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1 Introduction

Bayesian nonparametrics is the study of Bayesian inference methods for nonparametric and

semiparametric models — that is, models whose parameter space is infinite-dimensional or

grows with the amount of data. The nonparametric Bayesian approach may be preferred due

to the conceptual simplicity of the Bayesian paradigm (where all inference tools are produced

by the posterior distribution) and the flexibility afforded by nonparametric models (which can

avoid unverifiable assumptions imposed by parametric models).

One of the main theoretical results underpinning Bayesian statistics is de Finetti’s theorem,

which states that if a sequence of random variables is exchangeable — meaning the joint dis-

tribution of any finite subset of the random variables is invariant to permutation — then there

exists a random parameter that renders the random variables conditionally independent. Fur-

thermore, the joint distribution of any finite subset of the random variables can be expressed as

a mixture over the random parameter. The key concept in Bayesian nonparametric statistics is

to regard that parameter as infinite-dimensional, for instance being a probability distribution

or a function, with the challenge being finding an appropriate prior for such objects.

Bayesian nonparametric modelling faced a surge in popularity in the late 1990s and early

2000s, as increases in computational capabilities made such methods feasible. In machine learn-

ing, this approach has enabled the study of more complex datasets in an unsupervised learning

setting. Here, minimal assumptions are made about the data and the underlying latent struc-

ture (associations, categorisations or presence of certain features) is to be inferred. Unsupervised

learning problems often arise in fields such as computer vision, natural language processing, and

bioinformatics, in all of which the Bayesian nonparametric paradigm has been applied with

particular success.

This report provides an overview of Bayesian nonparametric modelling approaches. Sec-

tion 2 follows Ghosal and van der Vaart (2017) and introduces the Dirichlet process, colloquially

known as the “normal distribution” of Bayesian nonparametrics, which is a measure on discrete

probability measures and forms the building block for priors in the nonparametric paradigm.
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The Chinese restaurant process, the predictive distribution of the Dirichlet process and the first

step in constructing inference procedures, is also mentioned. Section 3 focuses on a simple mix-

ture model which uses the Dirichlet process prior in order to cluster observations while avoiding

assumptions on the number of clusters and technical complications with Bayesian inference. Fol-

lowing Neal (2000), ways of performing approximate inference by Markov chain Monte Carlo are

mentioned in more detail. Section 4 follows Teh et al. (2006), extending the Dirichlet mixture

model to a more complex, hierarchical setting where the data lies in pre-determined groups.

Section 5 follows Griffiths and Ghahramani (2011) in their derivation of a nonparametric model

for a generalised case of clustering where each observation can have multiple features. Finally,

Section 6 offers some perspective on open problems in Bayesian nonparametrics and concludes.

2 Dirichlet process

The default prior on spaces of probability measures in Bayesian nonparametrics is the Dirichlet

process. It arises as the natural generalisation of the finite-dimensional Dirichlet distribution.

Definition 1 (Dirichlet distribution). We write Dirichlet(k;α) for the k-dimensional Dirich-

let distribution with parameters α = (α1, . . . αk). It is supported on the k-simplex Sk =

{(x1, . . . , xk) : x1, . . . , xk ≥ 0 and
∑k

i=1 xi = 1} and has density

f(x1, . . . , xk) ∝
k∏
i=1

xαi−1
i

for x1, . . . , xk ≥ 0 and
∑k

i=1 xi = 1.

From its density, it is straightforward to deduce that the Dirichlet distribution is conjugate

to the multinomial distribution. To be precise,

p ∼ Dirichlet(k;α)

N | p ∼ Multinomial(n, k; p)

 =⇒ p | N ∼ Dirichlet(k;α + N).

The marginals of the Dirichlet are Beta-distributed, that is pi ∼ Beta(αi, α0 − αi), where α0 :=∑k
i=1 αi is the total mass of the Dirichlet.

