementation X2

20

Gibbs Sampling - 3D case

µ =

 2
5
10



Σ =

 1 0.5 0.2
0.5 1 0.4
0.2 0.4 1



21

Comparisons

Target Distribution

In order to test the limitations of each of the algorithms, we trial
them using a number of different target distributions:

• Skewed distribution
• Heavy tailed distribution
• Multi-mode distribution

22

Target Distribution

In order to test the limitations of each of the algorithms, we trial
them using a number of different target distributions:

• Skewed distribution
• Heavy tailed distribution
• Multi-mode distribution

22

Target Distribution: Gamma(5,1)

0 200 400 600 800 1000

0
5

10
15

20

t

X
t

X

D
en

si
ty

0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

0 200 400 600 800 1000

0
5

10
15

20

t

X
t

X

D
en

si
ty

0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

23

Target Distribution: Student t(1)

0 200 400 600 800 1000

−
4

−
2

0
2

4

t

X
t

X

D
en

si
ty

−30 −20 −10 0 10 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0 2000 4000 6000 8000 10000

−
10

−
5

0
5

10

t

X
t

X

D
en

si
ty

−15 −10 −5 0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

24

Target Distribution: Bimodal(-10,0) - RW

0 200 400 600 800 1000

−
15

−
10

−
5

0
5

t

X
t

X

D
en

si
ty

−15 −10 −5 0 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0 200 400 600 800 1000

−
15

−
10

−
5

0
5

t

X
t

X

D
en

si
ty

−15 −10 −5 0 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

25

Target Distribution: Bimodal(0,3) - MALA

0 2000 4000 6000 8000 10000

−
2

0
2

4
6

t

X
t

X

D
en

si
ty

−4 −2 0 2 4 6

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

X

D
en

si
ty

−2 0 2 4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

X

D
en

si
ty

−4 −2 0 2 4 6

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

26

Target Distribution: Bimodal(0,6) - MALA

0 2000 4000 6000 8000 10000

−
4

−
2

0
2

4
6

8

t

X
t

X

D
en

si
ty

−2 0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

X

D
en

si
ty

−3 −2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

X

D
en

si
ty

−4 −2 0 2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

27

Dimensions: RW d=2,10,100

0 200 400 600 800 1000

−
2

0
2

4
6

8
10

t

X
1 t2

0 200 400 600 800 1000

−
2

0
2

4
6

8
10

t

X
1 t10

0 200 400 600 800 1000

−
5

0
5

10

t

X
1 t10

0

28

Dimensions: MALA d=2,10,100

0 200 400 600 800 1000

−
2

0
2

4
6

8
10

t

X
t

0 200 400 600 800 1000

−
2

0
2

4
6

8
10

t

X
t

0 200 400 600 800 1000

−
2

0
2

4
6

8
10

t

X
t

29

Dimensions: Gibbs d=2,10,100

0 200 400 600 800 1000

−
4

0
2

4
6

8
10

t

X
1t

0 200 400 600 800 1000

−
2

0
2

4
6

8
10

t

X
1t

0 200 400 600 800 1000

−
2

0
2

4
6

8
10

t

X
1t

30

Dimensions: RW d=2,10,100

−2 0 2 4 6 8 10

−
2

0
2

4
6

8
10

X1t
2

X
2 t2

−2 0 2 4 6 8 10

0
5

10

X1t
10

X
2 t10

−5 0 5 10

0
5

10

X1t
100

X
2 t10

0

31

Dimensions: MALA d=2,10,100

−4 −2 0 2 4 6 8 10

−
2

0
2

4
6

8
10

Xt1

X
t2

−2 0 2 4 6 8 10

−
2

0
2

4
6

8
10

Xt1

X
t2

−2 0 2 4 6 8 10

−
2

0
2

4
6

8
10

Xt1

X
t2

32

Dimensions: Gibbs d=2,10,100

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●●
●

●●
●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

−4 −2 0 2 4 6 8 10

−
2

0
2

4
6

8
10

X1t

X
2t

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

● ● ●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 0 2 4 6 8 10

−
2

0
2

4
6

8
10

X1t

X
2t

●

●

●

●

●

●

●
●

●
●

●

●

●● ●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

● ●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

−2 0 2 4 6 8 10

−
4

−
2

0
2

4
6

8
10

X1t

X
2t

33

Convergence Diagnostics

Asymptotic Distribution
CLT for Markov Chain:

√
n
(
1
n

n∑
i=1

g (Xi)− E(g(X))
)

d→ N
(
0, σ2

)
(n→ ∞)

σ2 =Var (g (X0)) + 2
∞∑
k=1

cov (g (X0) ,g (Xk))

=Var(g(X0)[1+ 2
∞∑
k=1

corr(g(X0),g(Xk))]

Effective Sample Size
Size k of an iid sample Y1, . . . Yk ∼ f whose average 1

k
∑k

i=1 g(Yi) has
the same variance as 1

n−b
∑k

i=1 g(Xi)

k =
n− b

1+ 2
∑∞

k=1 corr (g (X0) ,g (Xk))
34

Step Size Tuning: MALA

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

h=0.25

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

h=1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

h=3.5

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

h=10

35

Step Size Tuning: MALA

0 2000 4000 6000 8000 10000

−
3

−
2

−
1

0
1

2
3

t

X
t

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

auto−tuning

Figure 9: Starting h = 10, Effective sample size =
7187

hk+1 = hk+
hk
k (Rk−α̂)

α̂ ≈ 0.576

ĥ ≈ 3.3401

36

Correlation
RW

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

X1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

X2

ESS: X1=1054; X2=1077;

MALA

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

X1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

X2

ESS: X1=2530; X2=2481;

Gibbs

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

X1

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

X2

ESS: X1=3396; X2=3344;

37

Correlation

0.2 0.4 0.6 0.8

90
0

10
00

11
00

12
00

corr

E
S

S

0.2 0.4 0.6 0.8

0
10

00
20

00
30

00

corr

E
S

S

0.2 0.4 0.6 0.8

20
00

60
00

10
00

0

corr

E
S

S

38

Gibbs Sampling with High Correlation

X1 X2
24.09 19.48
125.55 113.87
692.36 610.60
1000.00 907.24
1119.07 1000.00
858.51 1000.00
539.68 620.75
109.73 84.94
9.26 9.29

39

Conclusion

Summary

• Implementation of RWM, MALA, Gibbs Sampler.
• Experimentation with dimensionality, correlation of variables,
target distributions, hyper-parameter tuning.

• Further research directions.
• Hamiltonian Dynamics - HMC, NUTS

40

Thank you for listening. Questions?

40

	Introduction
	MCMC Algorithms
	Random Walk
	MALA

	Comparisons
	Conclusion

