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Chapter 1

Introduction.
Throughout this paper, we explain the Theorems from Roberts and Zhao [14] and Berestycki, Brunet
and Shi [2]. We follow the structure of their proofs, so our arguments will be similar to theirs with
some extra explanation.

1.1 Increasing Paths on Regular Trees.

Definition 1.1 (Regular Tree). Fix α > 0. A regular n-ary tree T = (V,E) of height h where
n = ⌊αh⌋, is a connected acyclic graph, upon which a root vertex has n vertices connected to it, called
its children, of which it is called their parent. Then, each of those vertices has n children, this continues
h times, until the final children have no more children and are called leaves. To each of the edges in
the graph, attach a U [0, 1] uniform random variable.

Figure 1.1: The regular 2-ary tree formed when α = 2/3 and h = 3, with the U [0, 1] random variables
attached.

Definition 1.2 (Simple Path). We define a simple path along the regular tree to be an ordered
sequence of distinct vertices v0, v1, ..., vh where vi is a vertex of the tree for all i ∈ {1, ..., n} such that
v0 is the root of the tree, vh is a leaf, the edge {vi, vi+1} is an edge in the tree.

Definition 1.3 (Increasing Path). An increasing path on the regular tree is a simple path on which
the labels attached to the edges produced by the random variables are increasing along the path. An
increasing path is also called accessible or open.
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We are concerned with the probability that one of these paths exists. This is called accessibility
percolation by Nowak and Krug [12]; we will look at this not only on the regular tree but also on the
hypercube.

For fixed α > 0, we show that in the limit as h −→ ∞, the probability that there exists an increasing
path on the corresponding regular n-ary tree depends on the value of α and undergoes a phase transition
at α = 1/e, as highlighted by the following Theorem, which is the first major Theorem of the project.

Theorem 1.4. Suppose that n = ⌊αh⌋. As h −→ ∞,

P[There exists an increasing path] =

{
0 if α ⩽ 1/e,

1 if α > 1/e.
(1.1)

We will prove both cases in the Theorem. Nowak and Krug [12] proved the case when α ⩽ 1/e, and to
prove the case when α > 1/e, Roberts and Zhao [14] proved the following slightly stronger result on
the number of increasing paths. For any α > 1/e, there exists δ > 0 and η > 0 such that

P[There exist at least exp(δh) increasing paths] ⩾ 1− exp(−ηh). (1.2)

1.2 Motivation - Evolution is like a Path on a Tree.

The setup of increasing paths on regular trees is used to model evolution. We have a population of
organisms that reproduce asexually, and we are concerned with the fitness of a specific genotype as it
mutates. Firstly we should understand how the evolutionary process works; from Andrea, Rice and
Townsend [8], we know that evolution occurs through a ‘house of cards’ model, meaning that from
Hathaway [6], mutations ‘with large effects effectively reshuffle the genomic deck’ and this is a better
model than lots of mutations each resulting in a small change. It means that the fitness after each
mutation can be defined in an independently and identically distributed way. So we can initially assign
a minimal fitness to the gene and then, after each mutation, use a U [0, 1] random variable to assign a
new fitness to the gene, similar to the edges on the regular tree.

From Franke [4], we learn that a ‘mutational path is considered selectively accessible (or accessible for
short) if the fitness values encountered along it are monotonically increasing; thus, along such a path,
the population never encounters a decline in fitness.’ These selectively accessible paths are similar to
the increasing paths on the tree; in both cases, we are not interested in cases where the fitness/path
decreases.

The particular type of model we will relate our increasing paths on the tree to is referred to as the
strong selection weak mutation (SSWM) model from Gillespie [5]. Under this model, by Kimura [11],
it means that disadvantageous mutations are unable to replace the entire population, that is, we are
only concerned with increasing/accessible paths like in the tree. Roberts and Zhao [14] further justify
the use of this model.

1.3 Further Biological Motivation.

We explore a similar model that also models evolution but is slightly more complicated. The model
comes from Berestycki, Brunet and Shi [2]. Consider an organism that has a genome with L0 sites, each
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containing one of two possible alleles. Then, the state of the genome at any time can be encoded as a
series of L0 ones and zeros, where a 0 is present at position i if the genome contains the wild starting
allele at position i and a 1 at position i if the genome contains the mutated new allele at position i.
Therefore before any mutations have occurred the state of the genome is (0, 0, ..., 0), a vector of L0

zeros. As the organism evolves, the state of the genome moves through a path on the L-dimensional
hypercube, and at any point can be written as a point σ ∈ {0, 1}L0 .

We assume that no gene that has mutated will ever return to the original; that is to say, no 1 will
ever return to a 0. The genome evolves and moves along the edges of the L0-dimensional hypercube
from vertex to vertex, and to each vertex σ, we attach a fitness xσ. It is important to note here we
attach the fitness values to each specific node in such a way that two paths leading to the same node
σ will result in the same fitness at that node xσ. This was trivial in the case of our tree before because
there is only one possible path up to each vertex and therefore it did not matter whether we attached
the fitness values to the nodes or the edges. The fitness label attached to each vertex can be given
by a U [0, 1] uniform random variable, as in the case of the tree and is justified by the same reasoning
through the House of Cards model [8]. The L0-dimensional hypercube has 2L0−1L0 edges and since
this is finite, there must be a vertex with the greatest fitness, denoted σL, where L is the number of
1s in σL. We only take an interest in the shortest paths to this point, so we are interested in the sub
hypercube of dimension L. Figure 1.2 represents the 4-dimensional hypercube with the U [0, 1] random
variables attached to each vertex.

Figure 1.2: The 4-dimensional hypercube with the U [0, 1] random variables attached and the specific
value x(1,1,1,1) = 1. The * denotes that this value may be fixed, depending on the context.

We assign xσL = 1 and wish to know how many paths from σ0 = (0, 0, ..., 0) to the fittest type
σL = (1, 1, ..., 1) are there on which the attached labels are increasing. We call this number Θ. Again,
we call such paths accessible or open, motivated by [4] calling mutational paths like these selectively
accessible. We will prove some results both in the case where the starting value xσ0 is randomly picked
and where it is not.

1.4 The Irregular Tree.

Working with the L-dimensional hypercube can be complicated as two given paths may not be inde-
pendent after a certain number of edges. For example, two paths may share the same first k edges,
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then have different p edges in the middle and then share the same final L− k− p edges. This was not
possible on the tree because after two paths split, they could never intersect one another again and
share a common edge after the splitting. For this reason, we create a new tree that is similar to the
hypercube that can make computations easier.

Definition 1.5. We define the irregular L − tree, TL = (VL, EL), to be a connected acyclic graph
upon which the root vertex has L vertices (children) connected to it. Then, each of those L children
have L− 1 children. This continues until the final nodes have no more children and are called leaves.
To the root vertex attach a fixed number x, to the leaves attach the number 1, and to each of the other
vertices, we attach a U [0, 1] random variable.

Figure 1.3: The irregular tree for L = 3.

Attaching the random variables to the nodes is justified with similar biological motivation before,
i.e., motivated by the ’House of Cards’ model [8]. This tree is constructed to be very similar to the
hypercube. The final vertex of each path has fixed fitness 1 and both the L-dimensional hypercube
and this tree have L! possible paths through them. Again, we are particularly interested in directed
paths from the root to the leaf on which all of the labels are increasing. Again, motivated by [4] we
call these paths accessible, open, or increasing.

1.5 Main Results on the Hypercube and Irregular Tree.

In Chapter 3 we prove the next Theorem from [2] regarding Θ, the number of open paths on the tree.

Theorem 1.6. Fix X ⩾ 0; then when the root vertex of the irregular tree is assigned the value X/L,
we have that as L→ ∞, the random variable Θ/L converges in distribution to a standard exponential
random variable multiplied by e−X .

In Chapter 4 we will follow and explain the steps of the proof of the following Theorem on the number
of accessible paths Θ on the hypercube from [2]. However, we will ultimately show that the proof of
this Theorem contains a mistake that does not appear to be easily rectified.

Theorem 1.7. Fix X ⩾ 0; then when the starting node of the hypercube is assigned the value X/L,
we have that as L → ∞, the random variable Θ/L converges in distribution to the product of two
independent standard exponential random variables multiplied by e−X .
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Chapter 2

Increasing Paths on Regular Trees.
2.1 Notation - The Regular Tree.

To prove Theorem 1.4 we follow the proof given in [14] and liberate their notation too. Firstly, we
frequently use a double bound on Stirling’s approximation, given by the following Lemma.

Lemma 2.1. For n ⩾ 1,

2 <
n!√
n(ne )

n
< 3. (2.1)

Proof. From Robbins [13] we have for n ⩾ 1 that

n! = nn
√
2πne−nern , where rn satisfies

1

12n+ 1
< rn <

1

12n
. (2.2)

When solving the equation in (2.2) for ern and substituting it into the equality by noticing that e
1

12n+1

is bounded below by 1 and e
1

12n is bounded above by e1/12 we obtain the result. □

We define P to be the set of simple paths on the regular tree. Since each vertex has n children and the
tree has height h, |P | = nh. For u ∈ P , write u0, u1, ..., uh with ui an edge of the tree for all 0 ⩽ i ⩽ h.
We write X(u) = (X(u1), X(u2), ..., X(uh)) where X(ui) is the U [0, 1] label attached to the edge from
ui−1 to ui, for all 1 ⩽ i ⩽ h. We write n = αh throughout the paper and do not use the floor notation.

Definition 2.2. Let u, v ∈ P . We define a(u, v) to be the number of shared edges between the two
paths u and v before they diverge. That is,

a(u, v) := max{k | uk = vk}.

Note that since to paths u and v they share the same first a(u, v) edges, they share the same labels,
so X(uk) = X(vk) for k ⩽ a(u, v).

Definition 2.3. Define I to be the set of h-dimensional vectors with increasing components all with
a value in [0, 1], that is

I := {(x1, x2, ..., xh) ∈ [0, 1]h | x1 < x2 < ... < xh}.

Definition 2.4. Fix ϵ ∈ [0, 1). Define firstly Cϵ to be the set of vectors in [0, 1]h where each component
is greater than ϵ. That is,

Cϵ := {(x1, x2, ..., xh) ∈ [0, 1]h | xj ⩾ ϵ, 1 ⩽ j ⩽ h}.

Define Dϵ to be the set of vectors in [0, 1]h where each component xj is greater than ϵ+ (1− ϵ) j−1
h for

all 1 ⩽ j ⩽ h. That is

Dϵ :=
{
(x1, x2, ..., xh) ∈ [0, 1]h | xj ⩾ ϵ+ (1− ϵ)

(j − 1

h

)
, 1 ⩽ j ⩽ h

}
5



Figure 2.1: The regions with which the points in Cϵ and Dϵ can take.

These two regions are visualised in Figure 2.1. Note that for a path to be in Cϵ and Dϵ we do not
require the edge labels to be increasing, but we are interested in increasing paths so we will often look
at the intersection of I with Cϵ or Dϵ.

Definition 2.5. Define N to the number of increasing paths on the regular tree, so

N :=
∑
u∈P

1{X(u)∈I}.

Also, define Nϵ to be the number of increasing paths that also satisfy the condition to be in Dϵ, so

Nϵ :=
∑
u∈P

1{X(u)∈I∩Dϵ}.

2.2 Outline of the Proof of Theorem 1.4.

Firstly, we will prove the first case of the Theorem, when α ⩽ 1/e. We will do this by using the first
moment method on N . That is, we will prove that E[N ] → 0 as h → ∞. Then we can use Markov’s
Inequality from Probability Theory [1] with α = 1 to see that

P[N ⩾ 1] ⩽ E[N ].

From which we see that as h→ ∞, P[N ⩾ 1] → 0. Proving the first part of the Theorem.

To the second case of the Theorem, when α > 1/e, we want to use the second moment method to
give a lower bound on the probability that there exists an increasing path. However, when we use the
second moment method on N , the bound produced is not useful. Instead, we use the second moment
method on Nϵ. The use of Nϵ is justified in full later, but the key idea is that the second moment
method gives a good lower bound for P[N ⩾ 1].

We will show that
(α(1− ϵ)e)h

3h3/2
⩽ E[Nϵ] ⩽ E[N ].

We will then proceed to show that when α(1− ϵ) > 1 and h is large,

E[N2
ϵ ] ⩽ E[Nϵ] + E[Nϵ]

2 + c(α(1− ϵ)e)2h

for some constant c > 0.
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Then, by using the Paley-Zygmund Inequality we obtain a lower bound for P[Nϵ > exp(δh)], this lower
bound is 1 minus a constant times h−3 when h is sufficiently large. From here, we then use a technical
argument which revolves around consider the first 4 levels of the tree separately from the final h− 4.
Through this argument, we will obtain the result.

2.3 Proof of Theorem 1.4 - Case α ⩽ 1/e.

Recall that |P | = nh. Then we have that

E[N ] = E[
∑
p∈P

1{X(p)∈I}] = nhP[X(p) ∈ I] =
nh

h!
.

In the final equality we used the fact that the probability a path is increasing is 1/h!, since there are
h! orderings edges in each path and only one ordering is increasing.

Now, we apply Stirling’s approximation to see that

E[N ] =
nh

h!
∼ (αh)heh√

hhh
=

(αe)h√
h
.