We could view a draw from a Dirichlet distribution as a discrete measure supported on

finitely many points. This makes the Dirichlet a useful prior in mixture models with a known

number of mixture components, but lackluster when the number of components is unknown and

possibly growing with the size of the data. To adapt to such a case, we can extend the Dirichlet

distribution to a Dirichlet process. The formal definition is as follows.
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Definition 2 (Dirichlet process). A random measure G on space (X,X ) has a Dirichlet process

distribution DP(α) with base measure α if for every finite measurable partition A1, . . . , Ak of X,

(G(A1), . . . , G(Ak)) ∼ Dirichlet (k;α(A1), . . . , α(Ak)) .

The base measure α decomposes into total mass α0 and mean measure G0 (also called

the base probability measure). We therefore equivalently write DP (α0, G0) when we wish to

differentiate between the total mass and mean measure.

Sethuraman (1994) showed that the Dirichlet process has a “stick-breaking” representation.

If G ∼ DP(α0, G0) then

G
d
=
∞∑
k=1

πkδφk , (1)

with π ∼ GEM(α0)
1 and φk

iid∼ G0 for all k. This GEM distribution gives rise to the intuitive

name of this representation, with it dividing the “stick” of probability mass one into an infinite

number of parts by breaking off lengths of size proportional to a draw from a Beta distribution.

A draw from a Dirichlet process is therefore a random discrete measure with probability one.

Observations θ1, . . . θn sampled independently from a draw of a Dirichlet process

θ1, . . . , θn | G ∼ G

G ∼ DP(α)

are often called a “sample from the Dirichlet process”. The Dirichlet process posterior is also a

Dirichlet process,

G | θ1, . . . , θn ∼ DP

(
α+

n∑
i=1

δθi

)
.

Viewed from a frequentist perspective, if data θ1, . . . , θn arise from some true distribution P ,

then the above posterior converges in distribution to δP as n −→∞.

2.1 Chinese restaurant process

The joint distribution of (θ1, . . . , θn) generated from a Dirichlet process can be described by the

sequence of predictive distributions

θi | θ1, . . . , θi−1 ∼
i−1∑
j=1

1

i− 1 + α0
δθj +

α0

i− 1 + α0
G0.

Though it might not be apparent at first, this implies that there are very few distinct values

among any (θ1, . . . , θn) — even if G0 is continuous, so that if θi is conditionally drawn from G0

1By π ∼ GEM(α0) we mean πk
d
= βk

∏k−1
i=1 (1− βi) with βi

iid∼ Beta(1, α0) for all i, k.
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then it is almost surely distinct from previous samples. In particular, the number of distinct

values is O(log n), by Ghosal and van der Vaart (2017).

A more intuitive description of this sequence of predictive distributions can be obtained by

rewriting it in an altered form. If there are K distinct values among θ1, . . . , θi−1, we introduce

auxiliary variables φk that label the distinct values and counts mk for each such value, for

k ∈ {1, . . . ,K}. The predictive distribution becomes

θi | θ1, . . . , θi−1 ∼
K∑
k=1

mk

i− 1 + α0
δφk +

α0

i− 1 + α0
G0. (2)

This generating process was named the “Chinese restaurant process” by Jim Pitman and

Lester Dubins (Aldous, 1985). The metaphor is in reference to the seemingly infinite capacity

of Chinese restaurants in San Francisco and its explanation is as follows. Customers indexed by

i enter a restaurant sequentially and then choose to sit at some table, with tables being indexed

by k. The first customer chooses a table at random (φ1 ∼ G0 associated to θ1). All subsequent

customers i choose to sit at previously occupied table k with probability proportional to the

number of customers mk already sitting there, or open a new table with probability proportional

to α0. If they open a new table, the number of occupied tables K is incremented by one, φK ∼ G0

is drawn and associated to θi.

3 Dirichlet process mixtures

The Dirichlet process is a useful prior for mixture models where the number of mixture com-

ponents is unknown or potentially growing with the amount of data. Such models are often

considered when clustering data or estimating a density. By adopting a Dirichlet process prior

for the mixture component parameters, unverifiable assumptions about the number of mixture

components and technical complications with approximate posterior inference can be avoided.

The Dirichlet process mixture model is

xi | θi ∼ F (θi)

θi | G ∼ G

G ∼ DP (α0, G0) .

