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Part 1 Without interactions
Random Matrices, Anderson Random Matrices, Anderson 
Localization, and Quantum ChaosLocalization, and Quantum Chaos



RANDOM MATRIX THEORY

N × N N → ∞ensemble of Hermitian matrices 
with random matrix element

Eα - spectrum (set of eigenvalues)

ααδ EE −≡ +11 - mean level spacing

...... - ensemble averaging
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Dyson Ensembles and Hamiltonian systems

Ensemble
orthogonal

unitary

simplectic

Matrix elements
real

complex

2 × 2 matrices

β

1
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Gaussian
Orthogonal
Ensemble

Wigner-Dyson; GOE
Poisson

Poisson – completely 
uncorrelated 
levels



Wigner-Dyson; GOE
Poisson

Unitary
β=2

Simplectic
β=4

Gaussian
Orthogonal
Ensemble

Orthogonal 
β=1

Poisson – completely 
uncorrelated 
levels



RANDOM MATRICES

N × N matrices with random matrix elements. N → ∞

Dyson Ensembles

Ensemble
orthogonal
unitary

simplectic

    β
    1

    2
    

4

realization
T-inv potential
broken T-invariance 
(e.g., by magnetic 
field)
T-inv, but with spin-
orbital coupling

Matrix elements
real
complex

2 × 2 matrices



( ) 0P s → 0 :s →Reason for                           when
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1. The assumption is that the matrix elements are statistically 
independent. Therefore probability of two levels to be 
degenerate vanishes.

2. If H12 is real (orthogonal ensemble), then for s to be small 
two statistically independent variables ((H22- H11) and H12) 
should be small and thus

3. Complex H12 (unitary ensemble)        both Re(H12) and 
Im(H12) are statistically independent      three independent 
random variables should be small

( ) 1P s s β∝ =

2( ) 2P s s β∝ =



Dyson Ensembles and Hamiltonian systems

Ensemble
orthogonal

unitary

simplectic

realization
T-inv potential
broken T-invariance 
(e.g., by magnetic field)

T-inv, but with spin-
orbital coupling

Matrix elements
real

complex

2 × 2 matrices

β

1
2

4



Main goal is to classify the eigenstates 
in terms of the quantum numbersATOMS

For the nuclear excitations this 
program does not work NUCLEI

Study spectral statistics of 
a particular quantum system 
– a given nucleus 

E.P. Wigner:

Random Matrices Atomic Nuclei
• Ensemble

• Ensemble averaging

• Particular quantum system

• Spectral averaging (over α)

Nevertheless Statistics of the nuclear spectra 
are almost exactly the same as the 
Random Matrix Statistics



s

P(s)

P(s)

Particular nucleus

166Er

Spectra of 
several nuclei 
combined (after 
rescaling by the 
mean level 
spacing)



Q: Why the random matrix 
theory (RMT) works so well 
for nuclear spectra

These are systems with a large 
number of degrees of freedom, and 
therefore the  “complexity” is high

Original 
answer:

there exist very “simple” systems 
with as many as 2 degrees of 
freedom (d=2), which demonstrate  
RMT - like spectral statistics

Later it
became
clear that



Integrable 
Systems

Classical (h =0) Dynamical Systems with d degrees of freedom
The variables can be 
separated and the problem 
reduces to d one-
dimensional problems

d integrals 
of motion

ExamplesExamples
1. A ball inside rectangular billiard; d=2
• Vertical motion can be 

separated from the  
horizontal one

• Vertical and horizontal
components of the 

momentum, are both 
integrals of motion

2. Circular billiard; d=2
• Radial motion can be 

separated from the  
angular one

• Angular momentum 
and energy are the 
integrals of motion



Integrable 
Systems

Classical Dynamical Systems with d degrees of freedom

Rectangular and circular billiard, Kepler problem, . . . , 
1d Hubbard model and other exactly solvable models, . .  

The variables can be separated d one-dimensional 
problems d integrals of motion

Chaotic 
Systems

The variables can not be separated there is only one 
integral of motion - energy

ExamplesExamples B

Stadium
Kepler problem 
in magnetic field 

Sinai billiard



Classical Chaos 
h =0

•Nonlinearities
•Lyapunov exponents
•Exponential dependence on 
the original conditions

•Ergodicity

Q: What does it mean Quantum Chaos ?