If α ⩽ 1/e, then αe ⩽ 1 and since N is always non-negative, we can bound the expected number of
increasing paths above and below in such a way that using the Squeeze Theorem yields E[N ] → 0 as
h → ∞. Then using Markov’s Inequality [1] we have that P[N ⩾ 1] → 0, proving the Theorem 1.4 in
the case α ⩽ 1/e. □

2.4 Justification of the use of Nϵ.

To understand why we use Nϵ, we must first understand why using the second moment method for N
does not yield a useful lower bound. To use the second moment method and obtain a lower bound on
P[N ⩾ 1] we use a need to calculate E[N2],

E[N2] = E[(
∑
p∈P

1{X(p)∈I})
2]

= E[
∑
p∈P

∑
q∈P

1{X(p)∈I}1{X(q)∈I}]

=
∑
p,q∈P

E[1{X(p)∈I}1{X(q)∈I}]

=
∑
p,q∈P

E[1{X(p)∈I, X(q)∈I}]

=
∑
p,q∈P

P[X(p) ∈ I, X(q) ∈ I] (†),

where in the second equality we use that the square of the number of open paths is the number of
pairs of open paths. Now, let p = p0, p1, ..., ph and q = q0, q1, ..., qh be a pair of paths in P satisfying
k = a(p, q), this means they share the first k edges, and then diverge after this. We would want most
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Figure 2.2: An illustration of two increasing paths, increasing linearly like we would expect.

of the pairs of paths to follow the setup in Figure , because most increasing paths increase linearly.
However, this is not the case for pairs of paths. The probability that a pair of paths is increasing
depends heavily on the value of the label attached to the edge before diverging and a(p, q). Therefore,
for the aforementioned p and q, let X(pk) = ζ for some ζ > 0. Then since the first k labels must be
less than ζ and the final h− k vertices must be greater than ζ on both p and q we see that viewed as
a function of ζ,

P[p, q ∈ I] ∝ ζk(1− ζ)2(h−k).

Differentiating this function and setting it equal to 0 we find that the turning points of this function
are ζ = 0, ζ = 1, ζ = k

2h−k . The second derivative at ζ = k
2h−k is negative so this is a maximum.

Notice that ζ = k
2h−k is very small when h is large, which we will consider in this Theorem and is, in

fact, about twice as small as we would expect the label attached to the k’th edge of a single increasing
path to be.

As a result of the above, the pairs of paths that contribute the most in the double sum in (†) are those
that keep the labels small while the paths coincide and then have a lot of ’space’ to increase for the
rest of the path. Figure illustrates two such paths increasing in this way. However, it is unlikely that
a single increasing path follows a structure similar to this and the labels are more likely to increase
more linearly as in Figure . Using the second moment method we have that P[N ⩾ 1] ⩾ E[N ]2/E[N2].

Figure 2.3: An illustration of two increasing paths that are unlikely to occur individually but are likely
to be increasing as a pair, pairs of this type contribute the most to E[N2].

However, due to the large number of pairs of paths that follow the pattern in Figure 2.3, E[N2] is
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large, and so the RHS of this inequality is close to 0 and is therefore not a useful lower bound.

However, notice that for the reasons described above E[N2] counts many pairs of increasing paths that
are unlikely to occur individually, but are likely to occur as a pair, by removing these paths we can
form a better lower bound. So instead, fix ϵ > 0, and now we are only interested in paths that are
increasing and the j-th edge on the path to be greater than or equal to ϵ+ (1− ϵ)( j−1

h ), ∀j, that is to
say, we are only interested in paths in Nϵ.

This means that we only consider paths that are above the red line on Figure 2.4, with two example
paths shown. Notice that this solves the problem we had before, because now the labels on the shared

Figure 2.4: An illustration of the types of paths we will look at.

edges of the pair of paths are not allowed to stay small. Then, using a similar method as before and
noting that I ∩Dϵ ⊆ I, we have:

P[N ⩾ 1] ⩾ P[Nϵ ⩾ 1] ⩾
E[Nϵ]

2

E[N2
ϵ ]
.

This lower bound will not be as close to 0 as the previous, and now we have a good lower bound for
the probability that there exists an increasing path.

2.5 First Moment Bound on Nϵ.

Before we prove a lower bound on E[Nϵ] we require the following three Lemmas.

Lemma 2.6. Let U1, U2, ..., Uj be i.i.d U [0, 1] random variables. Then,

P
(
U1 ⩽ ... ⩽ Uj , U1 ⩾

1

j + 1
, ..., Uj ⩾

j

j + 1

)
=

1

(j + 1)!

Figure 2.5 is a visualisation of the event we are interested in calculating the probability of in the
Lemma. The dots with the line connecting them are a possible instance in which the event is satisfied,
highlighting the fact that the random variables have to be increasing. Proof of Lemma 2.6. Firstly,

let p denote the probability we are interested in, so

p = P
(
U1 ⩽ ... ⩽ Uj , U1 ⩾

1

j + 1
, ..., Uj ⩾

j

j + 1

)
.
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Figure 2.5: An illustration of the types of path we are looking at in Lemma 2.6.

Now define, for 2 ⩽ i ⩽ j,

Ii :=

∫ 1

j
j+1

∫ vj

j−1
j+1

...

∫ vi+1

i
j+1

( vi−1
i

(i− 1)!
−

vi−2
i

(j + 1)(i− 2)!

)
dvi...dvj−1dvj . (2.3)

Notice that

p =

∫ 1

j
j+1

∫ vj

j−1
j+1

...

∫ v2

1
j+1

1 dv1...dvj−1dvj

because the innermost integral is calculating the probability that U1 is greater than 1/(j +1) and less
than some value v2, then when integrating this over v2 between 2/(j+1) and v3 this is calculating the
probability that 1/(j + 1) ⩽ U1 ⩽ U2 and that U2 is greater than 2/(j + 1) and less than some value
v3, continuing this argument gives the desired probability. Computing the innermost integral, we see
that

p =

∫ 1

j
j+1

∫ vj

j−1
j+1

...

∫ v3

2
j+1

(
v2 −

1

(j + 1)

)
dv2...dvj−1dvj = I2.

Now by computing the innermost integral of (I - 6) for 2 ⩽ i ⩽ j−1, we can show that Ii = Ii+1. That
is,

Ii =

∫ 1

j
j+1

∫ vj

j−1
j+1

...

∫ vi+1

i
j+1

( vi−1
i

(i− 1)!
−

vi−2
i

(j + 1)(i− 2)!

)
dvi...dvj−1dvj

=

∫ 1

j
j+1

∫ vj

j−1
j+1

...

∫ vi+2

i+1
j+1

[vii
i!

−
vi−1
i

(j + 1)(i− 1)!

]vi+1

vi=
i

j+1

dvi+1...dvj−1dvj

=

∫ 1

j
j+1

∫ vj

j−1
j+1

...

∫ vi+1

i
j+1

(vii+1

i!
−

vi−1
i+1

(j + 1)(i− 1)!

)
− ii

(j + 1)ii!
+

ii−1

(j + 1)i(i− 1)!
dvi+1...dvj−1dvj

=

∫ 1

j
j+1

∫ vj

j−1
j+1

...

∫ vi+1

i
j+1

(vii+1

i!
−

vi−1
i+1

(j + 1)(i− 1)!

)
dvi+1...dvj−1dvj = Ii+1.

So we see that

p = I2 = I3 = · · · = Ij

=

∫ 1

j
j+1

( vj−1
j

(j − 1)!
−

vj−2
j

(j + 1)(j − 2)!

)
dvj =

[vjj
j!

−
vj−1
j

(j + 1)(j − 1)!

]1
vj=

j
j+1

=
1

j!
− 1

(j + 1)(j − 1)!
− jj

j!(j + 1)j
+

jj−1

(j − 1)!(j + 1)j
=

1

j!
− 1

(j + 1)(j − 1)!
=

1

(j + 1)!
.
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□

Lemma 2.7. Let ϵ ∈ [0, 1]. A uniform U [0, 1] random variable conditioned to be at least ϵ is a uniform
U [ϵ, 1] random variable.

Proof. Fix ϵ ∈ [0, 1]. Let U ∼ U [0, 1]. Note first that in particular for x ∈ [ϵ, 1] we have the probability
that U is less than x given that U is greater than ϵ is P[ϵ < U < x]/P[U > ϵ] = (x − ϵ)(1 − ϵ). So,
comparing CDFs gives the result. □

Lemma 2.8. Let ϵ ∈ [0, 1], j, h ∈ N with j < h. Let U ∼ U [0, 1] and U ϵ ∼ U [ϵ, 1], then

P
[
U ϵ ⩾ ϵ+ (1− ϵ)

(j − 1

h

)]
= P

[
U ⩾

j − 1

h

]
.

P roof. Using the CDF of a uniform random variable, we have that

P
[
U ϵ ⩾ ϵ+ (1− ϵ)

(j − 1

h

)]
= 1−

(
ϵ+ (1− ϵ)

(
j−1
h

))
− ϵ

1− ϵ
= 1− j − 1

h
= P

[
U ⩾

j − 1

h

]
.

□

Proposition 2.9.

E[Nϵ] ⩾
(α(1− ϵ)e)h

3h3/2
.

P roof . Let U = (U1, U2, ..., Uj) where Ui ∼ U [0, 1] for all i ∈ J := {1, ..., j}. Then

E[Nϵ] = E
[∑
p∈P

1{X(p)∈I∩Dϵ}

]
=
∑
p∈P

E[1{X(p)∈I∩Dϵ}] = nhP[U ∈ I ∩Dϵ].

Now, using Baye’s Theorem and noting that P[U ∈ Cϵ | U ∈ I∩Dϵ] = 1 since {U ∈ I∩Dϵ} ⊂ {U ∈ Cϵ},
we have that

E[Nϵ] = nhP[U ∈ I ∩Dϵ | U ∈ Cϵ]P[U ∈ Cϵ].

Now, let U ϵ = (U ϵ
1, U

ϵ
2, ..., U

ϵ
j ) where U

ϵ
i ∼ U [ϵ, 1] for all i ∈ J := {1, ..., j}. Then,

P[U ∈ I ∩Dϵ | U ∈ Cϵ] = P[U1 ⩽ ... ⩽ Uj , Uj ⩾ ϵ+ (1− ϵ)
(j − 1

h

)
∀j ∈ J | Uj ⩾ ϵ ∀j ∈ J ]

= P[U ϵ
1 ⩽ ... ⩽ U ϵ

j , U
ϵ
j ⩾ ϵ+ (1− ϵ)

(j − 1

h

)
∀j ∈ J ]

= P[U1 ⩽ ... ⩽ Uj , Uj ⩾
j − 1

h
∀j ∈ J ] = P[U ∈ I ∩D0],

where the second inequality we use Lemma 2.7 and in the third inequality we use Lemma 2.8. Using
the above, recalling that n = αh and noticing that P[U ∈ Cϵ] = (1 − ϵ)h because all h of the U [0, 1]
random variables must be bigger than ϵ, we obtain that

E[Nϵ] = (αh(1− ϵ))hP[U ∈ I ∩D0].

11



Now,

P[U ∈ I ∩D0] = P[U1 ⩽ 1/h]P[U1 ⩽ ... ⩽ Uj , Uj ⩾
j − 1

h
∀j ∈ J | U1 ⩽ 1/h]

+ P[U1 ⩾ 1/h]P[U1 ⩽ ... ⩽ Uj , Uj ⩾
j − 1

h
∀j ∈ J | U1 ⩾ 1/h]

⩾ P[U1 ⩽ 1/h]P[U2 ⩽ ... ⩽ Uj , Uj ⩾
j − 1

h
∀ 2 ⩽ j ⩽ h] =

1

h

1

h!
=

1

h(h!)
,

where in the second to last equality we used Lemma 2.6. Finally, using Lemma 2.1, the double bound
on Stirling’s formula, we have

E[Nϵ] = (αh(1− ϵ))hP[U ∈ I ∩D0] ⩾
(αh(1− ϵ)h

h(h!)
⩾

(αh(1− ϵ)e)h

3hh+3/2
⩾

(α(1− ϵ)e)h

3h3/2
.

□

2.6 Second Moment Bound on Nϵ.

Proposition 2.10. If α(1− ϵ)e > 1, then there exists some constant c > 0 such that

E[N2
ϵ ] ⩽ E[Nϵ] + E[Nϵ]

2 + c(α(1− ϵ)e)2h.

P roof . Firstly, using the fact that the square of the number of increasing paths in Dϵ is the number
of pairs of increasing paths in Dϵ, we have that

N2
ϵ =

[∑
u∈P

1{X(u)∈I}

]2
=
∑
u∈P

∑
v∈P

1{X(u)∈I∩Dϵ}1{X(v)∈I∩Dϵ} =
∑

u,v∈P
1{X(u),X(v)∈I∩Dϵ}.

Note that one of the defining properties of a pair of increasing paths is the number of edges shared before
they diverge. In fact, the sets A0 := {(u, v) ∈ P × P | a(u, v) = 0}, A1 := {(u, v) ∈ P × P | a(u, v) =
1}, ...,Ah := {(u, v) ∈ P × P | a(u, v) = h} form a partition of A := {(u, v) ∈ P × P}. So, define N2

ϵ (k)
to be the number of increasing paths in Dϵ such that they share the first k edges, that is

N2
ϵ (k) :=

∑
(u,v)∈Ak

1{X(u),X(v)∈I∩Dϵ} =
∑

u,v∈P,
a(u,v)=k

1{X(u),X(v)∈I∩Dϵ}.

Then, since A is a disjoint union of A1, A2, ..., Ah we have

N2
ϵ =

∑
(u,v)∈A

1{X(u),X(v)∈I∩Dϵ} =
h∑

k=0

N2
ϵ (k).

Note that N2
ϵ (h) = Nϵ, since we are simply counting all the pairs of paths that are identical.