(3)

Figure 1: DP mixture as a Bayesian network

xiθiGα0, G0

i
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To make the notation more precise, we use capital letters G0, G and F for probability distri-

butions. To focus on issues specific to the Dirichlet process, we assume F and G0 are continuous

and have associated densities f(·) and g0(·) respectively. While priors on α0, G0 and on hyper-

parameters for F would often be introduced in practice, in similar spirit to the remark before

we do not consider them.

An intuitive way of arriving at model (3) is by taking an infinite limit of a finite-dimensional

mixture model. By viewing draws from a Dirichlet distribution as finite discrete measures, the

following is a commonly used K-dimensional Bayesian mixture model:

xi | zi,φ ∼ F (φzi)

zi | π ∼ π

π ∼ Dirichlet(K;α0/K, . . . , α0/K)

φk ∼ G0.

(4)

In the limit of K −→ ∞, and associating θi = φzi , this model converges to (3). The process

of constructing a nonparametric model by taking the limit of a finite-dimensional one is more

widely applicable in Bayesian modelling, enabling inference procedures to be deduced from the

limit of appropriate conditionals.

We now focus on ways of performing inference with the Dirichlet process mixture model.

Since exact computation of posterior expectations for this model are infeasible even for small

sample sizes, we turn to Monte Carlo methods.

3.1 Inference

Inference in the Dirichlet process mixture model can be done by Markov chain Monte Carlo

sampling from the posterior, with Neal (2000) reviewing a number of such samplers. He mentions

that while it is possible to perform inference with formulation (3), there are potential issues in

doing so. For instance, a Gibbs sampler derived from the Chinese restaurant process (2) (as

Escobar and West (1995) do) would be rather inefficient, with the problem being that “there are

often groups of observations that with high probability are associated with the same θ”. Since

such an algorithm only updates one θi at a time, it must pass through many low probability

intermediate states with such groups split up, slowing down mixing severely.

Fortunately, this issue can be avoided by reformulating the model. Using the stick-breaking

construction, an equivalent model to (3) is
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xi | zi,φ ∼ F (φzi)

zi | π ∼ π

π ∼ GEM(α0)

φk ∼ G0.

(5)

Figure 2: Reformulated DP mixture as a Bayesian network

xiziπα0

φkG0

i

k

In this reformulated model, the index variable zi represents the cluster or latent class asso-

ciated to observation xi, so that θi = φzi as in (4). Note that the specific labels assigned to

each zi are of no importance, as they simply label whether observations are in the same group

or not. We are then free to, for instance, force zi to only take the smallest values in the natural

numbers, as in the “no gaps” sampler of MacEachern and Müller (1998).

By restricting to samplers with the mixing proportions π integrated out, the efficiency issue

with formulation (3) is avoided. Following Neal (2000), we therefore use formulation (5) through-

out the remainder of this section and list several algorithms from the same paper. These are the

two Gibbs samplers for the conjugate case and the author’s three noteworthy contributions for

the non-conjugate case: a Metropolis-Hastings sampler, a partial Gibbs and Metropolis-Hastings

sampler and an augmented Gibbs sampler.

3.1.1 Samplers for the conjugate case

If F and G0 are conjugate, it is possible to directly use Gibbs samplers. The relevant quantities

are the marginals of P (z,φ|x), where the parameters in use are z = (z1, . . . , zn), φ = (φk : k ∈ z)

and the data is x = (x1, . . . , xn). We write z−i for the vector z without entry i and m−ik for the

number of entries of z−i that are equal to k. The marginals can be computed from the Chinese

restaurant process and Bayes’ rule, producing a “full” Gibbs sampler.

Algorithm 1 (Full Gibbs sampler). The state of the Markov chain is z = (z1, . . . , zn) and

φ = (φk : k ∈ z). Repeat:
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• For i = 1, . . . , n: Sample zi from conditional

If k ∈ z−i: P (zi = k | z−i,x,φ) = bm−ik f(xi, φk)

P (zi 6∈ z−i | z−i,x,φ) = bα0

∫
f(xi, φ)g0(φ)dφ,

where b is the appropriate normalisation constant. If zi 6∈ z−i, sample new φzi from density

∝ f(xi, φzi)g0(φzi) and add to φ. Discard any φk not associated with an observation.

