
STOR608: Adaptive Metropolis Algorithms

Peter Greenstreet

January 8, 2020

1 Introduction

The aim of MCMC (Markov chain Monte Carlo) algorithms is to allow us to get a sample from
a probability distribution. In many cases π(x) is a Bayesian posterior distribution which we
only know up to proportionality. We use our MCMC algorithm to produce a random sample
x1, x2, ..., xn from our probability distribution. Where xj is a vector such that xj = (x(1), ..., x(d)),
with d being the dimension of our probability distribution.

Once we have drawn our sample we need to remove the �rst b points (x1, ..., xb). This is because
we want a stationary distribution π(x), so need to remove the data points before our algorithm
has converged on the stationary distribution. For example, if we started in an area of low
probability of our posterior distribution, the �rst b draws may be from an area which we are
unlikely to ever visit again, resulting in bias in our sample if we included these draws.

During this report, we are going to use the Metropolis-Hastings Algorithm. This algorithm works
by us choosing a proposal density q(y|x). This is where y is our proposed next sample point.
Next, we calculate:

α(y|x) = min

(
1,
π(y)q(x|y)

π(x)q(y|x)

)
,

where α is our acceptance probability of keeping the proposed next sample point.

We are going to focus on two methods of adaptive Metropolis algorithms. The �rst method is
Adaptive Proposal (AP) algorithm from Haario et al. (1999), the second is Adaptive Metropolis
(AM) algorithm from Haario et al. (2001). Both these methods build from the Random Walk
Metropolis Algorithm (RWMA) which was �rst introduced by Metropolis et al. (1953). We will
introduce a basic outline to this in section 2.

The main reason we are focusing on algorithms based on random walk Metropolis is that many
other methods involve knowing further information about the underlying posterior distribu-
tion π(x). For example, in the Gibbs sampler (Geman and Geman (1984)) we need to know
π(x(i)|x(−i)) which is not always possible. In Metropolis Adjusted Langevin Algorithms (MALA)
(Grenander and Miller (1994)) and Hybrid Monte Carlo algorithm (HMC) (Duane et al. (1987))
we need to be able to calculate the gradient at di�erent points in our posterior distribution, which
can be computationally very expensive if this is not possible to work out analytically.

2 Random Walk Metropolis Algorithm (RWMA)

RWMA is one of the most commonly used methods, due to its simplicity to implement and as
all you need to know is the posterior distribution up to proportionality. The method works by
beginning with steps 1,2 then doing n iterations of steps 3-5:

1. We have our initial value x0. When choosing x0 it is important to check that π(x0) 6= 0.
so that at step 4 we do not divide by 0.

1

2. Then choose an ε which is drawn from a symmetric distribution with mean 0. This is so
q(y|x) = q(x|y).

3. Next �nd a proposal y which equals y = xi−1 + ε.

4. We decide whether we accept our proposal y by �nding our acceptance probability which
has been simpli�ed by our choice of ε:

α = min
(

1,
π(y)

π(xi−1)

)
.

5. Then we test whether α > u, where u is a random draw from a uniform(0, 1). If α > u
then xi = y if not xi = xi−1.

One of the biggest challenges with random walk Metropolis algorithm is choosing an ε so we
have a `good' acceptance rate. A `good' acceptance rate is one where we have low correlation
between each sample point. If we choose ε so that we barely move around our sample space,
then we will have high correlation between each point. However if we choose ε so that we move
a lot around our sample space, then we will rarely accept a proposed point which will also result
in high correlation.

A commonly used and well studied distribution for ε is ε ∼ N(0,Σ) which is the distribution we
will use in this paper. Roberts et al. (1997) shows that ε should be chosen to give an acceptance
rate of around 23% in high dimension. They then went on to show in further work (Roberts and
Rosenthal (2001)) that an acceptance rate between 15% and 50% is still fairly e�cient. Further
in this paper they have shown that Σ is best when proportional to the true covariance matrix ΣT .
However the true covariance matrix is rarely known, therefore it can be impossible to choose Σ
so that it is proportional to the true covariance matrix. This is why we need adaptive Metropolis
algorithms.

3 Adaptive Proposal (AP) algorithm

In Haario et al. (1999) they have given the AP algorithm as a way to resolve the issue with the
choice of Σ. This method does produce a slightly biased stationary distribution, as shown in an
example in Haario et al. (2001). In most instances this bias is so small it can be ignored. The
method works in a very similar way to that of the RWMA, however we will update our covariance
matrix.