Now, Roberts and Zhao [14] claim that E[N2
ϵ (0)] = E[Nϵ]

2. This is a slight inaccuracy, but it does not
affect the outcome of the proof because all we require is that E[N2

ϵ (0)] ⩽ E[Nϵ]
2, which we now show

12



to be true. Taking the expectation of N2
ϵ (0) and noting that if a(u, v) = 0, then the paths are disjoint,

E[N2
ϵ (0)] = E[

∑
u,v∈P,

a(u,v)=0

1{X(u),X(v)∈I∩Dϵ}]

= E[
∑
u∈P

1{X(u)∈I∩Dϵ}
∑
v∈P,

a(u,v)=0

1{X(v)∈I∩Dϵ}]

=
∑
u∈P

∑
v∈P,

a(u,v)=0

P[X(u), X(v) ∈ I ∩Dϵ]

=
∑
u∈P

∑
u,v∈P,

a(u,v)=0

P[X(u) ∈ I ∩Dϵ]P[X(v) ∈ I ∩Dϵ]

⩽
∑
u∈P

∑
v∈P

P[X(u) ∈ I ∩Dϵ]P[X(v) ∈ I ∩Dϵ] = E[Nϵ]
2.

Following the proof in [14], let U = (U1, ..., Uh) and V = (V1, ..., Vh) each be a sequence of i.i.d U [0, 1]
random variables such that Uj = Vj for all j ⩽ k and Uj and Vj are independent for j > k, so U and
V are like two paths which share the same edges up to level k.

There are nk possible paths up to the point where the two paths U and V deviate. Then there are
n(n − 1) choices for their next step that must be different and then there are (nh−k−1)2 = n2h−2k−2

possible paths from there to the leaf. So we have for k = 2, ..., h− 1,

E[N2
ϵ (k)] = nkn(n− 1)n2h−2k−2P[U, V ∈ I ∩Dϵ]

=

(
n− 1

n

)
n2h−kP[U, V ∈ I ∩Dϵ|U, V ∈ Cϵ]P[U, V ∈ Cϵ]

=

(
n− 1

n

)
(αh)2h−k(1− ϵ)2h−kP[U, V ∈ I ∩D0], (††)

where in the final equality we used Lemma 2.8. We now investigate P[U, V ∈ I∩D0]. This is equivalent
to the following integral,

P[U, V ∈ I ∩D0] =

∫ 1

k−1
h

P[U, V ∈ I ∩D0, Uk ∈ dx]

=

∫ 1

k−1
h

P[U, V ∈ I ∩D0|Uk = x]P[Uk ∈ dx]

=

∫ 1

k−1
h

P[U, V ∈ I ∩D0|Uk = x]dx.

Now, within the integral we need the first U1, ..., Uk−1, that both U and V share, to be in order and
less than x. We also require that Uk+1, ..., Uh and Vk+1, ..., Vh are in order and greater than x. We also
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relax the condition that U, V ∈ D0, so we integrate over more possible paths and obtain the inequality,

P[U, V ∈ I ∩D0] =

∫ 1

k−1
h

P[U, V ∈ I ∩D0|Uk = x]dx

⩽
∫ 1

k−1
h

P[U1 < U2 < ... < Uk−1 < x]P[x < Uk+1 < Uk+2 < ... < Uh]

· P[x < Vk+1 < Vk+2 < ... < Vh]dx

=

∫ 1

k−1
h

P[U1 < U2 < ... < Uk−1 < x]P[x < Uk+1 < Uk+2 < ... < Uh]
2dx.

Since x ∈ [0, 1], probability that the first k − 1 U [0, 1] random variables are less than x is xk−1. Only
1 of the (k − 1)! possible orderings of these random variables is in ascending order so,

P(U1 < U2 < ... < Uk−1 < x) =
xk−1

(k − 1)!
. (2.4)

Similarly, the probability that the last h− k U [0, 1] random variables are greater than x is (1− x)h−k.
There are (h − k)! possible orderings of these random variables and only 1 is in ascending order, so
P(x < Uk+1 < Uk+2 < ... < Uh)

2 = x2h−2k/(h− k)!. We can substitute this probability and (2.4) into
the integral to obtain,∫ 1

k−1
h

P(U1 < U2 < ... < Uk−1 < x)P(x < Uk+1 < Uk+2 < ... < Uh)
2dx

=

∫ 1

k−1
h

xk−1

(k − 1)!

(1− x)2h−2k

(h− k)!
dx.

Now we define the function f(x) := xk−1(1− x)2h−2k and investigate its properties. Firstly, see that

f ′(x) = (k − 1)xk−2(1− x)2h−2k − (2h− 2k)xk+1(1− x)2h−2k−1.

Setting this equal to 0 and solving for x yields the turning points x = 0, x = 1, x = (k−1)/(2h−k+1).
Verifying that the second derivative is negative at x = (k − 1)/(2h− k + 1) we see that this is indeed
a maximum. In particular, for x ∈ [(k − 1)/(2h − k + 1), 1], f(x) is a decreasing function. So since
(k − 1)/(2h− k + 1) < (k − 1)/h we have that,∫ 1

k−1
h

xk−1

(k − 1)!

(1− x)2h−2k

(h− k)!
dx ⩽

(
1− k − 1

h

)
((k − 1)/h)k−1

(k − 1)!

((h− k + 1)/h)2h−2k

(h− k)!2

⩽
((k − 1)/h)k−1

(k − 1)!

((h− k + 1)/h)2h−2k

(h− k)!2
.

Now, combining this with (††) we see that

E[N2
ϵ (k)] =

(
n− 1

n

)
(αh(1− ϵ))2h−k ((k − 1)/h)k−1

(k − 1)!

((h− k + 1)/h)2h−2k

(h− k)!2

⩽ (αh(1− ϵ))2h−k ((k − 1)/h)k−1

(k − 1)!

((h− k + 1)/h)2h−2k

(h− k)!2
.
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By bounding the two fractions in the inequality above using Lemma 2.1 Stirling’s double bound. We
have that for k = 2, ..., h− 1,

E[N2
ϵ (k)] ⩽ (αh(1− ϵ))2h−k ((k − 1)/h)k−1

(k − 1)!

((h− k + 1)/h)2h−2k

(h− k)!2

⩽ (α(1− ϵ))2h−kh2h−k ek−1h1−k

2(k − 1)1/2
e2h−2k+2h−2h+2k

4(h− k + 1)
=
e

8

(α(1− ϵ)e)2h−kh

(k − 1)1/2(h− k + 1)
.

By using Stirling’s Approximation again, for the case k = 1 we have

E[N2
ϵ (1)] ⩽ (αh(1− ϵ))2h−1 1

(h− 1)!2
= α2h−1h2h−1 (1− ϵ)2h−1

(h− 1)!2
⩽
e

4
(α(1− ϵ)e)2h−1.

Combining all of the above we see that

E[N2
ϵ ] ⩽ E[Nϵ] + E[Nϵ]

2 +
e

4
(α(1− ϵ)e)2h−1 +

h−1∑
k=2

e

8
.

(α(1− ϵ)e)2h−kh

(k − 1)(1/2)(h− k − 1)

= E[Nϵ] + E[Nϵ]
2 + (α(1− ϵ)e)2h

(
1

4α(1− ϵ)
+

h−1∑
k=2

e

8
.

h

(k − 1)(1/2)(h− k − 1)(α(1− ϵ)e)k

)
.

We wish to show that what is contained in the large brackets is finite. Clearly, 1/(4α(1− ϵ)) is finite.
So now we consider the sum and bound it in the following way,

h−1∑
k=2

e

8
.

h

(k − 1)(1/2)(h− k − 1)(α(1− ϵ)e)k
⩽

h−1∑
k=2

e

8
.

h

(α(1− ϵ)e)k
.

Now, if α(1 − ϵ)e > 1, this is a geometric sum with common ratio r = 1/(α(1 − ϵ)e). By defining

c := 1
4α(1−ϵ) +

he
8 r

2
(
1−rh−2

1−r

)
, we see that when α(1− ϵ)e > 1,

E[N2
ϵ ] ⩽ E[Nϵ] + E[Nϵ]

2 + c(α(1− ϵ)e)2h.

□

2.7 A Bound on P[Nϵ ⩾ e−δh] and Completing the Proof.

From Kahane [9] we have the Paley-Zygmund Inequality, that is, let X > 0 be a random variable with
finite variance and if λ ∈ [0, 1] then,

P[X > λE[X]] ⩾ (1− λ)2
E[X]2

E[X2]
.

We wish to use Paley-Zygmund Inequality on Nϵ with λ = 1/2, so first we need to show that Nϵ has
finite variance to satisfy the conditions of the Inequality. Using the standard formula for the variance
of a random variable and Proposition 2.10 we readily see that

Var[Nϵ] = E[N2
ϵ ]− E[Nϵ]

2 ⩽ E[Nϵ] + c(α(1− ϵ)e)2h ⩽ E[N ] + c(α(1− ϵ)e)2h ⩽
nh

h!
+ c(α(1− ϵ)e)2h,
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which is finite for finite h as required.

We are now ready to use the Paley-Zygmund Inequality. To satisfy one of the conditions in proof
of Proposition 2.10 we choose ϵ ∈ (0, 1) such that α(1 − ϵ)e > 1. Then using the Paley-Zygmund
Inequality with λ = 1/2,

P
[
Nϵ ⩾

E[Nϵ]

2

]
⩾ (1− 1/2)2

E[Nϵ]
2

E[N2
ϵ ]

⩾
E[Nϵ]

2

4E[N2
ϵ ]
. (2.5)

Now let δ ∈ (0, log(α(1 − ϵ)e)), we aim to show that E[Nϵ]/2 ⩾ eδh for sufficiently large h. Now, for
some η > 0 we have that,

eδh = ehlog(α(1−ϵ)e)−ηh = ehlog(α(1−ϵ)e)e−ηh = (α(1− ϵ)e)he−ηh.

Now using Proposition 2.9 and using that (eηh/6h3/2) ⩾ 1 for sufficiently large h,

E[Nϵ]

2
⩾

(α(1− ϵ)e)h

6h3/2
=
eδheηh

6h3/2
= eδh

(
eηh

6h3/2

)
⩾ eδh,

Combining this with (2.5) we see that

P
[
Nϵ ⩾ eδh

]
⩾

E[Nϵ]
2

4E[N2
ϵ ]
. (2.6)

Using Proposition 2.9 we can see that for large h, E[Nϵ] ⩾ (α(1−ϵ)e)h

3h3/2 > 1. Combining this with
Proposition 2.10 we see that,

E[N2
ϵ ] ⩽ E[Nϵ] + E[Nϵ]

2 + c(3h3/2E[Nϵ])
2 = E[Nϵ] + E[Nϵ]

2 + 9ch3E[Nϵ]
2 ⩽ (9c+ 2)h3E[Nϵ]

2.

By defining c′ := 9c+ 2 we have that E[N2
ϵ ] ⩽ c′h3E[Nϵ]

2. Therefore,

P
[
Nϵ ⩾ eδh

]
⩾

1

4c′h3
. (2.7)

2.7.1 Separating the Tree into 2 Segments.

We need a bound on the right hand side of (2.7) that goes to 1 in the limit as h → ∞ to show that
the desired probability tends to 1. To do this, we will split the tree into 2 segments, the first 4 levels
of the tree and the final h− 4 levels.

There are ≍ n4 increasing paths from the root to level 4 where each label is less than ϵ. To see why
this is true, let p1, p2, ..., pn4 be the n4 paths from the root at level 4 and whether or not a path pi is
increasing is bernoulli distributed, with distribution Vi ∼ Bernoulli(ϵ4/4!) for all i ∈ {1, ..., n4}. These
random variables are not independent since many of the paths are overlapping. Therefore we cannot
use the law of large numbers right away.

However, seeing that for all i, j ∈ {1, ..., n4}, E[Vi] = ϵ4/4!, Cov(Vi, Vj) ⩽ 1 = 1|i−j| and defining

Sn4 :=
∑n4

i=1 Vi the number of increasing paths from the root to level 4, we are able to apply Wolpert
[18] to Sn4 and use the Weak Law of Large Numbers despite the dependence on the paths to obtain

lim
n→∞

P

[∣∣∣Sn4

n4
− E[Vi]

∣∣∣ > δ

]
= 0, (2.8)
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which implies that with high probability, there are ≍ n4 increasing paths from the root to level 4
where each random variable is less than ϵ. For every vertex on level 4 there are nh−4 paths to the
leaf of length h − 4 since we are looking at the regular n-ary subtree of length h − 4. By defining
C := 1/(4c′ + 1) and using (2.7) we see that

C
1

h3
⩽ P

[
Nϵ ⩾ eδh

]
⩽

1

h3
, (2.9)

that is to say, with probability Θ(h−3) lots of the nh−4 paths in the subtree are in I ∩Dϵ. Thus, the
probability there are no paths on the subtree in I ∩ Dϵ looks like, (1 − h3). So the probability that
there are no increasing paths on any of the ∼ n4 subtrees is like up to constants, (1− h−3)n

4
.

Figure 2.6: An illustration of the paths we are considering, showing how the first 4 levels have labels
less than ϵ and the final h− 4 levels having labels greater than ϵ, and the entire path is increasing.

2.7.2 Subpaths From the Root to Level 4.

To get an exponentially small bound on probability that there are n4 increasing paths from the root
to level 4 Roberts and Zhao use a different technique to that described previously using Wolpert [18].
Instead, they control the random variables more strongly by forcing the random variables on each edge
into a specific range depending on their edge level and using an appropriate Chernoff bound and taking
care of the dependence of the paths by considering the paths level by level, they are able to show the
stronger condition. To consider the subpaths v from the root to level 4 we consider levels in turn by
noting that the number of open paths up to level j is dependent on the number of open paths up to
level j − 1. In fact, we consider a stronger condition than the paths just being in I ∩Dϵ.