• For all k ∈ z: Update φk from φk | {xj : zj = k}, that is with density∝
∏
j:zj=k

f(xj |φk)g0(φk).

If it is possible to completely integrate out the cluster parameters φ analytically, and the

exact values of the cluster parameters are of no interest, a simplified Gibbs sampler on the

marginals of P (z|x) can be used.

Algorithm 2 (Simplified Gibbs sampler). The state of the Markov chain is z = (z1, . . . , zn).

Repeat: For i = 1, . . . , n, sample zi from conditional

If k ∈ z−i: P (zi = k | z−i,x) = bm−ik

∫ ∏
j : zj=k

f(xj , φ)g0(φ)dφ

P (zi 6∈ z−i | z−i,x) = bα0

∫
f(xi, φ)g0(φ)dφ,

where b is the appropriate normalisation constant.

3.1.2 Samplers for the non-conjugate case

In the non-conjugate case, the Gibbs samplers can usually not be applied as the relevant integrals

are analytically intractable. Neal (2000) therefore suggests alternate samplers, the first being a

Metropolis-Hastings algorithm proposing from the conditional prior of zi:

If k ∈ z−i: P (zi = k | z−i) =
m−ik

n− 1 + α0

P (zi 6∈ z−i | z−i) =
α0

n− 1 + α0
.

(6)

This is a symmetric proposal, as the distribution depends strictly on z−i, which remains un-

changed. The Metropolis-Hastings acceptance ratio thus reduces to a ratio of likelihoods. To

speed up mixing, an additional Gibbs update step of sampling φk within each cluster is added.

Algorithm 3 (Metropolis-Hastings sampler). The state of the Markov chain is z = (z1, . . . , zn)

and φ = (φk : k ∈ z). Repeat:

• For i = 1, . . . , n, repeat R times update of zi: Propose z∗i from conditional (6), if not

among z−i also sample φz∗i ∼ G0. Accept with probability min
[
1, f(xi, φz∗i )/f(xi, φzi)

]
.

Otherwise, keep zi the same.
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• For all k ∈ z: Update φk from φk | {xi : zi = k} or perform any other update that leaves

this distribution invariant.

Since in practice relatively low values of α0 ' 1 are used, representing equal weighting in the

first Chinese restaurant process allocation, this sampler would create a new cluster relatively

infrequently. Neal (2000) thus conjectures that a sampler that creates a new component more

often in the step of updating zi might be more efficient. This can be forced by using an altered

proposal distribution, which proposes a strictly new component whenever zi is not a singleton,

that is when there is a j 6= i such that zj = zi (observation xi is not in a class of its own). Direct

usage of this chain, however, results in an inefficient sampler: when moving an observation

from one existing group to another, the sampler must pass through an unlikely state where that

observation is a singleton. This is the exact same issue as when Gibbs sampling in formulation

(3). We can make such changes more likely, and thus improve the efficiency of the sampler, by

performing partial Gibbs updates on the observations that are neither singletons nor allowed to

become singletons. This creates a valid, ergodic Markov chain, as there is a non-zero probability

of visiting every possible state.

Algorithm 4 (Partial Gibbs sampler). The state of the Markov chain is z = (z1, . . . , zn) and

φ = (φk : k ∈ z). Repeat:

• For i = 1, . . . , n, update zi by Metropolis-Hastings:

– If zi is not a singleton, create new z∗i and sample φz∗i ∼ G0. Accept z∗i with probability

min
[
1, α0f(xi, φz∗i )/(n− 1)f(xi, φzi)

]
.

– If zi is a singleton, propose z∗i from z−i uniformly. Accept z∗i with probability

min
[
1, (n− 1)f(xi, φz∗i )/α0f(xi, φzi)

]
.

– Otherwise, keep zi the same.

• For i = 1, . . . , n, update zi by Gibbs sampling: If zi is not a singleton, replace with new

value k ∈ z−i from

P
(
zi = k | z−i,x,φ, zi ∈ z−i

)
∝ m−ik f(xi, φk).

Otherwise, keep zi the same.

• For all k ∈ z: Update φk from φk | {xi : zi = k} or perform any other update that leaves

this distribution invariant.

