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1 Introduction

Some of the oldest models in statistical ecology are models designed to analyse capture recapture

data. The aim of these models is to get an estimate of the size of a population of interest. The

book Analysis of Capture-Recapture Data by McCrea and Morgan (2015) is a recommended

read, and heavily influences §2.
At a given capture time, animals are caught and, if not already, marked in some way. Often

this is done with a tag such as a ring around the leg. Then at a later date a ‘recapture’ event

is attempted. This can be repeated multiple times, with each new recapture attempt adding

newly marked individuals. This creates observation data for an individual of the form

Individual 1: 1 1 0 1 . . .

Individual 2: 0 1 0 0 . . .

Individual 3: 0 1 0 1 . . .

where a 1 corresponds to an individual being observed at that capture/recapture event and a

0 otherwise. The goal is then to estimate the number of unobserved individuals with capture

histories

0 0 0 0 . . . .

This report will begin with some background in closed capture-recapture models and their

adaptations, including an expansion into spatially explicit capture-recapture models with the

aim of gaining insight into population density. This will include an example using R, and also a

look at an example which adopts a Bayesian framework. This will be expanded upon by looking

at the open population model known as the Jolly-Seber Model. Following this is a discussion of

open challenges within capture-recapture models and the wider field of statistical ecology that

still need researching.

2 Capture-Recapture Models

In the most basic form of the data, with just two capture occasions, the traditional method

is the Lincoln-Petersen Estimator. Intuitively, the idea is that the ratio between the marked

individuals and the total individuals at the second capture event is equal to the proportion of

individuals caught at the first capture event and the total population. Say n1 individuals are

caught at capture occasion 1, which are then marked and released. Then n2 individuals are

caught at the second capture occasion, where m2 of them are some of the marked population

from the previous capture. Then

m2

n2
=
n1
N

=⇒ N̂ =
n1n2
m2

creates an estimate of the total population N (Pollock et al., 1990). The full assumptions under

which this estimator is valid will be discussed later. To expand the model to multiple capture

occasions, let p be the probability that an individual is captured at an event. Then, assuming
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that the probability of an individual being captured at an event is independant of all other

events, the probability of observing that capture history is

Individual 1: 1 1 0 1 . . .

Individual 2: 0 1 0 0 . . .

Individual 3: 0 1 0 1 . . .

pp(1− p)p . . .

(1− p)p(1− p)(1− p) . . .

(1− p)p(1− p)p . . .

The corresponding unobserved individuals then have an encounter history probability of

(1− p)(1− p)(1− p)(1− p) . . .

2.1 Likelihood

Formally, denote the data matrix X with N rows and T columns. N is the total population

size and T is the number of capture/recapture events. The ith row is the observation history

of an individual, with the bottom N − D rows being the unobserved histories, D being the

observed population. Often multiple individuals will have the same capture history. Denote

this history x̃h. Let ft be the number of individuals caught t times, and nt be the number of

individuals caught at capture event t ∈ {1, 2, . . . , T}. Throughout this report, {1, 2, . . . , T} will

be shortened to [T ]. Therefore

f0 = N −D (1)

and D =
∑T

t=1 ft. Call f , the vector of ft’s, the census data.

Due to the assumed independence the likelihood function is of the form

L(N, p;X) =
N !

(
∏

h x̃h) (N −D)!

N∏
i=1

T∏
t=1

pxit(1− p)(1−xit).

This can be first simplified to

L(N, p;X) =
N !

(
∏

h x̃h) (N −D)!

T∏
t=1

pnt(1− p)(N−nt). (2)

as p is assumed the same for all individuals in the population N . Then since the probability of

being captured at time t is assumed to be the same for all t ∈ [T ] this further reduces to

L(N, p;X) ∝ N !

(N −D)!

(
pS(1− p)(NT−S)

)
(3)

where S denotes the total number of captures, or S =
∑T

t=1 tft. The proportionality comes from

dropping the
∏

h x̃h term. Then taking the log-likelihood this becomes

l(N, p;X) ∝ log

(
N !

(N −D)!