Let Pj denote the set of simple paths from the root to level j. Now, for j ⩽ 4 define the set,

Mj := {v ∈ Pj | X(vi) ∈ [(i− 1)ϵ/4, iϵ/4), ∀i ∈ {1, ..., j}}.

One such path is shown in Figure 2.7, where the values of the X(vi) are in the correct intervals for all
i ∈ {1, ..., 4}. Now, there are n possible paths from the root to level 1 where the edge has a label that

is < ϵ/4, so #M1 =
n∑

i=1
Zi where Zi are i.i.d Bernoulli random variables with parameter ϵ/4, for all

i ∈ {1, ..., n}.

17



Figure 2.7: A visualisation of the type of paths in M4.

Again, for Mj with 2 ⩽ j ⩽ 4, conditioning on that #Mj−1 ⩾ k we have #Mj ⩾
kn∑
i=1

Zi where Zi are

again i.i.d Bernoulli random variables with parameter ϵ/4. From Tsun [17] with δ = 1/2 we obtain the
following Lower Tail Chernoff Bound.

Lemma 2.11. Let Z1, ..., Zr be independent Bernoulli random variables and define Z :=
r∑

i=1
Zi. Let

δ ∈ (0, 1). Then,

P(Z ⩽
E[Z]
2

) ⩽ exp

(
−E[Z]

8

)
. (2.10)

The proof is omitted here for space constraints but can be found in [17]. Using this we can prove the
following Lemma.

Lemma 2.12.

P(#M4 ⩽ (nϵ/8)4) ⩽ 4exp(−nϵ4/16384).

P roof. Due to space constraints we give a sketch proof. Using Lemma 2.11 to show that for each i ∈
{1, ..., 4} we have that P(#Mi ⩽ (nϵ/8)i | #Mi−1 > (nϵ/8i−1) ⩽ exp

(
−n(ϵ/8)4

4

)
, where the conditioning

is not present for the case i = 1. Summing each of these bounds gives the result. □

To complete the proof of Theorem 1.4 note that

P(N ⩽ exp(δh)) = P(N ⩽ exp(δh) ∩#M4 ⩽ (nϵ/8)4) + P(N ⩽ exp(δh) ∩#M4 > (nϵ/8)4)

⩽ P(#M4 ⩽ (nϵ/8)4) + P(N ⩽ exp(δh), #M4 > (nϵ/8)4).

Let u ∈M4, then the first 4 labels in u are increasing and less than ϵ and consider a subtree of height
h − 4 that is rooted at u4. Now, Nϵ ⩽ N , so for N ⩽ eδh, there must be no more than eδh paths in
this subtree that are also in Nϵ. However, we know from (2.7) that since n/(h − 4) ⩾ n/h = α, the
probability of this event is at most 1−Kh−3 for some constant K > 0. Combining this with Lemma
2.12, noting that when #M4 > (nϵ/8)4, for N ⩽ exp(δh) this event must happen at least (nϵ/8)4 times
and using the inequality 1 + x ⩽ ex, we have,

P(N ⩽ exp(δh)) ⩽ 4exp(−nϵ4/16384) + (1− c′h−3)(nϵ/8)
4

⩽ 4exp(−nϵ4/16384) + exp(−c′h−3(nϵ/8)4).

Then for sufficiently small η > 0 and recalling that n = αh we obtain

P(N ⩽ exp(δh)) ⩽ 4exp(−(αϵ4/16384)h) + exp(−c′(αϵ/8)4h) ⩽ exp(−ηh).

□
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Chapter 3

Accessible Paths on the Irregular Tree.
Throughout this Chapter we look at the irregular tree. We use the notation from [2] and also the
structure/arguments in their proofs throughout the rest of the paper.

3.1 Notation on the Irregular Tree and Hypercube.

From now on when we refer to ‘the tree’ we are referring to the irregular tree, also we let Ex[·], Px[·]
and Varx[·] denote the expectation and probability of an event and the variance of a random variable
where the root value of the irregular tree/hypercube is x. We also denote

E∗[·] =
∫ 1

0
Ex[·]dx, P∗[·] =

∫ 1

0
Px[·]dx, Var∗[·]

to be the expectation and probability of an event and the variance of a random variable where the root
value of the irregular tree/hypercube is given by a U [0, 1] random variable.

Proposition 3.1. On the hypercube and tree,

Ex[Θ] = L(1− x)L, E∗[Θ] = 1, lim
L→∞

1

L
Var∗[Θ] = 1. (3.1)

On the tree,

lim
L→∞

EX/L[Θ/L] = e−X , lim
L→∞

1

L
VarX/L[Θ/L] = e−2X . (3.2)

On the hypercube,

lim
L→∞

EX/L[Θ/L] = e−X , lim
L→∞

1

L
VarX/L[Θ/L] = 3e−2X . (3.3)

Proof . All of the variance results are proven in Chapter 4. Now, note that the first part of (3.1)
follows from the fact that there are L! possible paths along the tree/hypercube and the probability
that a path is increasing is (1−x)L−1/(L− 1)!. Integrating this between 0 and 1 gives the second part
of (3.1).

Next, the first part of (3.2) follows from the linearity of expectation and using the first part of (3.1).
The same is true for the first part of (3.3). □

3.2 A Theorem Given Starting value x = (lnL+X)/L.

Theorem 3.2. On the irregular tree, when the starting value is x = (lnL+X)/L we have,

lim
L→∞

E
lnL+X

L (Θ) = e−X , lim
L→∞

V ar
lnL+X

L (Θ) = e−2X + e−X . (3.4)
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When the starting value x is chosen at random uniformly in [0, 1], the probability of having no open
path goes to 1 as L→ ∞ and,

P∗(Θ ⩾ 1) ∼ lnL

L
as L→ ∞. (3.5)

Proof of Theorem 3.2. To show (3.4) we first use the result from (prop) to see that,

E
lnL+X

L (Θ) = L
(
1− lnL+X

L

)L−1
.

We will bound L(1− (lnL+X)/L)L above and below and then use the Squeeze Theorem from Sohrab
[15]. Using the inequality 1− x ⩽ e−x for all x ∈ R we see that

L
(
1− lnL+X

L

)L
⩽ Le−(lnL+X) = e−X .

We use the inequality 1 − x ⩾ e−x−x2
, for all x ∈ [0, 1/2). By noticing that lnL+X

L ∈ [0, 1/2) for all
L ⩾ 1 we have,

L
(
1− lnL+X

L

)L
⩾ L(e−

lnL+X
L

−( lnL+X
L

)2)L = Le−lnL−X− (lnL+X)2

L = e−Xe−
(lnL+X)2

L .

Since e−
(lnL+X)2

L → 1 as L→ ∞, (3.4) follows from (3.1) and the Squeeze Theorem. The result for the
bound on the variance is obtained in Chapter 4 of variance results.

Now we prove equation (3.5). Due to space constraints, we explain every step and give details for some
of them. First using Markov’s Inequality we know Px(Θ ⩾ 1) ⩽ Ex(Θ) and hence

Px(Θ ⩾ 1) ⩽ min{1, L(1− x)L−1}.

Note that, P∗(Θ ⩾ 1) =
∫ 1
0 Px(Θ ⩾ 1) dx. To compute this, we split the integral at the point x0 where

min{1, L(1− x)L−1} transitions from being 1 to L(1− x)L−1. Then, x0 = 1− exp(−ln(L)
L−1 ) and

P∗(Θ ⩾ 1)

∫ x0

0
1 dx+

∫ 1

x0

L(1− x)L−1 dx = 1− exp
(−ln(L)

L− 1

)
+ exp

(−ln(L)

L− 1

)
=

lnL

L
+O(1/L)

with the final equality coming from the asymptotic expansion of e−x. We have found an upper bound;
next we find a lower bound. Let f : R → R go to ∞ as L does, but such that f(L) ≪ ln(L) and
f(L) < ln(L). It suffices to show that,

lim
L→∞

P
ln(L)−f(L)

L (Θ ⩾ 1) = 1 (3.6)

because

P∗(Θ ⩾ 1) ⩾
∫ ln(L)−f(L)

L

0
Px(Θ ⩾ 1) dx ⩾

ln(L)− f(L)

L
P

ln(L)−f(L)
L (Θ ⩾ 1),

where in the last inequality we used that x 7→ P∗(Θ ⩾ 1) is a non decreasing function. If the above is
true, then combining it with (3) we obtain the result.

Consider the tree starting at x = ln(L)−f(L)
L and let M be the number of nodes at the first level with a

value between x and ln(L)
L . Since there are L nodes and each has a probability of f(L)

L of being between

x and ln(L)
L , M follows a binomial distribution, M ∼ Bin(L, f(L)L ).
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Conditioning on the value of M we see that,

P(Θ = 0 |M = m) ⩽ P(No open paths through them specific nodes).

Summing over all m we obtain,

P
ln(L)−f(L)

L (Θ = 0) ⩽
L∑

m=0

(
L

m

)(f(L)
L

)m(
1− f(L)

L

)L−m
[
P

ln(L)
L

;L−1(Θ = 0)

]m
, (3.7)

where we used that, for x ⩽ ln(L)/L, Px(Θ = 0) ⩽ P
ln(L)
L (Θ = 0), since if the starting value is smaller,

there is a greater probability of there existing an open path. The notation P
ln(L)
L

;L−1(Θ = 0) means
we are considering a tree of size L − 1 not L. To sum the equation (4), we use the binomial formula

from Spivak [16], by taking a = f(L)
L P

ln(L)
L

;L−1(Θ = 0), b = 1− f(L)
L and n = L we obtain,

L∑
m=0

(
L

m

)(f(L)
L

)m(
1− f(L)

L

)L−m[
P

ln(L)
L

;L−1(Θ = 0)
]m

=
(f(L)

L
P

ln(L)
L

;L−1(Θ = 0) + 1− f(L)

L

)L
=

(
1− (1− P

ln(L)
L

;L−1(Θ = 0))
f(L)

L

)L
.

So,

P
ln(L)−f(L)

L (Θ = 0) ⩽
(
1− (1− P

ln(L)
L

;L−1(Θ = 0))
f(L)

L

)L
.

Applying the Cauchy-Schwartz Inequality [1] to Θ and 1(Θ ⩾ 1) to see that

E[Θ1(Θ ⩾ 1)]2 ⩽ E[Θ2]E[1(Θ ⩾ 1)2],

so E[Θ]2 ⩽ E[Θ2]P(Θ ⩾ 1). Therefore, using this and taking X = 0 in (3.4),

P
lnL
L (Θ ⩾ 1) ⩾

E
lnL
L [Θ2]

E
lnL
L [Θ]2

L→∞−−−−→ 1

3
.

This means that P
lnL
L

;L−1(Θ ⩾ 1) ⩾ 0.33 for sufficiently large L and again for sufficiently large L we
have

P
lnL
L

;L−1(Θ ⩾ 1) ⩽
(
1− P

ln(L)
L

;L−1(Θ ⩾ 1))
f(L)

L

)L
⩽
(
1− 0.33

f(L)

L

)L
,

which, as L→ ∞, goes to 0 since f(L) → ∞, as required. □

3.3 Proof of Theorem 1.6.

To prove this Theorem, we start with a definition.

Definition 3.3. Consider the irregular tree with a starting value x > 0. We define the generating
function G of Θ to be:

G(λ, x, L) := Ex(e−λΘ). (3.8)
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Note that although the right-hand-side of (3.8) does not contain L, G(λ, x, L) does depend on L
implicitly because that determines the height of the irregular tree, which will affect the possible values
of Θ. From this definition, we have the following proposition.

Proposition 3.4. Fix X ≥ 0 and consider a tree with a starting value x = X/L. We have a recursive
formula for G(λ, x, L), given by

G(λ, x, L) =
[
x+

∫ 1

x
G(λ, y, L− 1)dy

]L
, initialised by G(λ, x, 1) = e−λ. (3.9)

Proof . We first prove the initialisation of (3.9). We readily see that

G(λ, x, 1) = EX(e−λΘ) =
1∑

i=0

ie−λiPX [Θ = i] = e−λ,

where in the last equality we used that the sum is equal to 1 because we are summing over all the
probabilities of all the possible values of Θ.

Now we look at the general case for L ⩾ 1 of (3.9). We do this by decomposing over level 1. Let σ be
one of the L nodes at level 1 and let Θ(σ) be the number of open paths passing through the node σ,
since the nodes are independent, we have

G(λ, x, L) = [Ex(e−λΘ(σ))]L. (3.10)

Let xσ be the value attached to the node σ. To compute the above there are 2 cases to consider.
Firstly, xσ < x with probability x, and on this event, Θ(σ) = 0 because no open path can pass through
this, so it contributes xe−λΘ(σ) = xe−λ0 = x to the expectation.

Secondly, let y ∈ [x, 1], then xσ ∈ (y, y+dy) with probability dy. Since this means xσ > x, it is possible
for an open path to pass through σ. After vertex σ there is a subtree with root σ, height L− 1 and on
this subtree the number of open paths has generating function G(λ, y, L− 1). Hence, this contributes∫ 1
x dyG(λ, y, L− 1) to the expectation. Combining both of these cases we see

G(λ, x, L) =
[
xEx[e−λ0] +

∫ 1

x
G(λ, y, L− 1)dy

]L
=
[
x+

∫ 1

x
G(λ, y, L− 1)dy

]L
. (3.11)

Due to the structure of the tree, the number of levels and the size of each level increase together, so
taking limits to find the limiting distribution from this is difficult.