An alternative approach to Metropolis-Hastings updates can also be taken to allow inference

in non-conjugate models. By augmenting the sample space with auxiliary parameters, we can
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sample from the augmented distribution and then discard them to sample from the target

distribution. When sampling zi from the second expression in (6), we instead introduce M

auxiliary variables sampled from G0 to represent possible values zi can take.

Algorithm 5 (Augmented Gibbs sampler). The state of the Markov chain is z = (z1, . . . , zn)

and φ = (φk : k ∈ z). Repeat:

• For i = 1, . . . , n, update zi: Let K−i count the distinct values in z−i. Relabel K−i distinct

values in z−i by {1, . . . ,K−i}. Sample φk ∼ G0 for K−i + 1 < k ≤ K−i +M . If zi is not

a singleton, resample φK−i+1 ∼ G0. Draw new value k from

P
(
zi = k | z−i, xi, φ1, . . . , φh

)
∝


m−ik f(xi, φk) for 1 ≤ k ≤ K−i,

α

M
f(xi, φk) for K−i < k ≤ K−i +M.

Discard the φk not associated with any observation.

• For all k ∈ z: Update φk from φk | {xi : zi = k} or perform any other update that leaves

this distribution invariant.

As for choosing between the three algorithms for the non-conjugate case, the author suggests

they would dominate each other in different scenarios, based on the specific characteristics of the

problem at hand. Numerical results show that the augmented Gibbs sampler has the potential

to achieve significantly less correlated samples per iteration as the number of auxiliary variables

M is increased, at an added cost per iteration.

4 Hierarchical Dirichlet processes

If Dirichlet process are natural priors in nonparametric Bayesian clustering, hierarchical Dirich-

let processes are the extension when clustering data with a hierarchical structure. Teh et al.

(2006) consider such a setting. They assume observations lie in pre-determined groups, with

observations in each group being drawn from a mixture model, allowing the groups to share

mixture components. They offer two situations of interest as motivation. One is in the field of

genetics, where identifying shared haplotypes among the genetic structure of groups of humans

could shed light on the migration patterns of early humans. Another is in the field of information

retrieval, where articles in journals could be analysed to see to what extent themes (“extreme

value statistics”, “survival analysis” etc.) are shared across the journals.

They propose modelling such data using a mixture model with a hierarchical Dirichlet process

prior, guided by the natural clustering property of the Dirichlet process and the fact that it forces
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atoms to be shared among groups due to it being almost surely discrete. Labeling data xji to

belong to observation i in group j, the model under their consideration is

xji | θji ∼ F (θji)

θji | Gj ∼ Gj

Gj ∼ DP (α0, G0)

G0 ∼ DP (γ,H) .

(7)

Figure 3: Hierarchical DP mixture as a Bayesian network

xjiθjiGjG0H

α0γ

j
i

For simplicity, we assume that F,G0 and H are continuous distributions, with density functions

f(·), g0(·) and h(·).

Similarly to the Dirichlet process mixture model, the hierarchical model can be derived as the

limit of a finite-dimensional model. MacKay and Peto (1995) propose the following hierarchical

model for natural language processing:

xji | zji,φ ∼ F (φzji)

zji | πj ∼ πj

πj | β ∼ Dirichlet (|β|;α0β)

β ∼ Dirichlet(L; γ/L, . . . , γ/L),

φk ∼ H.

As L −→∞, Teh et al. (2006) show this model converges to (7).

4.1 Chinese restaurant franchise process

Teh et al. (2006) derive the predictive distribution for the hierarchical Dirichlet process prior,

terming it the “Chinese restaurant franchise” process, in complete analogy to and in extension of

the Chinese restaurant process. The metaphor here is as follows. We have a chain of restaurants

indexed by j, with customers indexed by i entering one restaurant in the chain and sitting down

at a table, with tables being indexed by t. All restaurants serve a common menu of dishes, with

each dish being indexed by k. Further notation is made more precise in the sequel.
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Table 1: Notation used in CRF

