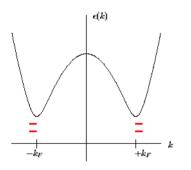
Mesoscopic NS rings : from persistent current to Josephson current

J. Cayssol, T. Kontos, G. Montambaux (Université Paris-Sud, Orsay)

ds		l(φ)	$\phi = \phi \ / \phi_0$	ξ_0 coherence	length
A	d _s = 0 d _s >> ξ ₀	\rightarrow \rightarrow	persistent current Josephson current junction : $\Delta \chi = 4 \pi$	t through SNS	$\Phi_0=$ h/e h/2e



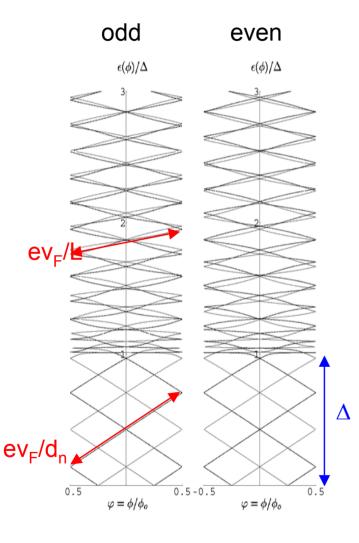
Flux dependent spectrum ? Current ? Any d_s and d_n

I= -dE/d∳

The current is an equilibrium quantity, but it can be calculated from the excitation spectrum (BdG equations) (Beenakker-Van Houten 91) $I = \sum d\epsilon_n/d\phi$

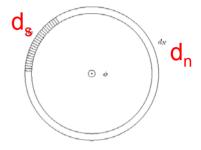
Büttiker, Klapwijk (85) : $d_n >> \xi_0$, many Andreev levels

Spectrum of a 1D NS ring



1D normal ring : Interlevel spacing $\delta = h v_F / L$ Persistent current $\delta / \phi_0 = e v_F / L$

 $L=d_n+d_s$



Number of Andreev levels $\Delta / (ev_F/d_n) = d_n / \xi_0$

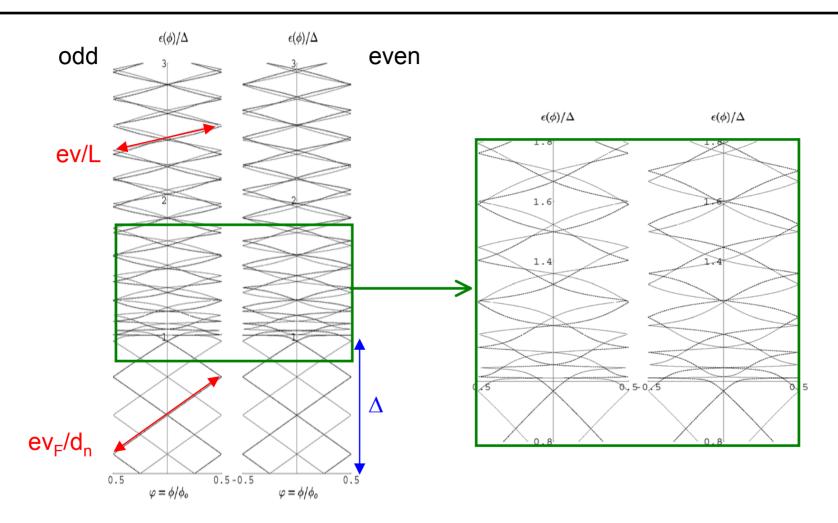
B.K. : d_n large (many Andreev levels), vary d_s Assume levels above the gap do not contribute to the current

d_s large : problem equivalent to SNS junction (Bardeen, Johnson) levels above the gap form a continuum

Goals: Treat any d_s and d_n , and cross-overs, Levels above the gap, $d_n \rightarrow 0$, short junction \rightarrow one single Andreev level Non linear spectrum