Quantum description of any System Quantum description of any System 
with a finite number of the degrees with a finite number of the degrees 
of freedom is a linear problem of freedom is a linear problem ––
Shrodinger equation Shrodinger equation 



Bohigas – Giannoni – Schmit conjecture

Chaotic 
classical analog

Wigner- Dyson 
spectral statistics

0≠h

No quantum 
numbers except 

energy



Q: What does it mean Quantum Chaos ?
Two possible definitions

Chaotic
classical 
analog

Wigner -
Dyson-like 
spectrum



QuantumClassical

? PoissonIntegrable

? Wigner-
DysonChaotic



Poisson to Wigner-Dyson crossover
Important example:Important example: quantum quantum 
particle subject to a particle subject to a randomrandom
potential potential –– disordered conductordisordered conductor e

Scattering centers, e.g., impurities

••As well as in the case of Random Matrices As well as in the case of Random Matrices 
(RM) there is a luxury of ensemble averaging.(RM) there is a luxury of ensemble averaging.

••The problem is much richer than RM theoryThe problem is much richer than RM theory
••There is still a lot of universality.There is still a lot of universality.

Anderson 
localization (1958) 

At strong enough  At strong enough  
disorder all eigenstates disorder all eigenstates 
are are localizedlocalized in spacein space
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f = 3.04 GHz f = 7.33 GHz

Anderson Metal Anderson Insulator 



Poisson to Wigner-Dyson crossover
Important example:Important example: quantum quantum 
particle subject to a particle subject to a randomrandom
potential potential –– disordered conductor edisordered conductor

Scattering centers, e.g., impurities

Models of disorder:Models of disorder:
Randomly located impuritiesRandomly located impurities
White noise potentialWhite noise potential
Lattice modelsLattice models

Anderson modelAnderson model
Lifshits modelLifshits model



Anderson  
Model

• Lattice - tight binding model

• Onsite energies  εi - random

• Hopping matrix elements Iijj i
Iij

Iij =
I   i and j are nearest 

neighbors

0 otherwise
-W < εi <W
uniformly distributed

I < Ic I > Ic
Metal

There appear states extended
all over the whole system

Anderson  TransitionAnderson  Transition

Insulator 
All eigenstates are localized

Localization length ξ



Anderson  TransitionAnderson  Transition

I < Ic I > Ic
Metal

There appear states extended
all over the whole system

Insulator 
All eigenstates are localized

Localization length ξ

Any two extended 
eigenstates repel each other

The eigenstates, which  are 
localized at different places 

will not repel each other

Wigner – Dyson spectral statisticsPoisson spectral statistics



Zharekeschev & Kramer.
Exact diagonalization of the Anderson model

Disorder W



Quantum  Dot
e

×

×
×

×

1. Disorder  (× − impurities)
2. Complex  geometry

e
e

e

e

×

×
3. e-e interactions for a while

Realizations:Realizations:
• Metallic clusters
• Gate determined confinement in 2D gases (e.g. GaAs/AlGaAs)
• Carbon nanotubes



Energy 
scalesOneOne--particle problem (particle problem (Thouless, 1972))

δ1  = 1/ν× Ld

2.2. Thouless energyThouless energy ET = hD/L2 D is the diffusion const

1.1. Mean level spacingMean level spacing

δ1

en
e r

gy L is the system size;

d is the number of
dimensions

L

. 
ET has a meaning of the inverse diffusion time of the traveling 
through the system or  the escape rate (for open systems)

dimensionless
Thouless

conductance
g = ET / δ1 g = Gh/e2



g10

Localized states 
Insulator

Extended states 
Metal

Poisson spectral
statistics

Wigner-Dyson
spectral statistics

Thouless Conductance and
One-particle Spectral Statistics

The same statistics of the 
random spectra and one-
particle wave functions 

(eigenvectors)

Ν  × Ν
Random Matrices

Quantum Dots 
with Thouless 

conductance g

Ν→ ∞ g→ ∞



Scaling theory of Localization
(Abrahams, Anderson, Licciardello and Ramakrishnan 1979)

Dimensionless Thouless 
conductanceg = ET / δ1 g = Gh/e2

L = 2L = 4L = 8L ....

