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1 Introduction

Multi-Arm Multi-Stage trials (MAMS) are a class of trial designs which have the aim of improving
the e�ciency of bringing new treatments to the market. This is important as getting a treatment to
market is a long and expensive process, with novel treatments taking between 10-15 years to bring
to the market (Kola and Landis (2004) and Dimasi et al. (2003)). Therefore being able to improve
the e�ciency of introducing new treatments to the market can result in large savings in money and
time.

In a MAMS trial several experimental treatments are tested simultaneously against a common control
(either an active control or a placebo). We then conduct interim analyses on the treatments to decide
which we should continue with, by comparing our di�erent experimental treatments test statistics
against our boundaries. MAMS designs therefore have several advantages over classic trial designs,
where we run separate controlled treatments against each of our experimental treatments (Wason
et al. (2016)):

1. A shared control can be used instead of needing a new one for each treatment group.

2. A direct comparison between each treatment can be conducted which reduces bias, compared
to comparisons of treatments which have been tested in separate trials.

3. Interim analysis means we are able to drop ine�ective treatments. If we �nd a clearly superior
treatment we are also able to stop early.

MAMS designs can be very useful in phase II trials because these trials are explorative, so we are
likely to be testing many treatments, which may not work. The ability to drop ine�ective treatments
part way through is very useful. Phase III trials are con�rmatory trials so we are normally quite sure
that the treatment works, we just need the evidence to back it up. However MAMS designs can still
be used in phase III trials as discussed in Gaunt et al. (2015).

There are many types of MAMS designs. Such as those discussed in Kelly et al. (2005), Posch et al.
(2005) and Whitehead and Jaki (2009). During this report, we are going to focus on a method called
group-sequential MAMS design. This design has two or more stages, in which all the treatments are
allowed to continue to each stage, given they are su�ciently promising. This method is discussed in
Magirr et al. (2012) and Lin and Bunn (2017).

In this report, we are going to study issues faced by group-sequential MAMS designs when working
out the sample size required to conduct the study. We begin by de�ning our notation; then look at
the errors we need to control; after which we study the sample size calculations; followed by a section
covering the error in current minimum sample size calculations; �nally we will summarise our work
and look into further research areas.

2 Family of null hypotheses

When conducting a MAMS trial our family of null hypotheses is:

H1 : µ1 ≤ µ0, ...,HK : µk ≤ µ0, (2.1)
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where µ1 . . . µk are the mean responses on K experimental treatments and µ0 is the mean response
of the control. We will assume that each patient's response to a treatment is independent and that
it is normally distributed with known variance σ2. At each interim analysis indexed by j = 1, . . . , J
we will test our family of null hypotheses 2.1. In our study, we also assume that the sample sizes are
equal for each experimental treatment across each stage.

3 Errors

In clinical trials there are 2 types of error which we need to control, type I (α) and type II (β) errors.
However, in MAMS this is more complicated than in traditional randomised control trials, due to the
fact there are multiple hypotheses we are interested in. We will therefore look at how we control the
type I error as well as the power of our MAMS trial. Power is one minus the type II error and is the
value more commonly used in clinical trials.

3.1 Type 1 error

De�nition: Type I error is the probability of any experimental treatment being declared e�ective

when the global null hypothesis is true. Wason and Jaki (2012)

For a family of hypotheses 2.1 as we have in MAMS trials, to control the family-wise error (FWER)
means that the probability of us falsely rejecting the null hypotheses is less than a pre-speci�ed level
(α). There are two di�erent opinions when it comes to FWER. (Freidlin et al. (2008)) argue not to
adjust for FWER in multi-arm trials where each arm corresponds to a di�erent treatment. Their
argument is if we did each treatment in separate trials then we would not be subject to multiple
testing adjustments. Therefore, they suggest controlling the pairwise type I error rate. This is where
you control the type I error between each arm and the control separately, so you therefore ignore any
correlation between each of the experimental treatment arms. This method was used in the MRC
STAMPEDE trial (Sydes et al. (2009)).

In (Wason et al. (2016)) they say this opinion has it merits however a MAMS trial in its construction is
quite di�erent to doing lots of separate trials. Furthermore, FWER provides the maximum probability
of recommending an ine�ective treatment, which is important in phase III trials. In the European
Medicines Agency (EMEA (2002)) state that controlling FWER is required for con�rmatory trials.
This is becoming more important in phase II trials, as they are sometimes being used as a second
pivotal study, when making a con�rmatory claim. When conducting a phase II trial, if you want to
be able to use this data to back up �ndings in a phase III trial, it is important that FWER is used.