 $d_n = 10 \xi_0$, $d_s = 20 \xi_0$

d_s finite : levels above the gap are discrete

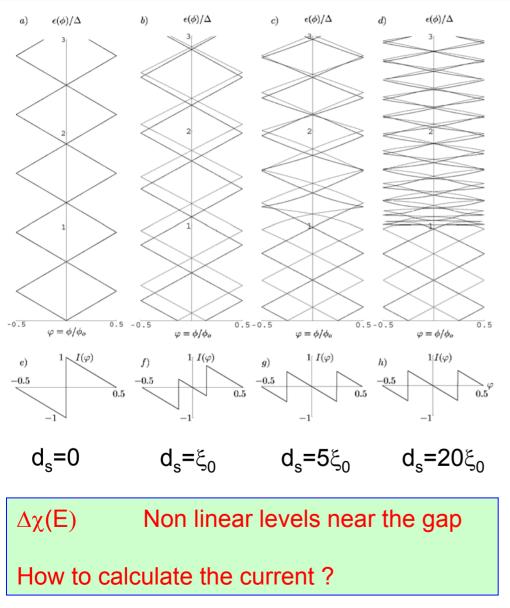


d_n large : linear flux dependence of the Andreev states

Questions

- How to calculate the current ? $I = -dE/d\phi$
- Linearized spectrum \rightarrow No current !
- How to get properly a current from a linearized spectrum ?
- Current of the last level ? How many levels contribute ?
- How to estimate the current of the states near and above the gap?

d_n large : from $d_s = 0$ to d_s large (BK)



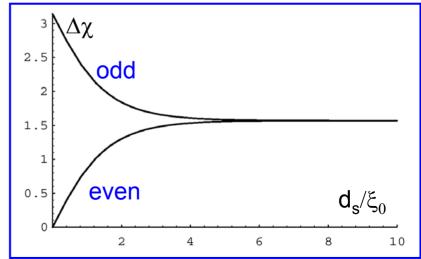
 $d_n = 10 \xi_0 \qquad ev_F / (d_n + d_s)$

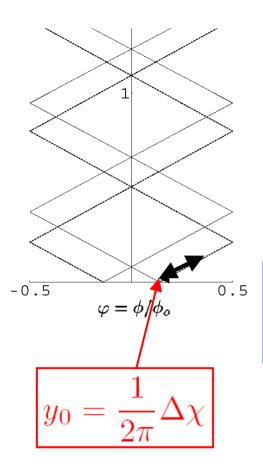
 $d_s = 0 \rightarrow$ Phase shift $0, \pi$

 $d_s >> \xi_0 \rightarrow$ Phase shift $\pi/2$

 $\mathsf{d}_{\mathsf{s}} \sim \xi_0 \qquad \Delta \chi = \operatorname{ArcCos} \frac{(-1)^N}{\operatorname{Cosh} d_s / \xi_0}$

Parity effect is lost, for Andreev states





Persistent current

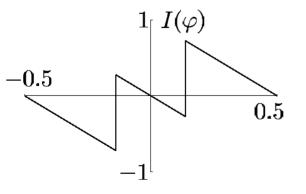
Harmonics expansion I(a)

$$I(\varphi) = \sum_{1}^{\infty} I_{p} \sin 2\pi p \varphi$$

$$\epsilon_n(\varphi) \longrightarrow \text{unfolded} \quad \epsilon(y) \quad , \quad \varphi \in [-\frac{1}{2}, \frac{1}{2}] \longrightarrow y \in [y_0, \infty]$$

$$I_{p} = \frac{2}{\pi p} \frac{1}{\phi_{o}} \left[\epsilon'(y_{o}) \cos p \Delta \chi - \int_{y_{o}}^{\infty} dy \ \epsilon''(y) \cos 2\pi py \right]$$