Instead, we will assume that the information of the first k levels of the tree is known and for the later
levels we use the law of large numbers. To this end, we begin with the following definition.

Definition 3.5. Let Fk be the available information up to level k and define Θk to be the expectation
of Θ given Fk, that is

Θk := E(Θ | Fk). (3.12)

So Θk is the expected value of Θ given the knowledge of the first k levels. For k < L we have,

Θk =
∑
|σ|=k

1{σ open}(L− k)(1− xσ)
L−k−1.

To explain this expression, note that since we have all the information up to level k, the event that a
path up to a node σ at level k denoted {σ open} is an F|σ|-measurable event. Taking the indicator of
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this event determines whether a possible path through this node along the entire tree could be open.
Then we multiply this indicator by (L − k)(1 − xσ)

L−k−1, the expected number of paths along the
subtree of height L − k with starting value xσ at σ, derived in the same way as (3.11). Then we
sum over all nodes at level k to obtain the expected number of open paths through the tree, given
knowledge up to level k.

If k is small, the number of possible paths up to level k is small so the number of open paths up to
level k is small so there is little information given by Fk, therefore the variance of Θ given Fk is large
as Θ will not necessarily be close to Θk.

If k is large, there is a lot of information given by Fk, that is, there are many open paths up to level k
and many of those paths will be open throughout the entire tree since k is large, that is to say, by the
Law of Large Numbers, the variance of Θ given Fk is small, and therefore Θk is a good approximation
for Θ.

Note that the number of nodes at level k is L!/(L−k)! and if σ′ is a node at level k then P(σ′ is open) =
1/k!. Hence, the expected number of open paths is

(
L
k

)
. So we see that since L is much larger than

k, as we increase k, the expected number of open paths increases and so by the previously mentioned
statement, Θk becomes a better approximation for Θ as k increases. Looking at Θk/L with starting
value X/L, we can take the limit as L → ∞ for fixed k and then take the limit as k → ∞ to ensure
that k is large but still smaller than L such that the expected number of open paths at level k is high.
The proof consists of 2 parts and involves the idea of taking 2 limits, as explained previously.

Part 1) If X
L is the starting value of the tree then we show that Θ

L for L large has the same distribution

as Θk
L for L large and then for k large. That is:

lim
L→∞

P
X
L

(Θ
L

⩽ z
)
= lim

k→∞
lim
L→∞

P
X
L

(Θk

L
⩽ z
)
. (3.13)

Part 2) Construct a new generating function similar to the one previously defined to find the distribu-
tion of Θk

L as L→ ∞ and then k → ∞. By comparing this to previously known generating functions,
we see this follows an exponential law.

3.3.1 Proof of Part 1.

Due to space constraints, we only give a sketch proof here. We fix δ > 0 and by considering the cases
Θk
L ⩽ z ± δ and Θk

L > z ± δ we obtain the following inequality,

1
(Θk

L
⩽ z − δ | Fk

)
+ P

(Θ−Θk

L
⩾ δ | Fk

)
⩽ P

(Θ
L

⩽ z | Fk

)
⩽ 1

(Θk

L
⩽ z + δ | Fk

)
+ P

(Θ−Θk

L
⩾ δ | Fk

)
. (3.14)

Now using Chebyshev’s Inequality from Probability Theory [1] on the random variable Θ given Fk we
see that

P
( |Θ−Θk|

L
⩾ δ | Fk

)
⩽

Var(Θ|Fk)

L2δ2
. (3.15)

Substituting this into (3.14) and taking the expectation over Fk yields

P
X
L

(Θk

L
⩽ z − δ

)
− E

X
L [Var(Θ|Fk)]

L2δ2
⩽ P

(Θ
L

⩽ z
)
⩽ P

X
L

(Θk

L
⩽ z + δ

)
+

E
X
L [Var(Θ|Fk)]

L2δ2
. (3.16)
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Therefore to show (3.13), it is sufficient to show

lim
L→∞

1

L2
E

X
L [Var(Θ|Fk)] =

e−2X

2k
, (3.17)

because as k → ∞ this goes to 0 and forces the desired inequality by (3.16). In Chapter 4 we give a
proof of (3.17).

3.3.2 Proof of Part 2.

In a similar way to the start of the proof of this Theorem, we define the generating function for Θk.

Definition 3.6. Fix x ⩾ 0 and consider a tree with height L a starting value x. We define the
generating function Gk of Θk, for k ⩽ L as

Gk(λ, x, L) := Ex(e−λΘk). (3.18)

When k = 0, we have have no information about the tree so by (num), Θ0 = Ex(Θ) = L(1 − x)L−1.
Thus,

G0(λ, x, L) = exp[−λL(1− x)L−1], (3.19)

and using a very similar technique to before, we have that

Gk(λ, x, L) =
[
x+

∫ 1

x
Gk−1(λ, y, L− 1)dy

]L
=
[
1−

∫ 1

x
(1−Gk−1(λ, y, L− 1))dy

]L
. (3.20)

First we take the limit as L → ∞ in (3.19) and (3.20) for k fixed and then take the limit as k → ∞.
There are 2 steps to showing this, firstly, we show that following limit exists and then the second step
is showing that this generating function is the same as that of an exponential random variable. We
only consider the case for λ ⩾ 0 as it is sufficient to characterise the distribution.

Step 1. Let a, b, µ ∈ R and µ ⩾ 0. Then we show that the following limit exists,

Gk

( µ

L+ a
,
X

L+ b
, L
)

L→∞−−−−→ G̃k(µ,X), (3.21)

where

G̃k(µ,X) = exp
[
−
∫ ∞

X
1− G̃k−1(µ, Y )dY

]
, G̃0(µ,X) = exp

[
− µe−X

]
. (3.22)

We show (3.21) and (3.22) are true by induction. For the base case (k = 0), from (3.19), the algebra
of limits and the definition of e as a limit, it is clear that (3.21) is true with limit given in (3.22).

For the inductive hypothesis, let k > 0 and assume that (3.21) and (3.22) hold for Gk−1. Now we
consider Gk. Using (3.20) we have,

Gk

( µ

L+ a
,
X

L+ b
, L
)
=
[
1− 1

L+ b

∫ L+b

X
(1−Gk−1

( µ

L+ a
,

Y

L+ b
, L
)
dY
]L

(3.23)

Now using the inductive hypothesis, we know that the Gk−1 term on the right hand-side has a limit
and from (3.18) and the fact that e−z ⩾ 1− z for z ∈ R,

1 ⩾ Gk(λ, x, L) ⩾ 1− λEx(Θk) = 1− λEx(Θ) = 1− λL(1− x)L−1 (3.24)
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Then, using the above, that µ > 0 and that for L sufficiently large, L/(L+a) <
√
2 and 1−Y/(L+b) < 1

we have that

1 ⩾ Gk−1

( µ

L+ a
,

Y

L+ b
, L− 1

)
⩾ 1− µL

L+ a

(
1− Y

L+ b

)L−2
⩾ 1−

√
2µ
(
1− Y

L+ b

)L
. (3.25)

Now, (1 − L/(L + b))L → e−Y as L → ∞, so for sufficiently large L, (1 − L/(L + b))L <
√
2e−Y .

Therefore,

1 ⩾ Gk−1

( µ

L+ a
,

Y

L+ b
, L− 1

)
⩾ 1− 2µe−Y ⩾ 1− 2µe−

Y
2 , (3.26)

where to obtain the final inequality, we use that e−Y is a decreasing function in Y . Now, note that
since Gk−1(

µ
L+a ,

Y
L+b , L − 1) ⩽ 1, for all L ∈ R, they are bounded above and since they converge we

can use the Dominated Convergence Theorem from Bogachev [3] to see that∫ L+b

X

(
1−Gk−1

( µ

L+ a
,

Y

L+ b
, L
))
dY

L→∞−−−−→
∫ ∞

X
(1− G̃k−1(µ, Y ))dY. (3.27)

So we have,

Gk(
µ

L+ a
,
X

L+ b
, L) =

[
1− 1

L+ b

∫ L+b

X
(1−Gk−1(

µ

L+ a
,

Y

L+ b
, L)dY

]L
L→∞−−−−→ exp

[
−
∫ ∞

X
1− G̃k−1(µ, Y )dY

]
as required.

Step 2. From step 1, we know that by setting b = 0 (i.e. when the tree has root value X/L), there exists
a limit as L → ∞ of Θk

L and this limit has generating function G̃k. Now we take the limit as k → ∞
of this generating function and by comparison to the known generating function of an exponential
random variable and using the uniqueness of generating functions for random variables, we see that
lim
L→∞

Θk
L converges when k → ∞ to an exponential random variable.

To simplify computations we write G̃k as a function of one variable, G̃k(µ,X) = Fk(µe
−X) where,

Fk(z) = exp
[
−
∫ z

0

1− Fk−1(z
′)

z′
dz′
]
, F0(z) = e−z. (3.28)

If Z ∼ Exp(β), then for t < β the moment generating function of Z is given by:

MZ(t) =
β

β − t
. (3.29)

We will show that the solution to (3.28) satisfies, for z > −1,

Fk(z)
k→∞−−−→ 1

1 + z
. (3.30)

By comparison with (3.29), this implies that lim
L→∞

Θk/L converges weakly to an exponential distribution

with expectation e−X . Note this solution is true for z > −1, however, we will only show this is true
for z ⩾ 0 since we only proved (??) in that case. Define a function δk : (−1,∞)\{0} → R such that

Fk(z) =
1

1 + z
− z2

(1 + z)3
δk(z)

2k
. (3.31)
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Notably, we will show that this function is bounded above by a constant and below by 0, that is to
say, there exists B ∈ R such that for all k,

0 ⩽ δk(z) ⩽ B. (3.32)

Using this we will then bound Fk(z) above and below and upon taking the limit as k → ∞, we will
obtain the desired result. Firstly, we show (3.32) by induction. For the base case, k = 0, using (3.31)
and (3.28) we see that

F0(z) = e−z =
1

1 + z
− z2

(1 + z)3
δ0(z)

2k
, (3.33)

rearranging gives

δ0(z) =
(1 + z)3

z2

( 1

1 + z
− e−z

)
. (3.34)

Then, by expressing ez as an infinite series it is clear that it is greater than the first 2 terms, i.e.,
ez ⩾ 1 + z for z ⩾ 0. Therefore, δ0(z) ⩾ 0 as required. In addition to this, we have that,

lim
z→∞

δ0(z) = lim
z→∞

(1 + z)3

z2

( 1

1 + z
− e−z

)
= lim

z→∞

(1 + z)3

z2(1 + z)
+ lim

z→∞

(1 + z)3

z2ez
= 1 (3.35)

This limit is finite. Also, δ0(−1) = 0 and by continuity we can define δ0(0) to be a finite value.
Therefore, because the function is continuous, there exists a constant B ∈ R that δk(z) is bounded
above by for all k ∈ N and z > −1.

Now for the inductive hypothesis, assume that (3.32) holds for k − 1, that is to say

Fk(z) =
1

1 + z
exp
[
−
∫ z

0

z′

(1 + z′)3
δk(z

′)

2k
dz′
]
. (3.36)

So, again using the fact that for all x ∈ R, ex ⩾ 1 + x and the bounds (3.28) we have

1

1 + z
⩾ Fk(z) ⩾

1

1 + z

[
1− B

2k−1

∫ z

0

z′

(1 + z′)3
dz′
]
=

1

1 + z

[
1− B

2k
z2

(1 + z)2

]
. (3.37)

So using (3.31) and multiplying through by 1/(1+z) which is possible since this is always positive, we
see that

1 ⩾ 1− z

(1 + z)2
δk(z)

2k
⩾ 1− B

2k
z2

(1 + z)2
, (3.38)

which yields
0 ⩽ δk(z) ⩽ B, (3.39)

completing the inductive step, and proving the bounds on δk(z) for all k ∈ N and z > −1. Taking the

limit in (num) by using the Squeeze Theorem [15], we see that Fk(z)
k→∞−−−→ 1

1+z , completing the proof
of Theorem 1. □

26



Chapter 4

Second Moment Results on the
Irregular Tree.
4.1 Results on the Second Moment of the Tree

In this section we will prove that (3.1), (3.2), (3.4), (3.17) that were used in the proofs of Theorem 1.3
and Theorem 3.2. These calculations will involve the variance so before we prove these results, we will
first investigate E[Θ2].

4.2 Exact Expression of the Second Moment

We wish to find an exact expression for E[Θ2]. To this end, we begin with the following definition.

Definition 4.1. Define Pt to be the set of all paths along the tree and Qt to be the set of all pairs of
paths along the tree, that is Qt := Pt × Pt.

Then we have that,

E[Θ2] =
∑
p∈Pt

∑
p′∈Pt

P[p and p′ are open] =
∑

{p,p′}∈Qt

P[p and p′ are open]. (4.1)

The number of possible pairs of paths is L!2, since there are L! choices for the first path and L! choices
for the second. So we see that |Qt| = L!2.

The probability that a given pair of paths are accessible depends on the number of edges the pair of
paths share, call this number q. By the structure of the irregular tree, it is impossible for 2 paths to
share only L− 1 edges, because then they must also share the final edge too, since for a node at level
L− 1 there is only one edge going to level L. So we see that have that q ∈ {0, 1, ..., L− 2, L}.
The number of pairs of paths that are identical (i.e. q = L) is L!, since this is simply the same as the
number of paths along the tree, which is L!.