3.2 Power

In a MAMS trial our objective is to �nd the best treatment, this means that the power of our test
depends on both the mean e�ect of the best treatment and the mean e�ect of all the other treatments
in our trial. In order to �nd the power in a MAMS trial we use the least favourable con�guration.
This method was used in the TAILoR trial as discussed in Pushpakom et al. (2015). This method
requires us to specify both a clinically relevant di�erence δ1 and an uninteresting treatment di�erence
threshold δ0. The uninteresting treatment di�erence threshold is the minimum di�erence between
an experimental treatment and the control treatment, that would make that experimental treatment
clinically interesting (Wason et al. (2016)). Therefore if µk−µ0 < δ0 we would prefer not to continue
investigating treatment k.
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De�nition: Power is the probability that without loss of generality, H1 is rejected and treatment 1

is recommended given that µ1 − µ0 = δ1 and µk − µ0 = δ0 for k = 2, . . .K. Van Montfort et al.

(2014)

The values of δ1 and δ0 should be made by the clinicians as they have an understanding of what
the clinically relevant thresholds are. Both these values will have a large e�ect when it comes to
calculating the sample size.

4 Sample size calculation

In MAMS trials the sample size calculations are not as simple as in a classical clinical trial. The
key issue is de�ning what our trial sample size actually is. For example, is it the maximum number
of patients you might need or the minimum number of patients, or is it the expected number of
patients? During this report we are mainly going to focus on calculating the minimum sample size
required with a summary of calculating maximum sample size in section 4.3 and expected sample
size in section 4.4. We need to �nd a sample size which results in our power being satis�ed under the
least favourable con�guration therefore without loss of generality we need to �nd:

P (reject H1|µ1 = δ, µ2 = δ0, . . . , µK = δ0) ≥ 1− β, (4.1)

where δ is the di�erence between treatment 1 and the control.

4.1 Boundary calculation

In order to �nd 4.1 we �rst have to begin by �nding the boundaries at which we are either going to
conclude a treatment is superior, or that a treatment is inferior, at each stage. We use the type I
error in order to calculate these bounds. We want our boundaries to be such that:

P (reject at least one true Hk, k = 1, . . . ,K) ≤ α (4.2)

This means that our family-wise error rate is less than our pre-speci�ed level. There are di�erent types
of designs, which will give you di�erent bounds for each. There are advantages and disadvantages
to each as shown in Magirr et al. (2012). Popular examples of boundary designs are from Pocock
(1977), O'Brien and Fleming (1979) and the triangular test which is described in Whitehead (1997).
The formula for calculating these bounds for these di�erent designs can be found in Magirr et al.
(2012).

4.2 Number of patient per arm

We begin by calculating the number of patients that we need for each arm at each stage n. Under the
least favourable con�guration that no individual null hypotheses are rejected at analysis 1, . . . , J − 1
and then at analysis J without loss of generality, the null hypothesis H1 is rejected and a treatment
1 is recommended at ΠJ . The power of the study is:

Π1 + Π2 + . . .+ ΠJ (4.3)

This is the power as Πj is the probability that we reject our null hypothesis at j, therefore the power
is the probability of correctly rejecting a null hypothesis at either 1, . . . , J .

In order for us to �nd the number of patient per arm we solve:

Π1 + Π2 + . . .+ ΠJ = 1− β (4.4)
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To solve this we use the fact that the correlation between test statistics for the experimental treatments
comes from the common control treatment, which means that Π1 + Π2 + . . . + ΠJ are independent
from one another. We then use this fact to calculate each Πj . We then �nd 4.3 for di�erent n until
we get our required power 4.4. We calculate Πj using the formula in Magirr et al. (2012).

4.3 Maximum number of patients

In order to �nd the maximum sample size required we look at the worst-case scenario. This is when
we are unable to drop any of our treatments or accept them as being superior until the �nal analysis
J . This is where we will either accept an experimental treatment, or will reject all of them as there
is ine�cient evidence to reject any of our null hypotheses 2.1. In order to �nd the number of patients
we need, we solve 4.4 to �nd n then �nd n× J ×K.

4.4 Expected number of patients

When looking at the expected number we do not know how the treatments are going to perform before
doing the trial. For example are we expecting only one treatment to be clinically relevant or multiple
treatments, or maybe none and when will we �nd this treatment? For a method on calculating the
expected sample size see Magirr et al. (2012). Their method works by us calculating the number of
patients we will need in all the di�erent scenarios then multiplying each of these by the probability
that the scenarios happen.