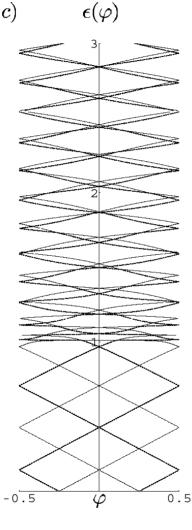
piecewise linear I(φ) Non-linear correction



- Each harmonics is an integral over the complete spectrum. It is the sum of :
- a boundary term evaluated at zero energy + a curvature term integrated over all the spectrum
- This curvature term can be evaluated and bounded

Example : persistent current of a normal 1D ring

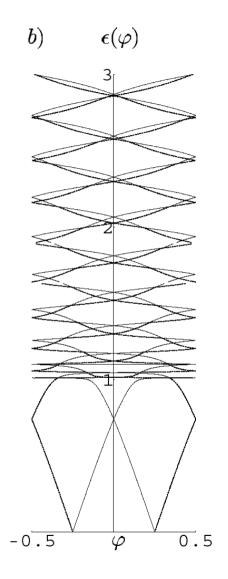
Curvature term



d_n large

Andreev levels are linear States above the gap are non-linear they do not form a continuum However non linearities compensate and the contribution of high energy levels vanishes

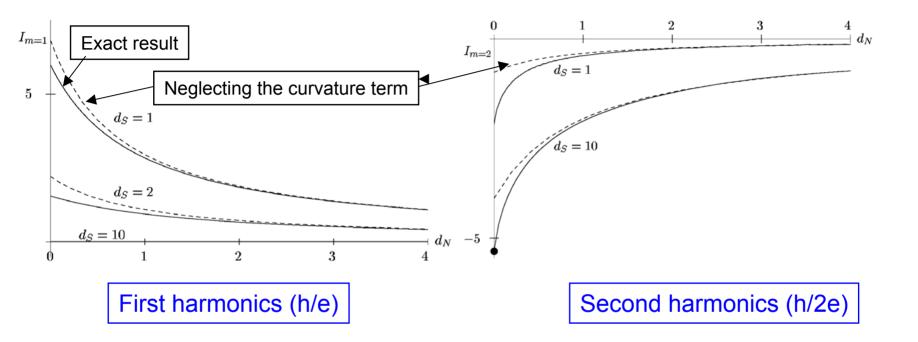
Andreev levels are non-linear States near the gap are non-linear Non-linear flux dependent current



