Nanoelectronics Lancaster, January 5th, 2003

Theoretical Modeling of DNA-based Biomolecular Nanowires

Rosa Di Felice

INFM National Center for nanoStructures and bioSystems at Surfaces (S³), Dipartimento di Fisica, Università di Modena e Reggio Emilia, 41100 Modena, Italy. <u>http://www.s3.infm.it</u>

Collaborators

Arrigo Calzolari (INFM S³, Italy) Elisa Molinari (INFM S³, Italy) Anna Garbesi (CNR ISOF, Italy)

Acknowledgements

Funding: INFM, EU Computer time: CINECA Bologna, CICAIA Modena

nanoStructures and bioSystems at Surfaces

H-bonded G ribbon

Outline

- Towards hybrid and mono-molecular electronics
 - Is DNA a viable electrical material?
- Experiments on DNA charge mobility
 - In the Solid State
 - Structure, conductivity
 - In Solution Chemistry
 - Guanine: low ionization potential \Rightarrow hole traps
- Guanine-rich stacks
 - Experimental results available, theoretical simulations feasible
 - π stacks, H-bonded ribbons, stacked & H-bonded G4
- DFT simulations: band transport contribution?
 - Energetics, electronic properties
 - G4: Flat bands, Effective semiconducting DOS
- Conclusions & Perspectives

Electronics and Nano-Electronics

atomic/subatomic scale

Biomolecular Electronics

the exploitation of functional properties of biomolecules (DNA, PROTEINS) to be used in hybrid electronic devices

- Peculiarities of Biomolecular Devices
 - Intrinsic Functionality
 - Self-Assembly
 - Intrinsically identical building blocks
 - Natural Nano-meter scale
- Self-assembled few-molecule monolayer
 - Tens-of-nanometers channel
- Single-molecule Bio-transistor
 - Few-nanometers channel
- Two-terminal devices are presently the prototype study-case

Molecular device scheme

What is the role of the bridge energy levels in the charge conduction through the molecule?

Coupling: electrode-donor, donorbridge-aceptor, acceptor-electrode

DNA Structural Features

- Unique H-bonding base-base coupling
 - Guanine-Cytosine
 - Adenine-Thymine
 - Auto-recognition, Self-assembly
- Inner Core
 - Base-pair stack
 - Responsible for electron-hole mobility
- Outer backbone
 - Sugar-phosphate bridge connecting adjacent planes
 - May host mobile ions
- Protein recognition
 - Binding at specific sites of the sequence
 - Molecular nano-lithography

Selected experiments on DNA charge mobility

- Charge migration in DNA in Solution Chemistry
 - Donor-to-acceptor long-range electron transfer
 - Superexchange, hopping, polaron hopping (phonon-assisted)
 - J.K. Barton: distance independence, wirelike
- Electronic transport in DNA in device configuration
 - DNA as a template

• DNA as a (semi)conductor

- Formation of extended states?
- Conductivity through deoxy-guanosine fibers

DNA in device configuration

- Insulator
 - 16- μ m-long λ -DNA, 12-16- μ m-spaced electrodes, single molecule
 - Braun et al., Nature 1998. -
 - Template for conducting Ag wires.
 - 1.8- μ m-long λ -DNA, SFM, single molecule
 - de Pablo et al., Phys. Rev. Lett. 2000.

- 10.4-nm-long (30 base pairs) poly(G)-poly(C), 8-nm-spaced electrodes, single molecule
 - Porath et al., Nature 2000.

Conductor

- 600-nm-long λ -DNA, bundles in 2-µm holes
 - Fink & Schönenberger, Nature 1999.
- Superconductor (proximity-induced superconductivity)
 - 16- μ m-long λ -DNA, 0.5- μ m-spaced electrodes, few molecules
 - Kasumov et al., Science 2001.

E. Meggers et al., J. Am. Chem. Soc. 120, 12950 (1998)

Experiment: hole transfer

nanoStructures and bioSystems at Surfaces

INFM

Mechanisms for DNA charge motion

One-step tunneling, Marcus & Sutin, Biochim. Biophys. Acta (1985).

nanoStructures and bioSystems at Surfaces

Rate $k = (1/h) V_0^2 F \exp(-\beta R)$ [structureless wide 1D barrier]

a

Hints

From experiments in the solid state

- Fix constraints on wire variability
 - Sequence
 - Length
 - Aggregation state

From experiments in solution chemistry

• Outstanding role of the Guanine base

Our approach

Inorganic nano-wires

- Starting point: 3D crystal
 - Delocalized orbitals
 - Bandstructure
- Confinement in 2 directions
 - Energy quantization perpendicular to wire axis
 - Residual band dispersion along wire axis

> (Bio)Molecular nano-wires

- Starting point: molecular building blocks
 - Localized orbitals
 - Discrete energy levels
- Periodicity in 1 direction \rightarrow 1D crystal lattice and bandstructure
 - Orbital delocalization & band dispersion along wire axis?
 - Under which conditions?