Notation Description

φk Dishes from the menu

ψjt Table-specific choice of dishes

mjk The number of tables in restaurant j serving dish k

njtk The number of customers in restaurant j at table t having dish k

tji Index of table associated to customer i in restaurant j, θji = ψjtji

kjt Index of dish associated to table t in restaurant j, ψjt = φkjt

zji Index of dish associated to each customer, zji = kjtji

Dot instead of index Sum over that index, e.g. m·k is the number of tables serving dish k

As in the Chinese restaurant process, customers enter a restaurant and either choose tables

already occupied by customers at that restaurant with probability proportional to the number

of customers sitting there or open a new table with probability proportional to α0,

θji | θj1, . . . , θj,i−1, G0 ∼
mj·∑
t=1

njt·
i− 1 + α0

δψjt
+

α0

i− 1 + α0
G0. (8)

We call this the “table level” description of the Chinese restaurant franchise. Whenever a new

table is opened, mj· is incremented by one, ψjmj· ∼ G0 is drawn and we set tji = mj· and

θji = φjmj· .

The innovation brought forward by the Chinese restaurant happens when a customer opens

a new table: a dish is also ordered for the whole table, to be shared by all future customers at

that table. This dish is now chosen from a global level Chinese restaurant process

ψjt | ψ11, . . . , ψj,t−1 ∼
K∑
k=1

m·k
m·· + γ

δφk +
γ

m·· + γ
H, (9)

where K is the total number of distinct dishes. We call this the “dish level” description of the

Chinese restaurant franchise. Whenever a new dish is ordered, K is incremented by one and

φk ∼ H is drawn and associated to ψjt. Multiple tables in the same restaurant can serve the

same dish.

We are ultimately interested in which mixture component is associated to each observation

— that is which dish zji each customer eats — and we can derive that from the association

between table and dish (9) and the association between customer and table (8). We therefore

use both equations when performing inference.
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4.2 Inference

The posterior distribution in the hierarchical Dirichlet process model is analytically intractable,

so we sample it by Markov Chain Monte Carlo. By drawing insight from the Dirichlet mixture

model inference paper of Neal (2000), samplers derived from the Chinese restaurant franchise as-

is would be inefficient due to having to pass through many low-probability intermediate states.

This is solved by sampling the index variables tji and kjt instead, which is the approach taken

by Teh et al. (2006).

We mention the first Gibbs sampler proposed by Teh et al. (2006) for the hierarchical Dirich-

let process model, which uses the Chinese restaurant franchise reformulated in terms of the index

variables. F and H are assumed to be conjugate, so this algorithm is in the spirit of the simpli-

fied Gibbs sampler (Algorithm 2) for the Dirichlet mixture model. We can therefore integrate

the mixture component parameters φ out and the only quantities of interest are the marginals

of P (t,k|x), where x = (xji : all j, i), t = (tji : all j, i) and k = (kjt : all j, t), with index t

running only over tables in use.

The complex interactions make the notation used for this algorithm somewhat involved.

Define xjt = (xji : all j, i such that tji = t). Placing a negative superscript on a count or set

means the variable corresponding to the set or count is removed, for instance n−jijt· is count njt·

if customer i in restaurant j were removed. The conditional likelihood of xji under mixture

component k given all data items except xji is labelled as

f
−xji
k (xji) := f(xji|zji = k,x−ji)

and can be evaluated by applying Bayes’ rule and then integrating over parameters φ. The joint

conditional likelihood of all data items in xjt under mixture component k except xjt is labelled

f
−xjt

k (xjt), and can be computed similarly.

To sample t, we use posterior marginals derived from the table-level CRF (8)

If t ∈ t−ji: P (tji = t | t−ji,k,x) = bn−jijt· f
−xji
kjt

(xji)

P (tji 6∈ t−ji | t−ji,k,x) = bα0f
−xji(xji|t−ji, tji 6∈ t−ji,k),

(10)

where b is the appropriate normalisation constant and, by the dish-level CRF (9) and summing

over all mixture components, the conditional likelihood of xji for a new value of tji is

f−xji(xji|t−ji, tji 6∈ t−ji,k) =

K∑
k=1

m·k
m·· + γ

f
−xji
k (xji) +

γ

m·· + γ
f(xji).