)
+ S log(p) + (NT − S) log(1− p) =⇒

d

dp
l(N, p;X) ∝ S

p
− NT − S

1− p
=⇒
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0 =
S(1− p)− (NT − S)p

p(1− p)
=⇒

0 = S − pS − pNT + pS =⇒

p̂ =
S

NT

as a Maximum Likelihood Estimate for p. To calculate this however, N is still needed.

2.2 Zero Truncated Poisson Distribution

Let Y be a Poisson distributed random variable with parameter λ that models the census data

f . Since f0 is unknown, formulate a zero truncated conditional probability function. Then

P (Y = y | y > 0) =
P (Y = y)

P (y > 0)

=
e−λλy

y!(1− e−λ)

Constructing a likelihood for n observations of Y with standard independence assumptions

results in

L(y1, . . . , yn;λ) = (1− e−λ)−n
n∏

i=1

e−λλyi

yi!
.

Then to get an MLE the log-likelihood becomes

l(y1, . . . , yn;λ) = −n log(1− e−λ) +
n∑

i=1

[−λ+ yi log(λ)− log(yi!)]

=⇒ dl

dλ
=

ne−λ

1− e−λ
+

n∑
i=1

[yi
λ

− 1
]

Setting this equal to zero and solving for λ gives

n

(eλ − 1)
− n+

n∑
i=1

yi
λ

= 0

1

(eλ − 1)
− 1 +

1

λ

1

n

n∑
i=1

yi = 0

λ

(eλ − 1)
− λ+

1

n

n∑
i=1

yi = 0

ȳ = λ− λ

(eλ − 1)

Thus λ must be computed numerically (Cohen, 1960). It is more intuitive to see the log-

likelihood expressed using the census data;

l(λ; f) = constant+ log(λ)
∞∑
t=1

tft + log(eλ − 1)
∞∑
t=1

ft.
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Again this is maximised numerically. Then an estimate for N can be achieved by inflating D by

dividing by the probability of being observed, which is equivalent to one minus the probability

of being unobserved, 1− p̂0;

N̂ =
D

1− e−λ̂
.

2.3 Chao’s Lower Bound Estimator

When captures follow a Poisson model with parameter λ, it is simple to see that

p0 = e−λ, p1 = λe−λ, p2 =
λ2e−λ

2
, . . . .

Since p21 = λ2(e−λ)2 =⇒ e−λ =
p21

λ2e−λ . This clearly links with p2 giving

p0 = e−λ =
p21
2p2

which can be easily replaced with the proportions from the census data. Thus emerges an

estimator for f0;

f̂0 =
f21
2f2

(4)

and consequent estimator for N using Equation 1

N̂ = D +
f21
2f2

. (5)

It is often useful to assume heterogeneity in the capture probabilities (discussed more in §2.5),
in which case it is assumed that λ follows some distribution. The Cauchy-Schwarz inequality

gives the fractional inequalities
p1
p0

≤ 2p2
p1

≤ 3p3
p2

≤ . . .

and the first inequality here results in

p0 ≥
p21
2p2

.

This shows that Eq. 4 provides a lower bound on the number of unobserved individuals, and

similarly Eq. 5 is a lowerbound on the population size. Eq. 5 is known as Chao’s Lower Bound

Estimator (Chao, 1987; McCrea and Morgan, 2015).

Furthermore, the inequalities above can give some insight into a way of ‘testing’ for het-

erogeneity within capture-recapture datasets. As t increases, the ratios tpt
pt−1

are increasing.

Thus if a plot of tft
ft−1

against t for census counts shows an increasing function, this implies the

heterogeneity assumption that causes the inequalities (McCrea and Morgan, 2015, pg. 47).

2.4 Conditional Likelihood

Another way of calculating N in the multinomial case is using conditional likelihoods. Equation

2 can be re-expressed in terms of the census data.

L(N,p; f) ∝ N !

(N −D)!

