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What everybody knows...
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What some people know...
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(G. Casati, B. V. Chirikov, J. Ford, and F. M. Izrailev, 1979)



Historical developments

Quantum interference — analogous to the Anderson
localization (Fishman, Grempel, and Prange, 1982)

Incommensurate periods T,, T, T;— 3D localization
(Casati, Guarneri, Shepelyansky, 1989)

Particle in a box: just w(0)=w(27)=0 instead of

the periodic w(0) =w(27) — no localization
(Hu, Li, Liu, Gu, 1999)

Mapping to a quasi-7d o-model (Altland, Zirnbauer, 1996)

What do these observations mean
and how general are they?




Spatial localization
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d >3: no localization in weak disorder



Random matrix theory

[_A[ _ ]:] n > real symmetric
(t) 0 V¢(t) N x N Gaussian
A A random matrices

with statistically independent elements

mean R
level spacing 1?5ADensity of states of H
at the center
/ \ E
>
—2NoO /7« 2NO /7

In the end let N — o©



Chaotic systems

Ballistic systems: Diffusive systems:
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z,,=L/v, ergodictime 7, =L"/D

RMT is valid at low energies:

E<<FE, =n/7t,, (Thouless energy)

erg



Technicalities

Time-dependent RMT

v

Keldysh non-equilibrium formalism

/ N\

Diagrammatic Nonlinear
technique o-model

N/

Perturbative (loop) expansion




Zero order (diffusion)

['= <V;,2 >/5 — one photon absorption rate
(measure of perturbation strength)

Long-time, period-averaged dynamics:

5 } 4~ time-dependent

0
L}t OE> J(E,1) electron distribution

(Wigner variables)
D =T(d¢/dt)* — energy diffusion coefficient

9, D
W.=—I\E f(E,t)dE =— —
; 8tj f(E,t) 5 energy

absorption rate



One-loop correction

(0= +— [0 §(t-0)C,.,n(ri-7) d

~ = —~— —
large small (?) correction
zero-order

Cooperon keeps track of the quantum interference:
C(r,,7,)=0(r, —7,)exp| — jg[ﬂt +7/2)—d(t—7/2)] dr
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Periodic perturbation

00 2
J0) =2 A, cosmar=g,) W, ==Y 4]

C. (r,,7,)= exp{— ['(z, -1, )Z A,f sin” (nawt — @, )}
n=1

If @, =n@ the exponent can vanish at 7, = p+hm

Q
No-dephasing points give a large negative
contribution to the integral:

W(t)-W, ~—a*Tt




Time-reversal symmetry

@, =np < g(t—t,)=o(-t—t,)

Average dephasing rate versus time:

T-symmetry: yes T-symmetry: no

Monochromatic perturbation: T-symmetry always —
a very special case



Two loops

There is a contribution from diffusons:

D (t,t,)=0(t —t,) exp{tjl“[¢(t+f/2)¢(t2'/2)]2 dt}

For a periodic perturbation:
D_(¢t,t,) = exp{— 21°(t, - tz)Z A’ sin” na)r}
n=1

No-dephasing points are always present,
regardless of the time-reversal symmetry...



Incommensurate periods

d
@(1t) = ZAn cos(w,t—@,) W, = % a)jAIf
n=l1 n

dephasing rate:
ﬂ Phase
relationships

do not matter
that much

U A4 N
Almost-no-dephasing points contribute:

I di, — large for

W(t)-W, ~ -
17“1“ \ (Ftl)d d<3




A glance at the reality

GaAs dot:

e size L~1um

* mean level spacing o ~1 ueV
 Thouless energy E, ~100-1000 weV

» dephasing time ¢, ~1ns

Microwave field:

« V~several peV (field ~ several V/m)

*  hw~10-100 weV (~10" Hz)

Dynamic localization:

* ¢, ~10ns, E,, ~4/Dt,. ~100-1000 eV ~1-10K



Conclusions...

1. A quantum-mechanical system under a time-
dependent perturbation may be subject to
dynamic localization in energy space.

2. It depends both on the model for the
unperturbed system and the perturbation.

3. We have studied one-loop correction to the
usual Fermi-Golden-Rule dissipation rate for a
chaotic system described by RMT



...conclusions

For a perturbation with d incommensurate
frequencies the correction can grow arbitrarily
with time if d=1,2 (analogously to spatial
localization in d-dimensional disorder)

For commensurate frequencies phase
relationships matter:

Time-reversal symmetry: the “dimensionality”
Is effectively lowered

No time-reversal: the correction is small
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