5 Calculation of minimum number of patients

In Magirr et al. (2012) they have also calculated the minimum number of patients needed for a MAMS
trial. This can be calculated by taking the maximum number of patients needed, then dividing this by
the number of stages J . This is a very intuitive method for calculating this, as in the best scenario you
�nd a treatment, which is clinically relevant by the end of your �rst stage. However, this calculation
underestimates the true number, for a couple of key reasons:

1. It takes a period of time from collecting the data to do the statistical analysis on it.

2. Most treatments take time before we can measure the treatments e�ect.

Both these issues could be resolved if, once you have recruited the right number of patients to your
trial for each stage, you stop recruiting new patients and wait for the results. However, this has two
key issues. The �rst of which is this would drastically increase the length of time your trial could
take. For example if we had a 3 stage MAMS trial where it takes 3 months before we can take the
treatments e�ect measurements and the data takes 1 month to analyse, we could potentially have to
wait an additional 8 months compared to if we did not stop recruitment. The second, and possibly
the biggest issue, is that by human nature if we stop a clinical trial part way through it is then
incredibly hard to recruit new patients to the trial after the pause. This is because people think that
the trial may have stopped for other reasons such as issues with treatment safety. Therefore pausing
the trial at di�erent intervals is not a viable option.

We are going to see how the impacts of di�erent treatment e�ect periods and statistical analysis
periods a�ect the minimum patient numbers in our trial. We are also going to study the a�ect of
di�erent recruitment rates on the minimum number of patients. We are going to assume that we
recruit patients at a constant rate throughout the trial. This results in the minimum number of
patients (Nmin) equalling:

Nmin = min
(Nmax

J
+ d× (a+ t), Nmax

)
, (5.1)
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where a statistical analysis period, t treatment e�ect period, d recruit rate. In �gures 1 and 2 we
have set the default Nmax = 540, J = 3, a = 14 days, d = 30 days, r = 2 per day we have chosen
Nmax = 540 and J = 3 as this is one of the examples given in Magirr et al. (2012).

Figure 1: A�ect of treatment e�ect period and Statistical analysis period on the minimum number
of patients needed for a trial

As you can see from equation 5.1 in �gure 1 as we increase both the treatment e�ect period and
statistical analysis period we increase Nmin. In most cases we are unable to change the treatment
e�ect period as there is normally no way of making a treatment faster, especially if you are using a
control which has a set treatment period time. We may be able to decrease the statistical analysis
period, however this will involve an increase in resources, resulting in an increased cost of doing the
analysis.

Furthermore as we can see in equation 5.1 and �gure 2 as we decrease the recruitment rate we
decrease the minimum number of patients. We might think of designing our trial so we have a slow
recruitment rate however this also has issues. As you can see in �gure 2 the recruitment rate has
a huge in�uence on the time our trial will take, even if the trial only needs to recruit the minimum
patient numbers.

Figure 2: Recruitment rate e�ect on the minimum number of patients needed for a trial and on the
time the trial takes.

5



6 Conclusion

In this report we have studied the group-sequential MAMS design with a focus on looking at the
sample size for the maximum and minimum number of patients needed. We began by looking at the
type I and type II errors as these are both important factors in calculating sample size. After which we
looked at calculating sample size for the maximum number and expected number of patients needed
for our MAMS design. Finally, we studied how we calculate the minimum number of patients.

When calculating the minimum number of patients we showed that Magirr et al. (2012) calculation
for this is a best case scenario. We have shown that when you count for recruitment rate, treatment
period and statistical analysis period their estimate can hugely underestimate the minimum patients
required. This leads us to some important questions about group-sequential MAMS designs, before
we consider using this in a clinical trial. The more stages we have the more interim analyses we
will have to conduct, each of which costs money. Therefore, if we are unlikely to save very much on
recruitment levels to a trial, is it worth the increased cost?

In �gure 2 we saw in our example if we have a recruitment rate of above 8 patients per day, then our
minimum number of patients will be the same as our maximum number of patients. However the
maximum number of patients we need to recruit for a J stage MAMS trial is more than a J −1 stage
MAMS trial. It may be that a multi-stage multi-arm trial has a larger minimum number of patients
than the maximum number needed in a single-stage multi-arm trial. Therefore, it is very important
that we take into account recruitment rate, treatment period and statistical analysis period before
choosing to use a MAMS trial design.

7 Further research

Further work to be done in this area would be to study the e�ects of recruitment rate, treatment
period and statistical analysis period on the expected number of patients needed. This would involve
�rst calculating the expected number of treatments to drop at each stage or the expected time until a
treatment is classed as superior. Then from this we could calculate the expected number of patients
needed. We could also look into ways of calculating how many stages would be optimal for patient
numbers and overall cost. Finally, we would also like to look into the e�ect of having a non-uniform
recruitment rate such as those discussed in Minois et al. (2017). This is more realistic as when we
recruit more centres to our trial the recruitment rate will increase. This will a�ect the minimum
number of patients we will need for a trial.
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