Organic Reactivity and Mechanism

This module introduces the importance of molecular orbital theory in understanding organic reactivity, and explains how such reactivity can be accurately represented by curly arrow mechanisms. In addition, students will be introduced to important concepts of acidity, basicity, pKa and leaving group ability. With this key information in hand, the reactivity of a broad range of organic functional groups can be readily explained. As such, in the first half of the module, the student will be equipped with the skills to predict the reactivity of a variety of carbonyl compounds and substitution reactions.

In the second half of the module, substitution reactions including saturated carbon and elimination reactions will be described. In this context, the students will be able to analyse the various factors involved in determining the outcome of these reactions and predicting the reactivity of a variety of organic substrates.

Techniques learned in earlier modules will be built upon in the practical laboratory sessions. Students will address the synthesis of more complex organic molecules and the identification of the synthesised molecules, using the full range of spectroscopic techniques including NMR, IR and UV/vis spectroscopies.