 $d_n = 10 \xi_0$

 $d_n = \xi_0$

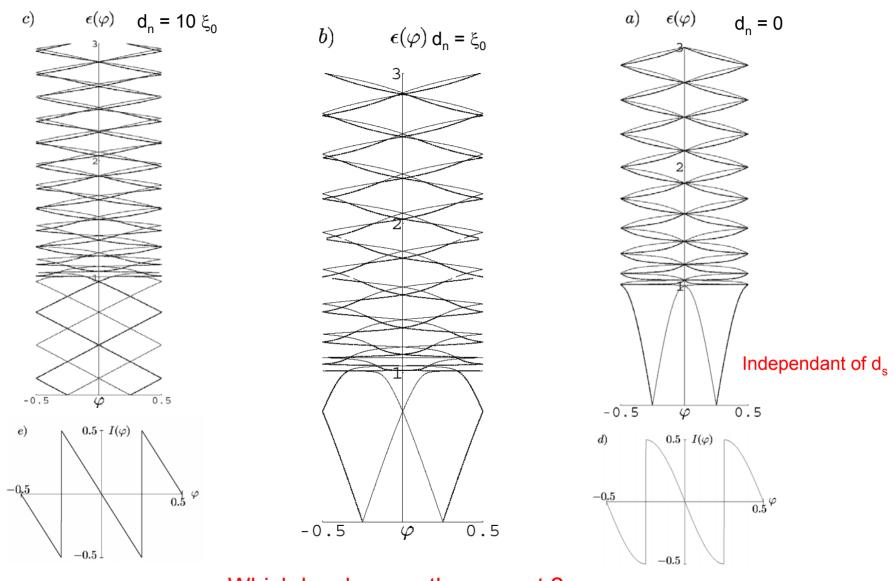
Non-linearities



Non-linearities disappear for $d_n > 2 \xi_0$

First harmonic disappear for d_s large Second harmonics increases with d_s

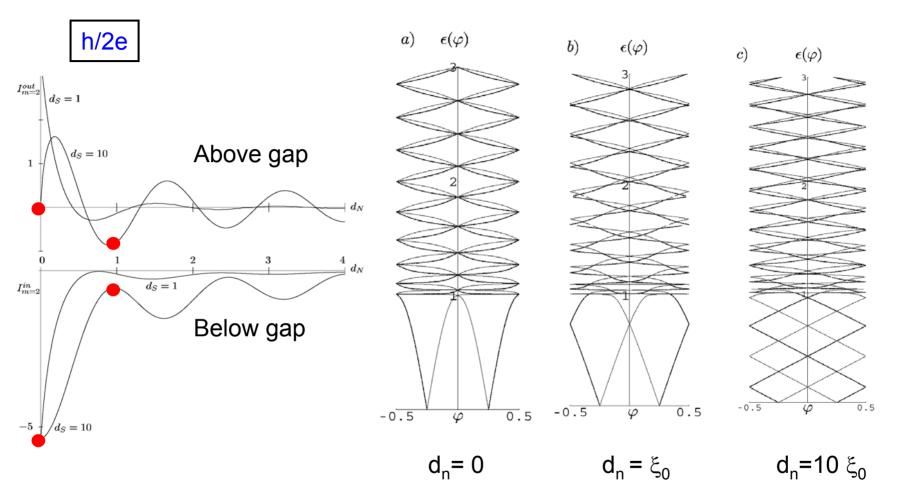
d_s large : from d_n large to $d_n = 0$



Which levels carry the current ?

Beenakker, Van Houten, 91

Which levels carry the current?

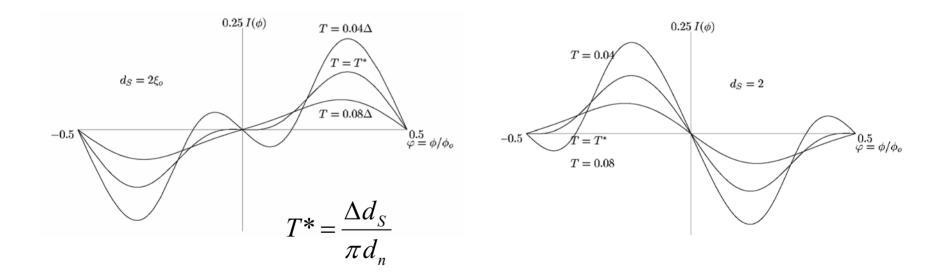


The current is carried by levels above and below the gap (even if d_s is large) Oscillations as function of d_n with period $\pi \xi_0/2$