ET ∝ L-2 δ1 ∝ L-d 

without quantum corrections

ET ET ET ET

δ1  δ1  δ1  δ1

g g g g

d log g( )
d log L( )=β g( )



β - function ( )g
Ld
gd β=

log
log

β(g)

g

3D

2D

1D

1≈cg

unstable
fixed point

Metal – insulator transition in 3D
All states are localized for d=1,2

1

-1



Conductance g

100100100 ××
Anderson model cube



Anderson transition in terms of 
pure level statistics

P(s)



Square
billiard

Sinai
billiard

Disordered 
localized

Disordered 
extended

Integrable Chaotic
All chaotic 
systems 
resemble 
each other.

All integrable 
systems are 
integrable in 
their own way



Anderson metal; 
Wigner-Dyson spectral 
statistics

Anderson insulator; 
Poisson spectral statistics

11 >> gET ;δ
Disordered 
Systems:

11 << gET ;δ

Is it a generic scenario for the  
Wigner-Dyson to Poisson crossoverQ: ?

Speculations
Consider an integrable system. Each state is characterized by a set of 
quantum  numbers.

It can be viewed as a point in the space of quantum numbers. The 
whole set of the states forms a lattice in this space.

A perturbation that violates the integrability provides matrix elements 
of the hopping between different sites (Anderson model !?)



Does Anderson localization provide  
a generic scenario for the  Wigner-
Dyson to Poisson crossover

Q: ?
Consider an integrable system. Each state is 
characterized by a set of quantum  numbers.

It can be viewed as a point in the space of quantum 
numbers. The whole set of the states forms a lattice in 
this space.

A perturbation that violates the integrability provides 
matrix elements of the hopping between different sites 
(Anderson model !?)

Weak enough hopping - Localization - Poisson
Strong hopping - transition to Wigner-Dyson



The very definition of the localization is 
not invariant – one should specify in which 
space the eigenstates are localized.

Level statistics is invariant:

basis where the 
eigenfunctions are localized∃Poissonian 

statistics

Wigner -Dyson 
statistics ∀basis the eigenfunctions 

are extended



e

Example 1 Doped semiconductor
Electrons are localized on 
donors Poisson

Low concentration 
of donors

Higher donor
concentration

Electronic states are 
extended Wigner-Dyson

Ly

Lx

Two 
integrals 
of motion x

y
x

x L
mp

L
np ππ

== ;
Example 2

Rectangular billiard
Lattice in the 
momentum space
py

px

Line (surface) 
of constant 
energy Ideal billiard   – localization in the 

momentum space
Poisson

– delocalization in the 
momentum space 

Wigner-Dyson

Deformation or 
smooth random 
potential



Localization 
and diffusion 
in the angular 
momentum 
space

R
a

≡ε 0>ε

0→ε

Chaotic
stadium

Integrable circular billiard

1;0 <<= εh

Diffusion in the 
angular momentum 
space 25ε∝D

Angular momentum is 
the integral of motion

ε=0.01
g=0.012

ε=0.1
g=4

Poisson

Wigner-Dyson



D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993

1D Hubbard Model on a periodic chain
( ) ∑∑∑

′
′+−

+
++

+ +++=
σσ

σσ
σ

σσ
σ

σσσσ
,,

,1,
,

,,
,

,,1,1,
i

ii
i

ii
i

iiii nnVnnUcccctH

Onsite 
interaction

n. neighbors 
interaction

integrableHubbard 
model0=V

extended 
Hubbard 

model
nonintegrable0≠V

U=4  V=0 U=4  V=412 sites
3 particles
Zero total spin
Total momentum π/6



D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993

J=t J=2t J=5t

1D t-J model on 
a periodic chain

t

J

forbidden

exchange

hopping

1d t-J
model

N=16; one hole



Quantum  Dot
e

×

×
×

×

1. Disorder  (× − impurities)
2. Complex  geometry

e
e

e

e

×

×
3. e-e interactions for a while

Realizations:Realizations:
• Metallic clusters
• Gate determined confinement in 2D gases (e.g. GaAs/AlGaAs)
• Carbon nanotubes
•
•



Part 2 Disorder/Chaos + Interactions
ZeroZero--Dimensional FermiDimensional Fermi--liquidliquid
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What does it mean - non-Fermi liquid ?