The probability that each of these paths in the pair is open is the same as the probability one is open
(because they completely overlap), and when the starting value is x, this is (1− x)L−1/(L− 1)! since
the first L − 1 bonds must have value between x and 1 and these L − 1 bonds have to be increasing
(i.e there is only one combination that is increasing out of the (L− 1)! possible combinations).

The number of pairs of paths that share q ∈ {0, 1, ..., L− 2} nodes is

L!(L− q − 1)(L− q − 1)!. (4.2)

This is because there are L! choices for the first path. Then the second path is the same for the first q
edges, the next edge must be different and there are L− q − 1 choices for this, since one of the L− q
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edges attached to this edge is already in the first path and we know it is not in the second. Then there
are (L− q − 1)! possible choices for the final L− q − 1 edges in the second path.

We now compute the probability that when the tree has starting value x, both of the paths are open.
Now, both of the paths combined contain L+ L− q = 2L− q distinct edges. We know the final edges
always have value one and we need each of the other 2L − q − 2 edges to have a value in between x
and 1. Now, we need these 2L− q− 2 edges to be in the correct order. There are (2L− q− 2)! possible
combinations of these values. We need the q smallest terms to be in increasing order in the shared
segment of length q of both of the paths, there is only one possible way for this to happen. Next,
we need both of the separate sections of length L − q − 1 to be in increasing order also. There are(
2L−2q−2
L−q−1

)
ways to separate these final 2L− 2q− 2 terms into 2 equally sized blocks, one for each path,

combining all this, we see that for two paths that share the first q edges, the probability that both of
these paths are increasing is,

(1− x)2L−q−2

(2L− q − 2)!

(
2L− 2q − 2

L− q − 1

)
, (4.3)

so we have that,

Ex[Θ2] = L(1− x)L−1 +

L−2∑
q=0

a(L, q)(1− x)2L−q−2. (4.4)

The first term of (4.4) is for when the paths in the pair of paths are the same, so is the same as Ex[Θ].
In the sum in the second half of (4.4), we have,

a(L, q) =
L!(L− q − 1)(L− q − 1)!

(2L− q − 2)!

(
2L− 2q − 2

L− q − 1

)
=

L!(2L− 2q − 2)!

(L− q − 2)!(2L− q − 2)!
.

4.3 Estimates and Bounds on a(L, q).

The following proposition gives some useful results regarding a(L, q).

Proposition 4.2. Firstly,

a(L, q) =
L2

2q
(1− q+1

L )(1− q
L) · · · (1−

1
L)

(1− 2q+1
2L )(1− 2q

2L) · · · (1−
q+3
2L )(1− q+2

2L )
. (4.5)

Then, also if if q ≪
√
L,

a(L, q) =
L2

2q

[
1 +O

(q2
L

)]
. (4.6)

Finally, for L sufficiently large and q0(L) := ⌈1 + ln(L2)/ln(2)⌉,

a(L, q) =

{
L21.99−q if 0 ⩽ q ⩽ q0(L),

2 if q0(L) ⩽ q ⩽ L− 2.
(4.7)

Proof. To compute (4.5) we expand the factorials, divide each term on the numerator by L and each
term on the denominator by 2L and then simplify.
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Now we show (4.6). If q ≪
√
L then q2 ≪ L which means q2/L → 0 as L → ∞. From above we can

write a(L, q) in the following way, where when we expand the brackets we only show the leading term,

a(L, q) =
2q

L

((L− q − 1)(L− q) · · · (L− 1)L)

(((2L− 2q − 1)(2L− 2q) · · · (2L− q − 3)(2L− q − 2))

L2

2q

=
2q

L

(Lq+1 + · · ·)
((2L)q + · · ·)

L2

2q

=
2qLq+1

L(2L)q
1 + 1

Lq+1 (−L (q+2)(q+1)
2 + · · ·)

1 + 1
(2L)q (−(2L)q−1 3q

2 (q + 1) + · · ·)
L2

2q
= [1 +O(q2/L)]

L2

2q
.

The final equality above comes from noticing the numerator and denominator are 1 + O(q2/L) and
then using the geometric series expansion, for y ∈ (0, 1) of 1/(1 + y) = 1 − y + y2 − y3 + ... (on the
denominator).

The above is when q ≪
√
L. If q is close L for example, a(L,L− 2) = 2, a(L,L− 3) = 24/(L+ 1) and

a(L,L− 4) = 360/((L+ 1)(L+ 2)). Note that a(L,L− 1) is not needed given as an example because
recall it is impossible for q = L− 1 because of the structure of the tree.

The full proof of (4.7) is omitted here due to space constraints, but we explain how to prove the result.
Firstly, show that ln(h(q)) is a convex function by showing that when L ⩾ q + 3, the discrete second
derivative is non-negative, in turn, this implies that a(L, q) is convex. We then find an upper bound
for a(L, q) using (4.5) by noticing that the numerator is less than 1 and the denominator is bigger than
(1 − 2q+1

2L )q. Defining q0(L) as in the statement of the proposition, using the definition of convexity
and looking as L gets sufficiently large yields the result.

4.4 Outline of Proofs of the Limits (3.1), (3.2), (3.4) and (3.17).

The general method to prove (3.1), (3.2), (3.4) and (3.17) of Var(Θ) is based around each of these
expressions containing a sum similar (4.4) and we separate this into 2 separate sums. The first sum
from q = 1 to qo(L) we will bound appropriately using (4.7) and use a discrete form of the dominated
convergence theorem to determine its limit as L→ ∞. Regarding the second sum from q = q0(L) + 1
to L− 2, we bound the running term above by 2/L2 which shows the whole sum is bounded above by
1/L which goes to 0 as L→ ∞.

To prove (3.1) we use the standard definition of variance and integrate over all the possible values of

the starting node. Then use the technique described above. To prove (3.2) we calculate E
X
L [(Θ/L)2]

and use the same technique above.

To prove (3.4) bounding the second sum from q = q0(L) + 1 to L − 2 is slightly more difficult. We
use (4.7) and by extending it to the sum from q = 0 to ∞ we can use the geometric series formula to
obtain an upper bound that goes to 0 in the large L. Then, we use the standard formula for variance
to obtain the result.

The calculation to prove (3.17) is more involved. We write Var(Θ|Fk) as a sum over the vertices at
level k of the variances of the subtrees of height L− k multiplied by the indicator function of whether
or not the root vertex of that subtree is open, that is,

Var(Θ|Fk) =
∑
|σ|=k

1{σ open}v(xσ, L− k),
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where v(xσ, L − k) is the variance of Θ on the subtree of height L − k, with root σ with value xσ.
Using (4.4) and taking the q = 0 term out of the sum we obtain,

v(xσ, L) := Exσ(Θ2)− Exσ(Θ)2 = L(1− xσ)
L−1 +

L−2∑
q=1

a(L, q)(1− xσ)
2L−q−2 − L(1− xσ)

2L−2.

Now, by the structure of the tree there are L!/(L − k)! nodes at level k and the probability that a
given node σ at level k is open is (xσ − x)k−1/(k − 1)! since the (k − 1) labels need to be increasing
and need to all be between x and xσ. Hence,

Ex[Var(Θ|Fk)] =
L!

(L− k)!

∫ 1

0

(xσ − x)k−1

(k − 1)!
v(xσ, L− k)dxσ.

To compute this integral we use the fact that
∫ 1
x (y−x)m(1−x)ndy = m!n!(1−x)m+n+1/(m+n+1)!.

This fact is obtained through a change of variables to z = (y − x)/(1− x) and then comparing this to
the PDF of a Beta Distribution gives the fact. After lots of manipulation and simplifying, we obtain,

Ex[Var(Θ|Fk)] =
a(L, k)

L− k − 1
(1− x)2L−k−2 +

L−2∑
q=k+1

a(L, q)(1− x)2L−q−2 + L(1− x)L−1. (4.8)

Then we complete the proof by dividing through by L2 and using the general technique used previously.
□
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Chapter 5

Accessible Paths on the Hypercube.
We follow the steps of the proof given in [2] and explain some sections in more detail. Unfortunately,
there is a mistake in the proof that does not appear easy to rectify.

5.1 Outline of the Proof of Theorem 1.7.

We will attempt to use a similar technique as used before on the tree to obtain the distribution of
Θ/L as L→ ∞ on the hypercube, that is to say, ultimately finding a generating function for this and
comparing it to known generating functions to give us the distribution of Θ/L in this limit.

Recall before we looked at the number of open paths given knowledge of the first k levels, we use a
similar technique but now define

Θk := E[Θ|Fk], (5.1)

where Fk is knowledge of the nodes with distance less than or equal to k from the root (the starting
point) of the hypercube and also the nodes with distance less than or equal to k from the node
(1, 1, ..., 1).

There are
(
L
k

)
nodes that are k steps away from the root, this is because each node at level k is a vector

of length L containing k ones. When describing a node at this level, we will denote it σ, and the value
of the node will be denoted xσ. By symmetry of the hypercube, there are

(
L
k

)
nodes that are k steps

away from the final vertex of each path, the node (1, 1, ..., 1). Similarly, when describing a node at this
level, we will denote it τ , and the value of the node will be denoted 1− yτ .

Let nσ be the number of open paths from the root to σ. Note that there can be no open paths and
also that there are most k! open paths since there are only k! possible paths from the root to a node
at distance k from the root. Similarly, mτ be the number of open paths from the vertex τ the final
node (1, 1, ..., 1). Note again that 0 ⩽ mτ ⩽ k!.

We let 1(σ ↔ τ) be the indicator function on the event that there exists a directed path from σ to
τ . It will make sense why we have defined this when we begin to forbid paths going through certain
nodes.

Now we look at the expected number of increasing paths between σ and τ , given xσ and yτ . This
is given by 1(σ ↔ τ)1(xσ + yτ ⩽ 1)(L − 2k)(1 − yτ − xσ)

L−2k−1. Firstly note that 1(σ ↔ τ) is
necessary because if there is no path possible we would expect there to be no increasing paths. Next,
1(xσ + yτ ⩽ 1) is necessary because were xσ > 1 − yτ , no increasing path would be possible because
the start node value would be greater than the final node value. This is all multiplied by (L − 2k)
because that is the length of the path between the two nodes. Therefore, knowing this expectation we
have that the expected number of paths on the hypercube is given by,

Θk =
∑
|σ|=k

∑
|τ |=L−k

nσmτ1(σ ↔ τ)1(xσ + yτ < 1)(L− 2k)(1− yτ − xσ)
L−2k−1. (5.2)

From here we can outline the proof into 3 steps.
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Step 1) Show that Θ/L as L → ∞ has the same distribution as that of Θk/L as L → ∞ and then as
k → ∞. This is similar to what we did on the tree.

Step 2) We then show that as L → ∞, Θk/L has the same distribution as a new random variable
Θ̃k/L, which can be rewritten as a product of two independent sums, one over σ and one over τ .

Step 3) We then show that these two sums each have the same limit as L→ ∞ and that these follow
the same distribution as to what we found on the tree. However, we will show that the proof at this
step fails to be correct.

5.2 Proof of Theorem 1.7 - Step 1

Fix X ⩾ 0, and let the root node have value x = X/L. Then we wish to show that weakly as k → ∞
we have that

lim
L→∞

Θk

L
−→ lim

L→∞

Θ

L
. (5.3)

As on the tree by the same reasoning, all we need to show is that

lim
k→∞

lim sup
L→∞

1

L2
Ex[Var(Θ|Fk)] = 0. (5.4)

To this end, note that because Ex[Θ|Fk] = Θk we have,

Ex[Var(Θ|Fk)] = Ex[Ex[Θ2|Fk]− Ex[Θ|Fk]
2] = Ex[Ex[Θ2|Fk]−Θ2

k] = Ex[Θ2]− Ex[Θ2
k]. (5.5)

To compute this, we compute both the Ex[Θ2] and Ex[Θ2
k]. Define Ph to be the set of paths on the

hypercube and let α ∈ Ph. We denote xαi to be the value of the i’th node on α for i ∈ {0, ..., L}, where
xα0 = x as this is the value of the root of the hypercube and xαL = 1 as this is the value of the vertex
(1, 1, ..., 1). Next, for 0 ⩽ i ⩽ j ⩽ L, define ξαi,j be the indicator function on the event hat α is open
between node i and node j. That is,

ξαi,j := 1(xαi ⩽ xαi+1 ⩽ · · · ⩽ xαj ) =

{
1 if xαi < xαi+1 ⩽ · · · ⩽ xαj ,

0 otherwise.
(5.6)

Then since Θ is the number of open paths on the hypercube and ξα0,L is the indicator on the event that
the entire path α is increasing we have that Θ =

∑
α∈Ph

ξα0,L, leading to

Ex[Θ2] =
∑

α,β∈Ph

Ex[ξα0,Lξ
β
0,L] = L!

∑
α∈Ph

Ex[ξα0,Lξ
0
0,L], (5.7)

where in the final equality we arbitrarily pick a path fix it, denoting it κ, and so denoting the corre-
sponding indicator function ξκ0,L. In the final equality, we also use the fact that there are L! possible
paths on the tree.

In a similar way, Θk is the number of open paths on the hypercube given Fk so Θk =
∑

α∈Ph
E[ξα0,L|Fk],

this leads to

Ex[Θ2
k] =

∑
α,β∈Ph

Ex[E[ξα0,L|Fk]E[ξβ0,L|Fk]] = L!
∑
α∈Ph

Ex[E[ξα0,L|Fk]E[ξκ0,L|Fk]]. (5.8)

Now, note that a path is increasing from 0 to L if and only if it is increasing from 0 to k, increasing
from k to L− k and increasing from L− k to L. Because of this, we can write ξα0,L = ξα0,kξ

α
k,L−kξ

α
L−k,L.
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Also, note that ξα0,k and ξαL−k,L are Fk-measurable, so we can use the property of taking out what is
known to obtain

Ex[Θ2
k] = L!