T∏
t=0

pftt ≡

(
N

D

)
pN−D
0 (1− p0)

DD!
T∏
t=1

(
pt

1− p0

)ft
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Simply conditioning on D, this gives a multinomial likelihood

Lc(N,p; f) ∝ D!
T∏
t=1

(
pt

1− p0

)ft

(6)

which is a factor of L(N,p; f). Maximising 6 produces model parameters p, in turn giving

an estimate for p0. Then the population size estimate conditional on the number of observed

individuals is

N̂c =
D

1− p̂0

There is a discrepancy between the values of the estimates N̂ and N̂c. However both have been

used; as Fewster and Jupp (2009) discuss in Inference on population size in binomial detectability

models, in a capture-recapture setting Otis et al. (1978) use N̂ whereas in a distance sampling

setting Buckland et al. (2001) prefer N̂c. (Distance sampling is where an observer exists at a

point and records the distance to observed objects, e.g. birds nests, or individuals of interest.)

Indeed, Fewster and Jupp (2009) show that the difference of N̂ and N̂c is of order 1 when p is

constant.

Other ways of estimating the parameter p0 exist, for example by assuming that the census

counts follow a negative binomial distribution. For more, as well as a comparison of these

methods, see McCrea and Morgan (2015, pg. 32).

2.5 Model Assumptions

As mentioned above, this model has been used in various applications. However it has a lot of

limitations due to it’s simplicity. The assumption was made that the probability of capture p

was constant at all capture times. This model often is denoted M0 as there is no other effects

taken into account. The other types of model in this case are:

• Mb - behavioural effects where the first capture probability is different from subsequent

capture probabilities.

• Mt - temporal effects induced by environmental factors such as weather.

• Mg - group effects for example individuals of a certain age or colour being less likely to be

caught.

• Mh - heterogeneous effects, where each member of the population has a different capture

probability.

The behavioural effects can come from individuals becoming ‘trap happy’, where they learn

that they get free food and are more likely to be caught at a later occasion. There is also an

assumption that whatever marking method is used for later identification has no effect on the

individuals survival or chance of recapture. The other major assumption of this model was that

of a closed, static population. In practice, immigration can occur where individuals enter or
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leave the area being measured. Moreover, this can effect the population of interest in different

ways. For example, say an individual is observed once and then never again, that individual

could have emigrated or died, and these cases might be treated differently depending on what the

population of interest is. If the population of interest is the number of adults able to reproduce,

then the death or migration of a younger animal may want to be observed differently.

3 Spatially Explicit Capture-Recapture

One criticism of the above models is a non well-defined spatial element. It is generally unclear

what area a population estimate covers, and there is no insight in the model as to the density or

spread of the population of interest. Efford (2004) introduced a simple way of including density

in the model, expanded upon in Efford et al. (2009). A summary is presented here.

Assume every individual in the population of interest has some unknown centre of activity

in a region. This will be denoted s and is a point in euclidean space. Then traps are spread at

known locations throughout the region and can capture at most one individual. The probability

of an individual i being caught in trap j is then a function of the distance between the trap and

the centre of activity of the individual. A well used distance function is the half normal (Efford,

2004; Royle et al., 2009), and assuming some baseline encounter rate λ0, the capture probability

of individual i in trap j is

Pij = λ0gij = λ0 exp

(
−d2ij
σ

)
where dij is the distance between individual i’s centre of activity and the location of trap j. The σ

here is a tuning parameter which serves as a measure of how far away from a centre of activity an

individual will go. It it then proposed that the observations (population size, capture probability

and distance between activity centre and trap) are a function of the parameters (density, σ, and

λ0) plus some noise (assumed multivariate normal with mean zero). The function thus represents

the sampling process for a particular layout of traps. An estimate of the parameters is then

achieved by simulation and inversion.

3.1 Example: with ipsecr in R

Data for snowshoe hares (Lepus americanus) was obtained in 1972 north of Fairbanks, Alaska.

One hundred traps were set on a grid 200ft apart, with traps being done on 9 consecutive days.

However, traps were unbaited on the first three days and thus the final six days are considered

here. The data is available here. Over the days, 145 detections were made of 68 distinct animals.

The movements can can be seen roughly across the 100 detectors in Fig. 1.

Then the function ipsecr.fit fits a model to the data using inverse prediction. A core

assumption of this method is that, on a small scale around the trap, the data behaves linearly.