What does it mean Fermi liquid ?



Fermi LiquidFermi Liquid

Fermi statistics

Low temperatures

Not too strong interactions

Translation invariance

Fermi
Liquid

What does it mean?What does it mean?



It means thatIt means that
1. Excitations are similar to the excitations in a Fermi-gas:

a) the same quantum numbers – momentum, spin ½ , charge e
b) decay rate is small as compared with the excitation energy

Fermi statistics
Low temperatures
Not too strong interactions
Translation invariance

Fermi
Liquid

2. Substantial renormalizations. For example, in a Fermi gas

BgTcn µχγµ ,, =∂∂
are all equal to the one-particle density of states.
These quantities are different in a Fermi liquid



1. Resistivity is proportional to T2 :
L.D. Landau & I.Ya. Pomeranchuk “To the properties of metals at very 
low temperatures”; Zh.Exp.Teor.Fiz., 1936, v.10, p.649

Signatures of the Fermi  - Liquid state  ?!

…The increase of the resistance caused by the interaction between
the electrons is proportional to T2 and at low temperatures exceeds 
the usual resistance, which is proportional to T5.

… the sum of the momenta of the interaction electrons can change 
by an integer number of the periods of the reciprocal lattice. 
Therefore the momentum increase caused by the electric field can
be destroyed by the interaction between the electrons, not only by 
the thermal oscillations of the lattice. 



1. Resistivity is proportional to T2 :
L.D. Landau & I.Ya. Pomeranchuk “To the properties of metals at very 
low temperatures”; Zh.Exp.Teor.Fiz., 1936, v.10, p.649

Umklapp electron – electron scattering dominates the 
charge transport (?!) 

Signatures of the Fermi  - Liquid state  ?!

( ) ( )pi
ZpG

n
r

r

ξε
ε

−
=,

( )pn r

p
Fp

2. Jump in the momentum distribution 
function at T=0.

2a. Pole in the one-particle Green function

Fermi liquid = 0<Z<1 (?!)



Landau Fermi  - Liquid theory

( )

( ){ }

( ) ( )

( ) ( ) ( )pnpppf

pnEp

pnE

pn

p

′≡′

≡

rrrr

rr

r

r

r

δδξ

δδξ

,

Momentum

Momentum distribution

Total energy

Quasiparticle energy

Landau f-function

Q: ?Can Fermi – liquid survive without the momenta

Does it make sense to speak about the Fermi – liquid state 
in the presence of a quenched disorder



( )pn r

p
Fp

l
h~

?Does it make sense to speak about the Fermi –
liquid state in the presence of a quenched disorderQ:

1. Momentum is not a good quantum number – the
momentum uncertainty is inverse proportional to the

elastic mean free path, l. The step in the momentum 
distribution function is broadened by this uncertainty

2. Neither resistivity nor its temperature dependence is determined by the umklapp 
processes and thus does not behave as T2

3. Sometimes (e.g., for random quenched magnetic field) the disorder averaged one-
particle Green function even without interactions does not have a pole as a 
function of the energy, ε. The residue , Z, makes no sense.

Nevertheless even in the presence of the disorderNevertheless even in the presence of the disorder
I. Excitations are similar to the excitations in a disordered Fermi-gas.
II. Small decay rate
III. Substantial renormalizations



Energy 
scalesOneOne--particle problem (particle problem (Thouless, 1972))

δ1  = 1/ν× Ld

2.2. Thouless energyThouless energy ET = hD/L2 D is the diffusion const

1.1. Mean level spacingMean level spacing

δ1

en
e r

gy L is the system size;

d is the number of
dimensions

L

. 
ET has a meaning of the inverse diffusion time of the traveling 
through the system or  the escape rate (for open systems)

dimensionless
Thouless

conductance
g = ET / δ1 g = Gh/e2



Zero Zero DimensionalFermiDimensionalFermi LiquidLiquid
Finite Thouless
System energy ET