∑
α∈Ph

Ex[ξα0,kξ
κ
0,kE[ξαk,L−k|Fk]E[ξκk,L−k|Fk]ξ

α
L−k,Lξ

κ
L−k,L]. (5.9)

By the tower rule [19], Ex[·] = Ex[E[·|Fk], we can similarly modify (5.9), again by taking out what is
known to obtain

Ex[Θ2
k] = L!

∑
α∈Ph

Ex[ξα0,kξ
κ
0,kE[ξαk,L−kξ

κ
k,L−k|Fk]ξ

α
L−k,Lξ

κ
L−k,L]. (5.10)

Substituting (5.7) and (5.9) into (5.5) and using the linearity of expectation, we obtain

Ex[Var(Θ|Fk)] = Ex[Θ2]− Ex[Θ2
k]

= L!
∑
α∈Ph

Ex[ξα0,kξ
κ
0,k(E[ξαk,L−kξ

κ
k,L−k|Fk]− E[ξαk,L−k|Fk]E[ξκk,L−k|Fk])ξ

α
L−k,Lξ

κ
L−k,L].

The term, E[ξαk,L−kξ
κ
k,L−k|Fk]−E[ξαk,L−k|Fk]E[ξκk,L−k|Fk] is a covariance. If two paths are non-intersecting

between step k and step L− k on the paths then ξαk,L−k and ξκk,L−k are independent random variables,
so the covariance term is 0.

Let P κ
h be the set of all paths that intersect (at least once) the path we denoted κ in between step k

and step L− k. Then, on these paths the covariance term is not 0. When summing over these paths,
by removing all the negative terms, recomposing ξκk,L−k and ξαk,L−k and using the tower law we have
that

Ex[Var(Θ|Fk)] ⩽ L!
∑
α∈Pκ

h

Ex[ξα0,kξ
κ
0,kE[ξαk,L−kξ

κ
k,L−k|Fk]ξ

α
L−k,Lξ

κ
L−k,L] = L!

∑
α∈Pκ

h

Ex[ξα0,Lξ
κ
0,L].

We now find another upper bound for this. First let 0 ⩽ p, q ⩽ L. Then, define Ip,q to be the set of
all paths such that they coincide completely with κ for the first p+ 1 nodes (including the root of the
hypercube), then they are completely different to κ for the next L − p − q − 1 nodes and then they
coincide completely with κ for the final q + 1 nodes (including the node (1, 1, ..., 1).

Using this we have that

Ex[Var(Θ|Fk)] ⩽ L!
∑
α∈Pκ

h

Ex[ξα0,Lξ
κ
0,L] ⩽ L!

∑
α∈Ph

Ex[ξα0,Lξ
κ
0,L]− L!

k−1∑
p=0

k−1∑
q=0

∑
α∈Ip,q

Ex[ξα0,Lξ
κ
0,L], (5.11)

where the second inequality is true because in the sum at first we are removing all possible paths that
are different to κ between step k and L − k, whereas in the sum on the right hand side we are just
removing some of the possible paths that are different to κ. For example, fix s ∈ {1, ..., k − 2}, in the
sum on the right-hand-side we are not removing paths that are the different to κ for the first s nodes,
the nodes {k, ..., L− k} and the final s nodes, but coincide everywhere else.

Recall that L!
∑

α∈Ph
Ex[ξα0,Lξ

κ
0,L] = Ex[Θ2], also recall that we are interested in calculating lim supL→∞

1
L2Ex[Var(Θ|Fk)], so dividing by L2 using [2] we have that

lim
L→∞

L!

L2

∑
α∈Ph

Ex[ξα0,Lξ
κ
0,L] = lim

L→∞

1

L2
Ex[Θ2] = lim

L→∞
Ex[

Θ2

L2
] → 3e−2X + e−2X = 4e−2X . (5.12)
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Now, we turn our attention to the second term on the right hand side of (5.11). We will first show
that

Ex[ξα0,Lξ
κ
0,L] =

(1− x)2L−p−q−2

(2L− p− q − 2)!

(
2L− 2p− 2q − 2

L− p− q − 1

)
. (5.13)

Note that Ex[ξα0,Lξ
κ
0,L] is simply the probability that both of these paths are open. Excluding the root

and the end node, the paths α and κ each contain L− 1 nodes and they overlap on p+ q nodes, so the
number of different nodes in total in both the paths combined is 2L − p − q − 2. For this path to be
increasing, the label attached to each vertex must be greater than x, which happens with probability
(1− x)2L−p−q−2 since the labels are independent and follow a U [0, 1] uniform distribution.

Next, we need the first p nodes to be the p smallest nodes in increasing order of which there is only one
possible way for this to happen, we need the final q nodes to be the q largest nodes and in increasing
order and there is only one possible way for this to happen. We need the 2 sections of the paths where
they do not coincide, each of length L− p− q − 1 to also be in increasing order. This can happen in(
2L−2p−2q−2
L−p−q−1

)
ways because that is the number of ways to split the middle 2L− 2p− 2q − 2 labels into

2 evenly sized blocks the L − p − q − 1 and for each way to split the labels there is only one way for
both of sets of labels to be ordered in an increasing way.

From Hegarty and Martinsson [7], we define the following useful number.

Definition 5.1. For n, k ∈ N with k ⩽ n, we define T (n, k) to be the number of ways of permuting
the set {1, ..., n} with k components, where for a permutation π1, π2, ..., πn, the number of components
is the largest s ∈ N such that π1, π2, ..., πs is a permutation of {1, ..., s}.

Remark 5.2. From [7], on the n-dimensional hypercube, let i the identity path denote the path in
which we add a 1 in position i. Let j be any other path represented by ν1, ν2, ..., νn, where for step s
we add a 1 in position νs. Then if ν1, ν2, ..., νn has k components, i and j intersect in k − 1 interior
nodes. Under a suitable isomorphism, we can see that T (n, k) is the number of possible paths that
share k−1 vertices. Therefore, by viewing the L−p−q steps after the first p shared nodes of two paths
α and κ as 2 smaller sub paths, to calculate the number of paths in Ip,q, it is equivalent to calculate
B((L− p− q) := Tκ(L− p− q, 1) = T (L− p− q, 1).

We use the following 2 propositions from [7] to show that B(n) ∼ n!.

Proposition 5.3. B(n) is uniquely defined by,

n! =

n∑
i=1

B(i)(n− i)!. (5.14)

Proof . There are n! possible paths along the n-dimensional hypercube. Let γ be a path on the
n-dimensional hypercube. Then you can view this sum as a sum over the steps of the path, where
we are summing the number of paths that intersect γ for the first time at that step. Since then the
number of paths ν on the n-dimensional hypercube that for the first time, intersect γ at step i is
B(i)(n− i)! = T (i, 1)(n− i)!, this gives the result. □

Proposition 5.4.
n!(1−O(1/n)) ⩽ B(n) ⩽ n!. (5.15)

Proof . Since n! is the number of possible paths on the n-dimensional hypercube, it follows immediately
that B(n) ⩽ n!. So it remains to prove the lower bound. Rearranging Proposition 5.3 by pulling the
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B(n) term out of the sum we see that

B(n) = n!−
n−1∑
i=1

B(i)(n− i)! ⩾ n!−
n−1∑
i=1

i!(n− i)! = n!(1−
n−1∑
i=1

i!(n− i)!

n!
).

For i = 1, we have that i!(n−i)!
n! = 1/n. Since i!(n−i)!

n! is symmetric in i, without loss of generality assume
that i ⩽ n− i. For i > 1 notice that

i!(n− i)!

n!
=
(1
1
· 2
2
· · · i

i

)( 1
n
· 2

n− 1
· 3

i+ 1
· 4

i+ 2
· · · n− i

n− 2

)
⩽

1

n
· 2

n− 1
⩽

4

n2
= O(1/n2),

we see that every term in
∑n−2

i=2
i!(n−i)!

n! is O(1/n2). Since the sum contains n− 3 terms, the sum itself
is O(1/n) and hence,

B(n) ⩾ n!(1− 2
1!(n− 1)!

n!
−

n−2∑
i=2

i!(n− i)!

n!
) = n!(1−O(1/n)).

□

Now, we know that |Ip,q| = B(L− p− q) and by expanding the binomial coefficient in the following we
obtain,

L!
∑

α∈Ip,q

Ex[ξα0,Lξ
κ
0,L] = L!

(1− x)2L−p−q−2

(2L− p− q − 2)!

(
2L− 2p− 2q − 2

L− p− q − 1

)

=
L!

(L− p− q − 1)!
· (2L− 2p− 2q − 2)!

(2L− p− q − 2)!
· B(L− p− q)

(L− p− q − 1)!
· (1− x)2L−p−q−2.

This has been written in a very specific way, so we can look at what each of the 4 terms look like
individually when L is large. The first is like Lp+q+1, the second like (2L)−p−q, the third like L by
Proposition 5.4 and the fourth is like e−2X . Using this, we have that in the following limit, all the L
terms cancel,

lim
L→∞

L!

L2

∑
α∈Ip,q

Ex[ξα0,Lξ
κ
0,L] =

e−2X

2p+q
.

By the algebra of limits and the geometric series formula,

lim
L→∞

L!

L2

k−1∑
p=0

k−1∑
q=0

∑
α∈Ip,q

Ex[ξα0,Lξ
κ
0,L] = e−2X

k−1∑
p=0

k−1∑
q=0

1

2p+q
= e−2X

(
1−

(
1
2

)k
1− 1

2

)2

= 4e−2X(1− (1/2)k+1 + (1/4)k)

Combining this with (5.12) through (5.11) yields,

lim sup
L→∞

1

L2
Ex[Var(Θ|Fk)] ⩽ 4e−2X − 4e−2X − 4e−2X

2k+1
+

4e−2X

4k
= 8e−2X(

1

2k
− 1

2 · 4k
) ⩽

8e−2X

2k
,

as required.
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5.3 Proof of Theorem 1.7 - Step 2.

Recall we have that

Θk =
∑
|σ|=k

∑
|τ |=L−k

nσmτ1(σ ↔ τ)1(xσ + yτ < 1)(L− 2k)(1− yτ − xσ)
L−2k−1. (5.16)

We now define the following quantity and show that it can be written as the product of a sum over
nodes of distance k away from the root and a sum over the nodes of distance k away from the end
node. To this end, define

Θ̃k :=
∑
|σ|=k

∑
|τ |=L−k

nσmτL(1− yτ − xσ + xσyτ )
L−2k−1. (5.17)

Note that this expression, in comparison to (5.16) has neither of the indicator functions in the summand,
it also has a factor L which is greater than the factor of L− 2k in the other, it also has an extra xσyτ
in the term in brackets. Therefore, the summand of (5.17) is greater than the summand of (5.16). So,
Θ̃k ⩾ Θk.

Also, E
X
L [Θk/L] = E

X
L [Θ] = (1− X

L )L−1, so

lim
L→∞

E
X
L

[Θk

L

]
= e−X . (5.18)

Now we compute limL→∞ E
X
L

[
Θ̃k
L

]
and show that this the same as for Θk. Firstly, note that

Ex[nσ|xσ] = k(xσ − x)k−11(xσ ⩾ x),

this is because there are k possible paths to σ, for any path to be increasing we need xσ ⩾ x hence the
indicator function and finally the probability a path is increasing is (xσ − x)k−1. Similarly we see that

Ex[mτ |yτ ] = k(yτ )
k−1.

From this we see that

E
X
L

[Θ̃k

L

]
=

(
L

k

)2 ∫ 1

x
dxσ

∫ 1

0
k2(xσ − x)k−1(yτ )

k−1(1− yτ − xσ + xσyτ )
L−2k−1dyτ

=

[
L!(L− 2k − 1)!

(L− k)!(L− k − 1)!

]2
(1− x)L−k−1.

The integral is computed through the use of the formula in Section 4.4. Taking the limit as L → ∞
we obtain,

lim
L→∞

E
X
L

[Θ̃k

L

]
= e−X . (5.19)

Now, note that Θ̃k/L−Θk/L is a non-negative random variable where, by the linearity of expectation,
limL→∞[Θ̃k/L−Θk/L] = e−X − e−X = 0. Now, we can use Slutsky’s Theorem from Karr [10] because
XL = Θ̃k/L−Θk/L converges in probability to 0 and Yl = Θk/L converges in distribution to e−X we
have that the sum of these 2 random variables, Θ̃k/L, converges to e

−X in distribution.
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We see that

Θ̃k

L
=

∑
|σ|=k

∑
|τ |=L−k

nσmτ (1− yτ − xσ + xσyτ )
L−2k−1

=
∑
|σ|=k

∑
|τ |=L−k

nσmτ ((1− yτ )(1− xσ))
L−2k−1

=

( ∑
|σ|=k

nσ(1− xσ)
L−2k−1

)( ∑
|τ |=L−k

mτ (1− yτ )
L−2k−1

)
. (5.20)

Notice that this is the product of 2 independent sums, the first of which is over the first k steps of the
hypercube and the second of which is over the final k steps. Note that because of the presence of the
nσ term, the first sum is dependent on the starting value of the root vertex. The second sum has the
same distribution as the first sum with root vertex value x = 0.

5.4 Proof of Theorem 1.7 - Step 3.

We begin by defining ϕk to be the first sum in (5.20).

Definition 5.5.