Motivations for selecting G4 wires

G-aggregates

- Ribbons, tetrads, DNA sequences
- Role of G and (G)_n in DNA damage and electron transfer
- Tetrad stacks: well characterized real systems, Xray and NMR data available
- Very stable in different chemical environments
 - With and without sugar-phosphate backbone
 - Stabilized by metal cations in the core
 - Mechanically resistant (up to $\sim 1 \ \mu m$)
- Different preparations viable
 - From single strands and double strands
 - Properties tuned by metal selectivity
- \blacktriangleright Only guanine \Rightarrow no sequence dependence
- Appealing to study transport properties of guanine-rich self-assembled supramolecular wires

G-aggregates

H-bonded ribbon

H-bonded quartet

Method

- Structural Optimization
 - DFT-GGA (BLYP), ab-initio soft pseudopotentials (M&T), plane wave basis, periodically repeated supercells, BZ sampling along the wire axis
 - Atomic displacement until forces vanish (within 0.05 eV/Å)
 - Suitable to describe structures with long-range order \rightarrow 1D wires
 - C,N,O: hard cores \Rightarrow many plane waves needed, 50 Ry cutoff
 - Large supercells ($6 \times 10^3 \text{ Å}^3$), 195 atoms, thick vacuum
 - Tests on isolated G molecules and H-bonded G ribbons
- Relative formation energies
 - Dependence on the atomic and electronic (E_F) chemical potentials
- Electronic properties
 - Bandstructure
 - Density of States

Building block: the Guanine base

- Carbon, Nitrogen, Hydrogen, Oxygen
- Bond lengths: 2%
- Bond angles: 1%
- HOMO and LUMO: π character

Isolated guanine molecule

Isolated G: electron states

HOMO: π character Localized on C-C and C-N bonds

LUMO: π character E_{LUMO}-E_{HOMO}=4.8 eV Localized on atoms

Suitable for π - π interactions in G stacks

Guanine stacks

nanoStructures and bioSystems at Surfaces

nanoStructures and bioSystems at Surfaces

The planar tetrad

- Double ring of H-bonds
- Electronegative inner core, O atoms
- Thermodynamically stable
- No in-plane orbital delocalization

Periodic boundary conditions

G4 Stability

K-rich conditions

- $\mu^{K} = \mu^{K(bulk)}$
- $\Delta n^{K} = \Delta n^{e} = 3$ for $3G4/K^{+}$

Variable Fermi level

- Linear dependence
- Stable wires
- 3G4/K⁺ favored for $E_F < 1 \text{ eV}$
- Fermi level pinning at the HOMO ($E_F = 0$) consistent with the presence of cations
- Metal cations stabilize the extended nanowires

G4 Electronic Properties

Bandstructure

- Flat bands
- No dispersion along wire axis (Γ-A)
- Minibands
 DOS
 - Peak spreading from minibands
 - π -like and σ -like
 - Effective semiconductor

A. Calzolari et al., Appl. Phys. Lett. 80, 3331 (2002)

G4 Electron orbitals

Linear combination of almost degenerate HOMO's (~20 meV) Delocalization along wire axis
Channels for charge motions
Through the bases, not through the inner core

Conclusions

- Stability of G4-based columnar stacks in the presence of K⁺ ions
- > π - π superposition insufficient to induce band dispersion along the wire axis
- Minibands from closely spaced energy levels
- Possible thermal coupling
 - Combination of orbitals leads to delocalization
- Effective behavior of wide-bandgap semiconductors
- Appealing candidates for biomolecular electronics

Perspectives

G4: Effects of other metal cations

- Stability
- Electronic properties
 - Tuning by different metals: effective doping, transport mediation
 - Relation between disctrete charge transfer and *continuous* charge transport
- Other nucleotide-based structures that may function as good molecular wires
- Implementation of methods for ab-initio computation of the quantum conductance and transport characteristics