Initial input values are n; the total number of distinct individuals detected, pt; a non spatial

detection probability, and σ; the scale of movement are required to start. A good starting
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6 occasions, 145 detections, 68 animals

Figure 1: The movement of individuals across the traps. Some colours were reused in the plotting.

estimate for σ can be found in Calhoun and Casby (1958, eq. 8a) or Efford (2023) and is

effectively a pooled standard deviation of the capture locations weighted by how frequently a

trap was effective in captures. Let di denote the number of captures for individual i, and the

trap locations sj = (xj , yj). Then (xij , yij) are the coordinates of the jth capture of the ith

animal. This individual i will have an average capture location (x̄i, ȳi). Then

σ =

√∑n
i=1

∑di
j=1(xij − x̄i)2 + (yij − ȳi)2

2
∑n

i=1(di − 1)

serves as a naive estimate for the spatial parameter.

The method is then well described by Efford (2023) in ipsecr: An R package for awkward

spatial capture–recapture data:

“Datasets are simulated for known levels of the parameters in the model and a

vector of proxy statistics is computed from each dataset (a proxy is a measure closely

correlated with the parameter of interest). A multivariate multiple linear regression

[...] is fitted with parameter vectors as the predictor variable and proxy vectors as

the response variable. From the inverted linear model we can infer parameter values

from a single proxy vector.”

Fitting this model to the snowshoe hares then gives an estimate of 1.37 hares per 0.37

hectares, which equates to 3.68 per hectare. Given the space is ≈ 30ha, the final population

estimate is 110.69 (or 111, rounded to the nearest hare), based on the averages. Full code for

this can be found in Appendix A.
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3.2 Example: Tigers in Nagarahole National Reserve

Figure 2: A tiger caught on camera by a photo trap in Nagarahole Reserve (Royle et al., 2009). Photo credit:

WCS/K. U. Karanth.

One of the features of the model as proposed by Efford (2023) is that, since individuals can

only be caught by a trap once per capture occasion, the parameter estimates are a convolution

of the actual probabilities of being caught according to location and the relative competition

between individuals. This issue is circumnavigated by Royle et al. (2009) in their application to

Bengal tigers (Panthera tigris tigris, Fig. 2) in the Nagarahole National Reserve in Karnataka,

India. In this experiment, the traps were cameras and the individual tigers could be identified

by their unique stripes, a trap could catch multiple individuals in a capture occasion, and an

individual could be caught by multiple traps in the same capture occasion. Therefore in this

setting capture frequency yijt was modelled using a Poisson random variable

yijt ∼ Po(λ0gij)

and thus the probability of individual i being observed by trap j during capture occasion t could

be modelled using a Bernoulli random variable, where

P (yijt = 1) = 1− exp(−λ0gij),

arising from the positive mass of the Poisson distribution. Then Royle et al. (2009) adopt a

hierarchical Bayesian framework; first assume that the centres of activity s ∼ Unif(S) are

uniformly spread over the available state space S. Then data augmentation (Royle et al., 2007)

is used. This is where M −D all zero observations are added to the observation matrix, with

M > N . The next step is to assume a binomial prior on N ∼ Bi(M,ψ) and ψ ∼ Unif(0, 1).

In an ecological sense, M is the size of the “super-community” of the population, and ψ is the

probability that an individual in super-community is in the local community and thus had a

chance of being observed. Then MCMC can be used to yield a posterior distribution for s. Fig.
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3 (Royle et al., 2009) shows the estimated density of the Bengal tigers. The posterior mean

was 13.4 tigers per 100km2, with 95% confidence interval (9.3, 19.6). This summary doesn’t

include the full detail where there was use of generalised linear models and also inclusion of a

behavioural aspect in the capture probability, for the full detail see Royle et al. (2009).

Figure 3: Posterior Distribution of activity centres s. The scale is logged, with red and yellow being areas of

higher density and blues being areas of lower density. Areas in white were removed from the state space S prior

to computation as they were areas known to be unsuitable habitat.