ϕk :=
∑
|σ|=k

nσ(1− xσ)
L−2k−1. (5.21)

The plan is to show that this converges weakly to an exponential distribution multiplied by e−X by
comparing the generating function of this to the one found on the irregular tree for Θk/L. Construct-
ing a recursive definition for the generating function of ϕk is not possible because two paths on the
hypercube may share an edge after they split for the first time, whereas this is not possible on the tree.
To get around this problem, we define a new random variable.

Definition 5.6.

ϕ̃k(b) :=
∑
|σ|=k

ñσ(b)(1− xσ)
L, (5.22)

where b is a set of ‘forbidden bits’, a subset of the set of all L dimensional binary vectors, and ñσ(b) is
either 1 or 0 depending on whether or not there is an open ‘interesting path’ (defined below) through
node σ. We denote B to be the size of b.

We define an ‘interesting path’ to σ in the following way. At the origin there are L − B nodes that
are not forbidden, the nodes with label less than ln(L)/L we are interested in. Defining b′ (with size
B′) to be the set of all these nodes, we now forbid these bits and at the next level for each of the
interesting nodes, we look at the L−B −B′-dimensional sub-hypercube and repeat this construction
until we reach level k. All the possible paths found are called interesting.

By this construction, note that if B ⩾ L− k, there can be no interesting paths because there are too
many forbidden bits. Also, there are no interesting paths if xσ > ln(L)/L. Since there are L terms in
a path from the origin to (1, 1, ..., 1) and we expect an increasing path to increase linearly, we expect
xσ to be like k/L on an increasing path, so we are not concerned that there are no interesting paths
when xσ > ln(L)/L, because we would not expect there to be many increasing paths. Also by this
construction, the interesting paths are all independent.
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For each interesting path, we expect there to be kO(ln(L)) forbidden bits, but as L → ∞ this is
insignificant because L≫ ln(L).

Note also that

ϕ̃k(b) =
∑
|σ|=k

ñσ(b)(1− xσ)
L =

∑
ρ∈b′

∑
|σ|=k,
ρ⩽σ

ñσ(b)(1− xσ)
L

=
∑
ρ∈b′

1{x⩽xρ}
∑
|σ|=k,
ρ⩽σ

ñσ(b)(1− xσ)
L =

∑
ρ∈b′

1{x⩽xρ}ϕ̃k−1(B +B′, xρ), (5.23)

where ϕ̃k−1(B+B′, xρ) means the root value is now xρ. Using the above we will construct the recursion
on ϕ̃k(b) initialised by ϕ̃0(b) = (1−x)L. Note also that ñσ ⩽ nσ. We will show that in the large L limit
with starting value X/L, the expected value of ϕ̃k(b) is equal to the expected value of ϕk. Through
the use of Slutsky’s Theorem again tell us that when the large L limit of ϕ̃k(b) exists, the large L limit
of ϕk also exists and they follow the same distribution.

To this end, note that since there are L−B potential interesting nodes at level 1 and they are interesting
with probability ln(L)/L, B′ ∼ Binomial(L − B, ln(L)/L). Also note that which nodes are forbidden
is not necessarily important, only the number of nodes that are, so we can equally write ϕ̃k(B) instead
of ϕ̃k(b). Now from the PMF of a binomial distribution we see that

P[B′ = i] =

(
L−B

i

)( ln(L)
L

)i(
1− ln(L)

L

)L−B−i
. (5.24)

Then, noting that if k > L−B then there are no interesting paths of length k. Taking the expectation
over (5.23) with starting value x we obtain

Ex[ϕ̃k(b)] =

L−B−k+1∑
i=0

P[B′ = i] · i
∫ ln(L)

L

0

L

ln(L)
1{x⩽y}ϕ̃k−1(B + i, y)dy. (5.25)

The proof for this is a simplified version of the proof of Proposition 5.8 which we will prove later. Note
that were k > L−B then the left hand side of the above would be 0. Now, we show that we can write
this as

Ex[ϕ̃k(b)] =
(L−B)!

(L−B − k)!Lk
ψk(x, L) (5.26)

for some function ψk(x, L). We prove this by induction, for k = 0 this holds because ϕ̃0(b) = (1− x)L.
For the inductive hypothesis, assume 5.26 holds for k − 1, so that

Ex[ϕ̃k(b)] =
1

Lk−1

L−B−k+1∑
i=0

P[B′ = i] · (L−B)!

(L−B − k)!Lk
i

∫ ln(L)
L

0

L

ln(L)
ψk(y, L)dy. (5.27)

Now look closer at the sum to see that

L−B−k+1∑
i=0

P[B′ = i] · (L−B)!

(L−B − k)!Lk
i =

ln(L)

L

(
1− ln(L)

L

)k−1 (L−B)!

(L−B − k + 1)!

·
L−B−k+1∑

i=0

(L−B − k + 1)!

(L−B − k + 1− i)!i!

( ln(L)
L

)i(
1− ln(L)

L

)L−B−k+1−i

=
ln(L)

L

(
1− ln(L)

L

)k−1 (L−B)!

(L−B − k + 1)!
,
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where the final equality comes from the use of the binomial formula. The rest of this section of the
proof is omitted due to space constraints but we explain the steps to complete it. From above we have
the following recurrence with initialisation,

ψk

(
X

L
,L

)
=

(
1− ln(L)

L

)k−1 ∫ ln(L)

X
ψk−1

(
Y

L
,L

)
dy, ψ0

(
X

L
,L

)
=

(
1− X

L

)L

. (5.28)

This recurrence yields an upper bound of e−X for ψk(X/L,L). Then using the dominated convergence
theorem and another recurrence that for a function b(L) = o(L), the limit of EX/L[ϕ̃k(b(L))] is e

−X in
the large L limit. Showing that in the large L limit, ϕ̃k(b) and ϕk(b) have the same distribution.

All that remains now is to compute the generating function of ϕ̃k(b). With a similar aim as in the
proof of Theorem 1.6, we begin with the following definition,

Definition 5.7. Consider the L-dimensional hypercube with origin label x. Then, for µ ⩾ 0 define
the generating function of ϕ̃k(B) to be

Gk(µ, x, L, b) := Ex[e−µϕ̃k(B)]. (5.29)

Proposition 5.8. Fix X ⩾ 0 and consider the L-dimensional hypercube with origin label x = X/L.
Then,

Gk

(
µ,
X

L
,L, b

)
=

L−B−k+1∑
i=0

P[B′ = i]

[
1− 1

ln(L)

∫ ln(L)

X
[1−Gk−1

(
µ,
Y

L
,L,B + i

)
]dy

]i
. (5.30)

Proof. Using 5.23 and taking the expectation we see that

Ex
[
exp
{
− µϕ̃k(B)

}]
= Ex

[
exp
{
− µ

∑
ρ∈b′

1{x⩽xρ}ϕ̃k−1(B +B′, xρ)
}]

=
L−B−k+1∑

i=0

P[B′ = i]Ex
[
exp
{
− µ

i∑
j=0

1{x⩽xj}ϕ̃k−1(B + j, xj)
}

| x1, x2, ..., xj ⩽ ln(L)/L
]

=

L−B−k+1∑
i=0

P[B′ = i]Ex
[ i∏
j=0

exp
{
− µ1{x⩽xj}ϕ̃k−1(B + j, xj)

}
| x1, x2, ..., xj ⩽ ln(L)/L

]
=

L−B−k+1∑
i=0

P[B′ = i]

i∏
j=0

∫ ln(L)
L

0

L

ln(L)

[
exp
{
− µ1{x⩽y}ϕ̃k−1(B + j, y)

}]
dy

=
L−B−k+1∑

i=0

P[B′ = i]
[ xL

ln(L)
+

L

ln(L)

∫ ln(L)
L

x
exp
{
− µϕ̃k−1(B + i, y)

}
dy
]i

=
L−B−k+1∑

i=0

P[B′ = i]
[
1− L

ln(L)

∫ ln(L)
L

x
[1−Gk−1(µ, y, L,B + i)]dy

]i
.

Using a sufficient substitution gives the result of the proposition. □
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Now, [2] claim the following upper and lower bounds for Gk(µ,
X
L , L, b). Then the strategy from there

would be to use a similar technique as in the proof of Theorem 1.6 to show that Gk(µ,X/L,L, b) has
a limit as L → ∞, and the equation for this generating function is the same as that in the proof of
Theorem 1.6. We show the bounds given by [2] and explain why they do not hold. Firstly, [2] give the
following lower bound,

Gk(µ,X/L,L, b) ⩾ [1− 1

L

∫ ln(L)

X
[1−Gk−1

(
µ,
Y

L
,L,B

)
]dy
]L−B

. (5.31)

Now, viewing Gk(µ,X/L,L, b) as a function of b, we see that it is increasing. Therefore, the smallest
term in the large square brackets in (5.30) is when i = 0. Since the large square brackets is between 0
and 1, raising this to the largest power in the sum makes it smallest. This is shown by the following
equalities,

Gk(µ,X/L,L, b) ⩾
L−B−k+1∑

i=0

P[B′ = i]

[
1− 1

ln(L)

∫ ln(L)

X
[1−Gk−1

(
µ,
Y

L
,L,B + i

)
]dy

]i
(5.32)

⩾
L−B−k+1∑

i=0

P[B′ = i]

[
1− 1

ln(L)

∫ ln(L)

X
[1−Gk−1

(
µ,
Y

L
,L,B

)
]dy

]i
(5.33)

⩾
L−B−k+1∑

i=0

P[B′ = i]

[
1− 1

ln(L)

∫ ln(L)

X
[1−Gk−1

(
µ,
Y

L
,L,B

)
]dy

]L−B−k+1

(5.34)

⩾ (1− o(1))

[
1− 1

ln(L)

∫ ln(L)

X
[1−Gk−1

(
µ,
Y

L
,L,B

)
]dy

]L−B−k+1

. (5.35)

Now, note the differences between this expression and (5.31). Firstly, the integral is multiplied by
1/ln(L) in our equation and is multiplied by 1/L in (5.31). Now, the 1/L in (5.31) makes the inside
of the large square brackets larger (because we are subtracting something smaller from 1) instead of
smaller which is a problem. It is not immediately clear where the 1/L came from in (5.31), but it is
necessary for their argument as when taking the limit as L→ ∞ we would obtain e to the power of the
negative of the integral, which is what they need to complete their argument. In an attempt to remedy
the problem of the presence of the 1/L making inside brackets too large, if we kept it as 1/ln(L) we
would now obtain the incorrect limit for their consequent arguments.

Furthermore, in (5.31) there is no sum present. This is because the limits in the sum are slightly
incorrect, running from i = 0 to L − b and then using that the sum does indeed sum to 1. However,
sum runs from i = 0 to L − B − k + 1, so in fact is 1 − o(1). This does converge to 1 in the large L
limit though, so would not affect further calculations.

Next, [2] give an upper bound. This is obtained by splitting the sum into two sections, one sum from
i = 0 to ⌊(ln(L))2⌋ and the second running from i = ⌊(ln(L))2⌋+1 to L−B− k+1. They then bound
the first sum above to what they desire in the limit as L → ∞ for their subsequent arguments and
they show the second sum is goes to 0 in the large L limit. So, [2] claim that

Gk(µ,X/L,L, b) ⩽ [1− 1

L

∫ ln(L)

X
[1−Gk−1

(
µ,
Y

L
,L,B

)
]dy
]L−B

+

L−B∑
i=⌊(ln(L))2⌋+1

P[B′ = i]. (5.36)
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Now, through our own calculations we have that

Gk(µ,X/L,L, b) ⩽
⌊(ln(L))2⌋∑

i=0

P[B′ = i]

[
1− 1

L

∫ ln(L)

X
[1−Gk−1

(
µ,
Y

L
,L,B + ⌊(ln(L))2⌋

)
]dy

]i

+
L−B−k+1∑

i=⌊(ln(L)⌋)2+1

P[B′ = i]. (5.37)

Similar to [2], the second sum does indeed become vanishingly small. However, it is the first expression
that is different. Note that unlike before, here it is okay to multiply the integral by 1/L because we
want the largest possible term in the square brackets. Also, because Gk(µ,

X
L , L, b) is an increasing

function we can substitute the largest value of the sum into it to obtain the largest value in the square
brackets. This largest value will be between 0 and 1, so unlike (5.36) we do not raise the large brackets
to a high power, as this would make the term smaller. Were we to remove the power this would not
work as it would no longer give the correct limit for the subsequent arguments in [2].

We could attempt to bound this again in a different way, by raising the square brackets to the power
ln(L) and keeping the integral also multiplied by 1/ln(L) because this would give the desired limit.
Note that also E[B′] = ln(L) which is another reason why this would be a good approach. However,
defining z to be what is inside the square brackets and taking L to be sufficiently large we see that

Gk(µ,X/L,L, b) ⩽
⌊(ln(L))2⌋∑

i=0

P[B′ = i]
zln(L)

zln(L)−i
+

L−B−k+1∑
i=⌊(ln(L)⌋)2+1

P[B′ = i]

=

⌊(ln(L))2⌋∑
i=0

(
L−B

i

)( ln(L)
L

)i(
1− ln(L)

L

)L−B−i zi

zln(L)
zln(L) +

L−B−k+1∑
i=⌊(ln(L)⌋)2+1

P[B′ = i],

looking at the i = ln(L) term specifically we see that at least,

(
L−B

ln(L)

)( ln(L)
L

)ln(L)(
1− ln(L)

L

)L−B−ln(L) zln(L)

zln(L)
= O

(
Lln(L) 1

(ln(L))ln(L)

)
(5.38)

which is clearly too large and will not give the correct limit. This fix will not work.

Thus we have shown that the proof given is incorrect and examples of simple fixes that fail to work.
This completes the section on the proof, and thus the project.
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