We choose an initial covariance matrix R0 which can be chosen as the identity if we have no prior
knowledge about what it should be. After t0 time of RWMA where we have sampled at least
H points so {x1, ..., xt0−H+1, ..., xt0} we then calculate the covariance matrix Rt which is d × d
matrix by collecting the points xt0−H+1, ..., xt0 into a H × d matrix call K then we �nd:

Rt =
1

1−H
K̃T K̃,

where K̃ = K − E(K). For the next U (update frequency) steps, we �nd proposal points
y = xt+i−1 + N(0, c2dRt), where cd = 2.4/

√
d from which Gelman et al. (1996) was shown to

correspond to theoretically optimal mixing. We then update Rt again by looking at the last
H points in our sample. We then continuously repeat this step, updating our Rt after every U
points until we have our desired sample length.

2

4 Adaptive Metropolis (AM) algorithm

The AM algorithm uses a similar principle as AP algorithm. It works by us continuously updating
our covariance matrix after some time t0. t0 is free for us to choose and it represents our trust
in R0. We �nd our covariance matrix in the following way:

Rt =

{
R0 t ≤ t0

cdcov(x0, ..., xt−1) + cdδId t > t0

This is where δ > 0 is chosen to be so small it is negligible. The reason Haario et al. (2001) has
set δ > 0 rather than δ = 0 is they were only able to prove the ergodicity properties for δ > 0.
The ergodicity property is that the AM provides the correct simulation of the target distribution,
unlike the AP algorithm which is biased.

When calculating Rt for t ≥ t0 + 1 we use a recursion formula, which results in a decrease in
computational cost of the algorithm compared to recalculating the covariance from scratch each
time.

The issue with the AM algorithm is it is not Markovian. Markovian is when:

Xt|Xt−1, ..., X1 = Xt|Xt−1

This does not hold for the AM algorithm as for t > t0 the covariance is dependent on the values
of X0, ..., Xt−1. However, in Haario et al. (2001) they show that the asymptotic dependence
between the elements of the chain is weak enough that it can be ignored.

5 Comparing methods

We are going to compare our di�erent algorithms on 2 di�erent target distributions: uncorrelated
Gaussian distribution and correlated Gaussian distribution. For each target distribution we will
look at a 2 dimensional example and a 16 dimensional example. We have chosen the 2 dimensional
examples as these can be easily visually represented. We are looking at the 16 dimensional
examples to get an understanding of how well the algorithms work in high dimension.

For the uncorrelated Gaussian distributions we will set µ = 0 for both and set ΣT to be:

2 Dimensional 16 Dimensional

ΣT =

(
1 0
0 2

)
ΣT =


1 0 . . . 0
0 2 . . . 0
...

...
. . .

...
0 0 . . . 16

 .

We have chosen these matrices to test how the algorithms perform when each parameter has a
di�erent variance.

For the correlated Gaussian distributions we will set µ = 0 for both and set ΣT to be:

2 Dimensional 16 Dimensional

ΣT =

(
1 0.1

0.1 1

)
ΣT =


1 0.1 . . . 0.1

0.1 1 . . . 0.1
...

...
. . .

...
0.1 0.1 . . . 1

 .

3

We have chosen these matrices to test how the algorithms perform when all the parameters are
correlated with each other.

We will compare AM algorithm, AP algorithm and RWMA. We will set the starting Σ to be the
identity matrix for the AM algorithm, AP algorithm and RWMA. Also an example of RWMA
with Σ tuned to cdΣT (TRWMA).

In table 1 we have calculated the Mean(||E||) and SD(||E||) as suggested in Roberts et al. (1997),
as a way to see how well our algorithm is getting its sample from the probability distribution.
Mean(||E||) is the mean distance the expected values are from the true values calculated over
100 repetitions.

Mean(||E||) =
1

100

100∑
j=1

(d∑
i=1

(Ei
j)

2

)1/2

,

where Ej is the mean vector of chain j. SD(||E||) is the standard deviation of this distance. For
the 16 dimensional cases we have made a sample of length 50000 and for the 2 dimensional cases
we have made a sample of length 10000. The burn in period for all the algorithms is half the
sample length. For the AP and AM we have set t0 to equal 1000 and 5000 for 2 dimensional
and 16 dimensional cases respectively. Also for the AP we set H= 200, U= 200 and H= 1200,
U= 1000 for 2 dimensional and 16 dimensional cases respectively as suggested in Roberts et al.
(1997).

2 Dimensional Case
Uncorrelated Correlated

Algorithm Mean(||E||) SD(||E||) Mean(||E||) SD(||E||)
AP 0.06874 0.03809 0.05447 0.02821
AM 0.05992 0.03015 0.04522 0.02432
TRWMA 0.05927 0.02556 0.04902 0.02193
RWMA 0.08114 0.04116 0.05482 0.02589

16 Dimensional Case
Uncorrelated Correlated

Algorithm Mean(||E||) SD(||E||) Mean(||E||) SD(||E||)
AP 0.61355 0.13876 0.21244 0.03993
AM 0.51490 0.10319 0.17917 0.03326
TRWMA 0.52643 0.11203 0.18173 0.03621
RWMA 0.80249 0.18983 0.25338 0.05219

Table 1: Mean(||E||) and SD(||E||) from our di�erent probability distributions.