If a new value tji = t is sampled, then we also sample a new kjt from

If k ∈ k−jt: P (kjt = k | t,k−jt,x) = bm·kf
−xji
k (xji)

P (kjt 6∈ k−jt | t,k−jt,x) = bγf(xji),
(11)
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where b is the appropriate normalisation constant and we have used Bayes’ rule and (9).

When sampling k, note that changing kjt changes the component membership of all cus-

tomers at table t. The likelihood when setting kjt = k then becomes f
−xjt

k (xjt) and we sample

the conditionals of k from

If k ∈ k−jt: P (kjt = k | t,k−jt,x) = bm−jt·k f
−xjt

k (xjt)

P (kjt 6∈ k−jt | t,k−jt,x) = bγf(xjt).
(12)

Combining these sampling steps together, the following Gibbs sampler is obtained.

Algorithm 6 (Gibbs sampler). The state of the Markov chain is t = (tj,i : all j, i) and k =

(kj,t : all j, all t ∈ t). Repeat:

• For all j, i: sample tji from (10). If sample tji = t 6∈ t−ji, also sample new kjt from (11).

If a table becomes unoccupied, then delete the corresponding kjt and any unallocated

mixture components k.

• For all j, all t ∈ t: sample kjt from (12).

Given that the clusters induced by the values zji are the main interest, one might wonder

whether it is possible to obtain samplers for these indices directly, instead of having to reconstruct

them indirectly from tji and kjt. Teh et al. (2006) propose such a Gibbs sampler as well,

which samples zji and mjk using an augmented representation and has more straightforward

bookkeeping. Note that Algorithm 6 updates multiple observations at a time whenever k is

updated, whereas this direct assignment procedure updates only one membership at a time,

potentially making it less efficient.

In the case of F and H being non-conjugate, variable φ cannot be integrated out, so Al-

gorithm 6 is not applicable. Metropolis-Hastings proposals or augmented representations as

in Algorithms 3-5 of Section 3 could be applied to construct inference procedures in such a

situation.

5 Indian buffet process

Both the Dirichlet process and hierarchical Dirichlet process mixture models assume there is a

single latent feature associated to each observation. In contrast, many unsupervised learning

problems represent each observation as having multiple features. Consider the case of an image

recognition problem, where the image could contain several objects at several locations. While

a single factor describing each image could reasonably be used, much more could be inferred

by using a binary vector of features, each entry representing whether or not a specific object is
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present in the image. Using a Dirichlet process prior on parameters describing the latent struc-

ture would therefore be unsuitable in such a problem. At the same time, taking a nonparametric

Bayesian approach is preferred, as it affords flexibility.

Griffiths and Ghahramani (2011) consider the setting of representing objects with an infinite

number of features and extend the nonparametric Bayesian approach to this case. They assume

objects are exchangeable and represent the sequence of features as an infinite binary vector

associated to each object, which will have a finite number on non-zero entries. They derive

a nonparametric prior for the matrix of features by taking the limit of a finite-dimensional

beta-Bernoulli model

zik | πk ∼ Bernoulli(πk)

πk | α ∼ Beta
( α
K
, 1
)
,

where the index k = 1 . . . ,K and zi = (zi1, . . . , ziK) is the feature vector associated to obser-

vation i. This induces a probability distribution on N ×K binary matrices Z = (zT1 , . . . , z
T
N )T .

Taking the limit as K −→ ∞ of the above model, noting the expected number of non-zero

entries in the matrix Z remains bounded above, the distribution converges to one over binary

matrices of N rows of infinite feature vectors.

Similar to how partitions of objects form equivalence classes when clustering, it is useful to

have equivalence classes of N ×∞ binary matrices Z. We define the left-ordered form of such

a matrix by ordering its columns from left to right by the magnitude of the binary number

expressed by that column, taking the first row as the most significant bit. Matrices Z with the

same left-ordered form are put in the same equivalence class [Z]. These equivalence classes are

in bijection with the equivalence classes under exchangeability of features. Adjusting for the

cardinality of each [Z], the distribution obtained by the infinite limit induces one over equivalence

classes (equation 14 in Griffiths and Ghahramani (2011) gives an explicit formula).