One drawback on the model is the significant area of the state space where there were no traps

placed. The initial assumption of uniform density then has no data with which to update it’s

parameters, resulting in large areas of middling density and little way of assessing the accuracy

of the model in those places. Initial trap placement was led by workers who were familiar with

the park, and so attempted to put them in places that were likely to get observations. Since a

limited number of traps could be placed, a trade off has to be made between putting cameras

where there is known to be little activity and confirming that against putting traps in areas of

high traffic to get more observations. A smaller number of observations leads to less power in

the model, and this trade off is delicate.
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4 Jolly-Seber Model

The assumption of closure for population models can be shown to be violated in some cases (see

§5), and it is obvious in an intuitive sense why such models might not be fully realistic. Jolly-

Seber models assume an open population and thus allow for estimating another parameter of

interest; survival probability. The model takes into account individuals entering and leaving

the population. One drawback however is that it does not allow for a meaningful separation

between animals entering/leaving due to birth/death versus migration. Therefore, emigration

away from the population is assumed permanent. The parameters of the model are detailed in

Table 1, and the observed values in the model are detailed in Table 2;

Symbol Range Definition

Mt t ∈ [T ]
The number of individuals that have been marked

when the tth sample is done. Therefore M1 = 0.

Nt t ∈ [T ]
The total number of individuals in the population

when the tth sample is done.

Bt t ∈ [T − 1]

The number of new individuals that enter the

population between the tth and (t+ 1)th samples

(that are still in the population at the (t+ 1)th time).

ϕt t ∈ [T − 1]

The probability that an individual survives between

the tth and (t+ 1)th sample. This is assumed

the same for all individuals in this interval.

pt t ∈ [T − 1]
The capture probability for all animals

in the tth sample.

Table 1: Parameters in the Jolly-Seber Model (Pollock et al., 1990).

The assumptions under which this model are valid are;

1. Every individual in the population at the time of sample t has the same capture probability,

pt.

2. Marks are never lost by the individual, or missed by the observer taking the sample.

3. Samples are taken at an instant in time.

4. Every individual that is observed during sample t has the same survival probability up

until the next sample.

It is worth noting that the first three assumptions have been underlying the earlier models

discussed (except where explicitly refuted). In particular, they are required for the Lincoln-

Petersen estimator.
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Symbol Range Definition

mt t ∈ [T ]

The number of individuals in the tth sample that have

been previously captured and marked. ut is the

equivalent unmarked individuals.

nt = mt + ut t ∈ [T ] The number of individuals caught in the tth sample.

Rt ≤ nt t ∈ [T − 1]

The number of individuals released in the tth sample. This

may differ from nt as some losses may occur in

the recapture attempt.

rt t ∈ [T − 1]
How many individuals released in sample t

that are caught again.

zt t ∈ [T − 1]\1
How many individuals were caught prior to sample t,

and were caught in a sample after t, but were not

captured in the tth sample.

Table 2: Observed values in the Jolly-Seber Model (Pollock et al., 1990).

4.1 Survival Probability

The survival probability can be estimated by considering the ratio between the number of animals

marked in sample t+ 1, and the number of marked animals in the population after sample t is

completed. This is given by Mt −mt + Rt, the sum of the marked individuals not captured in

sample t, which is (Mt −mt), and the number of individuals marked and released in sample t,

Rt. Therefore

ϕ̂t =
M̂t+1

M̂t −mt +Rt

is the survival probability estimate which naturally leads to a recruitment estimate of

B̂t = N̂t+1 − ϕ̂t(N̂t − nt +Rt).

These are all applicable for the interval (t, t+1). As Pollock et al. (1990) explain, this estimate

is the difference between the population size at the (t + 1)th sample and the expected number

of survivors in the time period.

Estimates of the capture probability can then be made using the same assumption as with

the Lincoln-Petersen estimate about ratio of marked individuals to total individuals caught at

time t. Therefore

p̂t =
mt

M̂t

=
nt

N̂t

.

Since the population is open, the number of marked individuals in the population at time t is

unknown, and therefore must be estimated. This is done by seeing that the future recovery rates

for the animals marked but not seen at t is equivalent to the recovery rates of the individuals

marked at time t and released for possible recapture

zt
Mt −mt

=
rt
Rt

=⇒ M̂t = mt +
ztRt

rt
.
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These estimators are guided by intuition, though ϕ̂t and p̂t do turn out to be maximum

likelihood estimators. Unfortunately, all of them are biased (Pollock et al., 1990). Non-biased

estimates can be found in Seber (1982) for ϕ̂t, M̂t, B̂t, N̂t and Jolly (1982) for p̂t.