Ensemble average

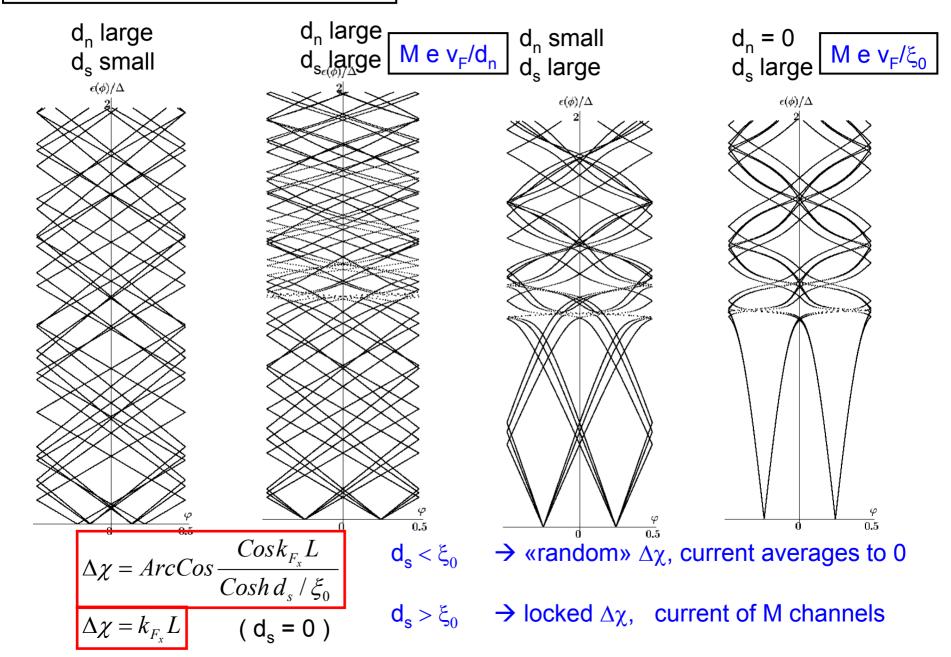
Rings with even N paramagnetic when $d_s=0$ diamagnetic when d_s finite

Rings with odd N always diamagnetic

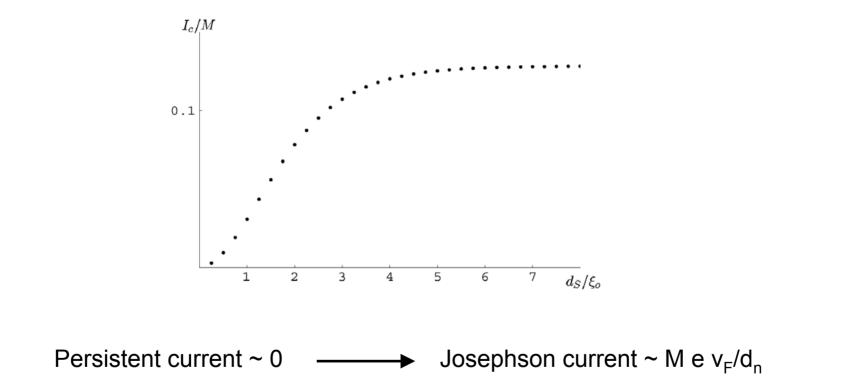


An ensemble of normal rings has a paramagnetic magnetization When $d_s \sim 0.5 \xi_0$, the magnetization becomes diamagnetic

Multichannel NS rings



Current of a multichannel ring (d_n large)



Conclusions

- NS 1D and multichannel rings, without disorder
- Full spectrum
- States above the gap do not form a continuum and carry a current
- Persistent current has contributions from linear and non-linear regions of the spectrum
- Cross-over from normal current to Josephson current, vs. d_s and d_n
- Non interacting average current $0 \rightarrow M I_0$, $I_0 = v_F / d_n$ if $d_n >> \xi_0$
- Disorder and interactions ? $I_0 = v_F / \xi_0$ if $d_n << \xi_0$

Parameters

d _n d _s	d _n = ξ ₀ Short junction	d _n ~ ξ ₀	any d _n	$d_n \gg \xi_0$ long junction
d _s = 0				Normal ring Riedel et al.
d _s ~ ξ ₀				
any d _s	Levels above the gap contribute	Levels above the gap contribute		Buttiker-Klapwijk
$d_s >> \xi_0$	Beenakker- Van Houten	Levels above the gap contribute		♦ Bardeen-Johnson

unfolding

$$\epsilon_n(\varphi) \longrightarrow \text{unfolded} \quad \epsilon(y) \quad , \quad \varphi \in [-\frac{1}{2}, \frac{1}{2}] \longrightarrow y \in [\mathbf{y}_0, \infty]$$