This distribution is also recovered by a stochastic process Griffiths and Ghahramani (2011)

call the “Indian buffet process”, by (a geographically adjusted) analogy with the Chinese restau-

rant process. The metaphor refers to the many Indian restaurants in London that have a seem-

ingly infinite number of dishes in their lunchtime buffets, which matches the infinite feature

vector in the model.

The description of the Indian buffet process is as follows. N customers sequentially enter

a restaurant with infinitely many dishes arranged in a line, which they sample starting from

the same end. The first customer samples Poisson(α) consecutive dishes, then stops. The ith

customer moves along the buffet, sampling any previously chosen dish k with probability mk/i,

where mk is the number of previous customers who sampled that dish. After running out of

previously sampled dishes, the customer samples Poisson(α/i) new dishes consecutively, then
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stops. While customers are not exchangeable under this process, the distribution it induces for

the left-ordered form equivalence classes has exactly the same form as the one for the infinite

model defined above.

It is also possible to define an exchangeable Indian buffet process. We define the history of

dish k at customer i by (z1k, . . . , zi−1,k). In the exchangeable Indian buffet process, the only

difference is that customer i makes a single decision for all Kh dishes with the same history h,

choosing Binomial(mh/i,Kh) of them, starting from the left.

The exchangeable Indian buffet process allows straightforward computation of marginals of

Z. As customers are exchangeable, we can make the ith object to correspond to the last customer

in the buffet, so the marginals are

P (zik = 1 | z−ik ) =
m−ik
N

.

If we additionally had data x and specified a likelihood f(x|Z), one might assume this expression

would allow us to perform inference via Gibbs sampling. Iteratively sampling from the marginals

P (zik = 1 | Z−ik,x) ∝
m−ik
N

f(x | Z),

however, does not result in a valid Markov chain, as the order in which variables are sampled

depends on the state of the chain. Regardless, Griffiths and Ghahramani (2011) successfully use

this heuristic Gibbs-like strategy in their numerical demonstrations.

An insightful look into the fundamentals of the Indian buffet process is given by Thibaux

and Jordan (2007). They establish that the Beta process is the underlying de Finetti mixing

distribution that induces the Indian buffet process, similar to how the Dirichlet process is the

underlying de Finetti mixing distribution for the Chinese restaurant process.

6 Conclusions and future work

This report aimed to provide insight on theoretical, modelling and computational aspects in

Bayesian nonparametrics. We have focused on three of the most relevant papers in the area, that

is the works of Neal (2000), Teh et al. (2006) and Griffiths and Ghahramani (2011). One common

theme is that models which represent observations in terms of a finite set of latent features can be

extended to more flexible, infinite-feature models, while still being able to perform approximate

inference.

We now turn to listing potential directions for future work in Bayesian nonparametrics, the

first of which is theoretical. Jordan (2011), in his poll of forty-eight eminent statisticians on open

problems in Bayesian statistics, places Bayesian nonparametrics as the fifth most important topic
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for research in the field. Frequentist evaluation of Bayesian nonparametric models is mentioned

as a common concern by many of the respondents, though the book of Ghosal and van der Vaart

(2017) partially reconciles this. Prior specification and identifiability are also listed as concerns,

in particular overcoming arbitrary hyperparameter specification.

Continuing on the theoretical side, there is a great interest in finding and cataloguing priors

for various classes of problems where Bayesian nonparametrics could be applied. Similar to

how Dirichlet processes are the go-to prior when performing clustering and Gaussian processes

the default prior when performing regression, a new prior on infinite-dimensional objects could

broaden the applicability of nonparametric Bayesian modelling.

From a modelling perspective, the strategy of taking the limit of a finite model could be

applied to give rise to all three of the nonparametric models considered Sections 3-5. Griffiths

and Ghahramani (2011) thus anticipate this could be successfully applied in other unsupervised

learning problems, with the open problem being finding the next impactful model derived in

such a way.

Finally, although increases in computational power have enabled inference when using Bayesian

nonparametrics, there is still a significant computational overhead compared to the paramet-

ric setting. From a computational perspective, there is therefore interest in finding new, more

efficient inference procedures. In cases where the number of observations is particularly large,

adapting cutting edge Monte Carlo methods designed for big data to the nonparametric setting

would be a promising direction for future work.
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