In the 2 dimensional cases we will use the ACF plots to study the e�ective sample size we have
got for each algorithm. The e�ective sample size is calculated by working out how many points
we need to remove, so each of our sample points is independent of one another. We do this by
seeing at which lag l we fall within the 95% independence con�dence interval. Then we keep
only 1 in every l sample points, resulting in us having an independent sample. In �gure 1 we
have plotted for each algorithm, the ACF plot corresponding to the parameter with the worst
lag in the non correlated example. The AP, AM, TRWMA and RWMA lags fall within the 95%
CI at l = 18, 16, 20, 36 respectively which results in an e�ective sample size of 277, 312, 250, 138.

4

In the correlated 2 dimensional case we found that AP, AM, TRWMA and RWMA lags fall
within the 95% CI at l = 13, 11, 20, 30 respectively which results in an e�ective sample size of
384, 454, 250, 166.

Figure 1: ACF plots for uncorrelated 2 dimensional case.

6 Conclusion

From section 5 we have found using the ACF plots that the AM algorithm has given us the
largest e�ective sample size in the 2 dimensional cases. The AP algorithm also gave us a larger
e�ective sample size than both TRWMA and RWMA. This is a useful feature as it reduces the
length of the sample we need to get from our algorithm, resulting in faster computation.

Furthermore, as can be seen in table 1, the AM algorithm gives us a better Mean(||E||) compared
to the RWMA and AP. The true Mean(||E||) of our distribution is 0 so we want our result to be
close to 0. AM gives us results very close to TRWMA, sometimes with AM giving us the better
result. This is potentially caused as we have tuned TRWMH by using the true covariance matrix
times c2d and as c2d is not always the best tuning parameter, so our AM may be getting closer to
the optimal tuning parameter.

When studying the SD(||E||) in table 1 we have found a very similar pattern as for the Mean(||E||).
Either the AM or TRWMA give us the smallest SD(||E||) with both being close to each another.
We want a small SD(||E||) as if we have a large SD(||E||) there is a higher chance of the sample
mean being further away from the true probability distributions mean.

To conclude, out of the algorithms we have discussed, we would choose the AM algorithm as our

5

method for drawing a sample from a probability distribution. This is due to it performing better
when compared to the AP algorithm in every test, very similarly to the TRWMA without the
need for us to manually tune Σ.

In future reports we would like to study how our algorithms work on di�erent probability dis-
tributions, including looking at how they perform on ones which are bimodal, to see whether
the algorithms are able to move between modes, or just get stuck in one area of the probability
distribution. We would also study the e�ects of having di�erent distribution for ε such as the
logistic distribution, student's t distribution or Cauchy distribution. Further work would also
include a look at comparing our algorithms to other methods such as the Gibbs, MALA and
HMC. Finally we would also like to look into di�erent types of adaptive Metropolis algorithms
such as those discussed in Roberts and Rosenthal (2009).

References

Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987). Hybrid monte carlo.
Physics letters B, 195(2):216�222. 1

Gelman, A., Bois, F., and Jiang, J. (1996). Physiological pharmacokinetic analysis using pop-
ulation modeling and informative prior distributions. Journal of the American Statistical
Association, 91(436):1400�1412. 2

Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-6(6):721�741. 1

Grenander, U. and Miller, M. I. (1994). Representations of knowledge in complex systems.
Journal of the Royal Statistical Society: Series B (Methodological), 56(4):549�581. 1

Haario, H., Saksman, E., and Tamminen, J. (1999). Adaptive proposal distribution for random
walk metropolis algorithm. Computational Statistics, 14(3):375�395. 1, 2

Haario, H., Saksman, E., and Tamminen, J. (2001). An adaptive metropolis algorithm. Bernoulli,
7(2):223�242. 1, 2, 3

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).
Equation of state calculations by fast computing machines. The Journal of Chemical Physics,
21(6):1087�1092. 1

Roberts, G. O., Gelman, A., and Gilks, W. R. (1997). Weak convergence and optimal scaling of
random walk metropolis algorithms. The Annals of Applied Probability, 7(1):110�120. 2, 4

Roberts, G. O. and Rosenthal, J. S. (2001). Optimal scaling for various metropolis-hastings
algorithms. Statistical Science, 16(4):351�367. 2

Roberts, G. O. and Rosenthal, J. S. (2009). Examples of adaptive mcmc. Journal of Computa-
tional and Graphical Statistics, 18(2):349�367. 6

6

	Introduction
	Random Walk Metropolis Algorithm (RWMA)
	Adaptive Proposal (AP) algorithm
	Adaptive Metropolis (AM) algorithm
	Comparing methods
	Conclusion