5 Closure Tests

One of the challenges of the closed versus open population models is knowing when each is

appropriate. In may cases the assumptions of a closed population, whilst not strictly true, are

not violated enough to be a problem. As in the case of of the tiger study discussed in §3.2
(Royle et al., 2009), since the time period of the captures was 48 days, which is relatively short

compared to a tigers life span, there isn’t any meaningful impact on the overall population count

due to birth or death. Furthermore, due to the focus of estimating the population within the

borders of the national park, immigration isn’t an important factor. Therefore modelling the

population with a closed model still produces meaningful results. However this isn’t always the

case, particularly with species known for travelling vast distances or for having short life spans.

In this case, the open population models are more appropriate.

Stanley and Burnham (1999a) outline a hypothesis test for closure by comparing Mt, the

temporal based closed population model, against the Jolly-Seber model. This is based on the

idea that Mt is just a specific case of the Jolly-Seber model, so it is just a restricted version of

the parameters, as there is no recruitment. The test expands upon the goodness of fit test of

Mt proposed by Stanley and Burnham (1999b).

6 Open Challenges

One of the main assumptions that underlies every model discussed here is that of independence

of individual captures. However, there may be cases where this assumption is violated. For

example, many species maintain monogamous relationships for a time. Therefore, it may be

that the capture probabilities are not independent; if they always travel together, capturing

one nearly guarantees capturing the other. In the other extreme, if one individual is always

in a nest, den or ‘home’ where they are looking after their young, then capturing one half of

the pair means you may be unlikely to capture the other half of the pair. Whilst there may

be workarounds for this in species where the monogamy is time specific (e.g. avoiding taking

captures in mating season), this is not a workable assumption when animals are known to have

life long pairings. There may be many other factors affecting capture independence as well, and

the lack of robust statistical models that take this into account leaves an open area of research.

Another challenge is the effective use of integrated population models. Capture-recapture

is a well studied area, however other methods of observing populations are similarly popular.

Already mentioned was distance sampling, but there is also eDNA, quadrants and ring recovery.

Ring recovery has some similarities with capture-recapture, though differs in that individuals

are only recovered dead. eDNA are ‘scraps’ of DNA recovered from habitats where an individual
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has been, for example skin cells that get left on trees. It is then hoped that DNA can then be

extracted from the cells and the individual uniquely identified.

There is also the advancement in citizen science data sets. These are when members of

the public are invited to submit their observations of a population to a central data set. This

results in a data set of significant size, which is not common in many other ecological data

sets, particularly if the population of interest is endangered. This has it’s own drawbacks, with

the issue of data quality being significant (Johnston et al., 2023). In citizen science projects

where the goal is to report on multiple species (for example, the Big Butterfly Count, https:

//bigbutterflycount.butterfly-conservation.org/), psychological factors around people

being overly eager to report particularly rare species, or getting better at identifying species

as the study progresses (Sharma et al., 2019), makes population estimates over time periods

hard. There can also be spatial bias around members of the general public self selecting areas

of known biodiversity or outstanding natural beauty (Tulloch et al., 2013). However, the sheer

size of the data sets make them attractive to analyse, not to mention the publicity it does for

the important issue of conservation.

A big step forward was to realise that often multiple types of data sets can be achieved on

the same species. These are known as integrated population models (IPMs) and can combine

the various data types to gain more accurate estimates or be able to estimate parameters that

are otherwise conflated within the model. IPMs have their own set of open challenges including

overlap and dependence between data sets, computational challenges and model evaluation such

as goodness-of-fit tests (Frost et al., 2023). Particularly when reliable data sets are combined

with citizen science data sets and therefore the accuracy of the data is not consistent across

the whole model and some sort of assessment of this is needed. There is also the challenges of

making these more complicated models widely usable to the larger science community in general

so that they can be applied by those with less in depth statistical training.

Another interest in statistical ecology is in regards to forecasting. There is a desire to predict

how population sizes will look in the future as a way of guiding conservation efforts. However,

particularly for forecasts further into the future, imprecise parameter estimates have a cumula-

tive effect on bad estimates. Therefore large data sets are needed to get good estimates. This

can be hard to do in capture-recapture settings and therefore IPMs can utilised. Particularly

by combining ecological data sets with climate data sets, good inference on the relationship

between a population and the climate may be possible. Consequently this allows predicting how

a species will respond to the growing effects of climate change. However, in the current setting

these models rely on the assumption that a species will respond to future events in the same

way as past events. If a data set on an animal population was taken over a relatively small time

frame, it is harder to believe that this is representative of the populations on going response,

and non-stationary models are needed to be able to deal with the potential dynamics of the

situation Frost et al. (2023).
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7 Conclusion

Capture-recapture data sets are some of the oldest in statistical ecology. In this report there’s

been an overview of the most basic capture-recapture models in closed populations, with an

extension into including an explicit spatial aspect. Two examples were given with a look at

both a computational Frequentist approach and an example with a Bayesian framework. Then

there was a summary of the open population Jolly-Seber model and a brief look at a hypothesis

test for closure within a data set. §6 shows how capture-recapture fits within the current body

of research within statistical ecology. These models can provide a good starting point within

integrated population models, which is an emerging field of importance. A current barrier is the

lack of approachable software that allows IPMs to have a broad impact on the wider community

of conservationists, which include a broad swathe of people with a background in biology or

earth sciences as opposed to statistics. Making these models accessible, reliable and explainable

could have a broad impact on the field.
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A Appendix A

1 install.packages("secr") #installing packages only needs to be done once

2 install.packages("ipsecr")

3 library(ipsecr) # this automatically loads secr

4

5 capt <- read.table("hareCH6capt.txt") # read in the capture data for the hares

6 capt <- capt [,2:4] # remove the first column as it just has the data source

7 colnames(capt) <- c("ID", "Occasion", "Detector") # better names for the columns

8

9 trap <- read.table("hareCH6trap.txt") # load the trap layout for the hares

10 colnames(trap) <- c("Detector","x", "y") # better names for the columns

11

12 # just to see what the trap layout looks like without the animals data

13 library(ggplot2) # for a nice plot

14 ggplot(trap , aes(trap[,2],trap [,3])) + geom_point () + labs(x="x coordinate (

metres)", y="y coordinate (metres)")

15 # it is just a grid , as expected

16

17 # convert data into the data type for the function

18 hareCH6 <- read.capthist("hareCH6capt.txt", "hareCH6trap.txt", detector = "

single")

19 summary(hareCH6)

20 # Counts by occasion

21 # 1 2 3 4 5 6 Total

22 # n 16 28 20 26 23 32 145

23 # u 16 24 9 9 6 4 68

24 # f 25 22 13 5 1 2 68

25 # M(t+1) 16 40 49 58 64 68 68

26 # losses 0 0 0 0 0 0 0

27 # detections 16 28 20 26 23 32 145

28 # detectors visited 16 28 20 26 23 32 145

29 # detectors used 100 100 100 100 100 100 600

30

31 # plot the traps with animal movements on top

32 plot(hareCH6 , tracks = TRUE)

33

34 initialsigma <- RPSV(hareCH6 , CC = TRUE) # quick (biased) estimate of sigma is

63.66117 m

35

36 # use a buffer of four , as the half normal detection function generates a close

37 # to zero probability of being observed that far away

38 fit <- secr.fit (hareCH6 , buffer = 4 * initialsigma , trace = FALSE)

39 # can plot the detection probability

40 plot(fit , limits = TRUE)

41

42

43 ipfit <- ipsecr.fit (hareCH6 , buffer = 4*initialsigma , trace = FALSE)

44 summary(ipfit)

16



45 1.36652240/(60.96*60.96*0.0001) # = 3.677281 per hectare

46 548.64*548.64*0.0001 # = 30.10058 hectares

47 3.677281*30.10058 # = 110.6883 hares in the area
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