ε << ET 0Ddef

At the same time, we want the typical energies, ε , to 
exceed the mean level spacing, δ1 :

TE<<<< εδ1
1

1

>>≡
δ

TEg



The same statistics of the 
random spectra and one-
particle wave functions 

(eigenvectors)

Ν  × Ν
Random Matrices

Quantum Dots with
dimensionless 
conductance g

Ν→ ∞ g→ ∞



|α,σ>TwoTwo--Body Body 
InteractionsInteractions

Set of one particle states. σ
and α label correspondingly 
spin and orbit.

∑∑
′

′
+

′
++ ==

σσ
δγβα

σδσγσβσααβγδ
α

σασααε
,

,,,
,,,,int,,0

ˆˆ aaaaMHaaH

εα -one-particle orbital energies Mαβγδ -interaction matrix elements

αβγδ

αε

M

are taken from the shell model

are assumed to be random 

Nuclear
Physics

αβγδ

αε

M

RANDOM; Wigner-Dyson statistics 

? ? ? ? ? ? ? ?

Quantum
Dots



Matrix ElementsMatrix Elements
∑

′

′
+

′
+=

σσ
δγβα

σδσγσβσααβγδ

,
,,,

,,,,int
ˆ aaaaMH

Diagonal Diagonal - α,β,γ,δ are equal pairwise
α=γ and β=δ or α=δ and β=γ or α=β and γ=δ

Offdiagonal Offdiagonal - otherwise

Matrix 
Elements αβγδM

It turns 
out that
in the limit

• Diagonal matrix elements are much bigger
than the offdiagonal ones

• Diagonal matrix elements in a particular 
sample  do not fluctuate - selfaveraging

loffdiagonadiagonal MM >>

∞→g



Toy model:Toy model: Short range e-e interactions

( ) ( )rrU rr δ
ν
λ

= λ is  dimensionless coupling constant 
ν is  the electron density of states

( )rrαψ
one-particle

eigenfunctions
( ) ( ) ( ) ( )rrrrrdM rrrrr

δγβααβγδ ψψψψ
ν
λ

∗∗= ∫

x

ψα

electron
wavelength

Ψα (x) is a random 
function that 
rapidly oscillates

as long as
T-invariance 
is preserved

|ψα (x)|2           0≥

ψα (x)2           0≥



In the limit • Diagonal matrix elements are much bigger than 
the offdiagonal ones

• Diagonal matrix elements in a particular sample  
do not fluctuate - selfaveraging

loffdiagonadiagonal MM >>∞→g

( ) ( )22
rrrdM rrr

βααβαβ ψψ
ν
λ

∫=

( )
volume

12 ⇒rrαψ
1λδαβαβ =M

 U
r 
r ( )More general:More general: finite range interaction potential

  
Mαβαβ =

λ
ν

ψ α
r 
r 1( )∫

2
ψ β

r 
r 2( )

2
U

r 
r 1 −

r 
r 2( )dr 

r 1d
r 
r 2

The same 
conclusion



Universal (Random Matrix) limit - Random 
Matrix symmetry of the correlation functions:

All correlation functions are  invariant under  
arbitrary  orthogonal transformation:

( ) ( ) ( )∑∫=
ν

ν
ν
µµ ψψ 111 ,~ rrrOrdr rrrrr

( ) ( ) ( )rrrrOrrOrd ′−=′∫
rrrrrrr δδ µη

η
ν

ν
µ ,, 111



There are only three operators, which are quadratic in 
the fermion operators      ,      , and invariant under RM
transformations:

a+ a

+
↓

+
↑

+

+

+

∑

∑

∑

=

=

=

,,

,,
,,

,

,
,

,

ˆ

ˆ

ˆ

α
α

α

σασσ
σσα

σα

σα
σα

σα

σ

aaT

aaS

aan

221

21

1

r

total number of particles

total spin

????



Charge conservation
(gauge invariance) -no ˆ T ˆ T + ˆ T ˆ T +or only

Invariance under 
rotations in spin space

- no ˆ S only ˆ S 2

Therefore, in a very general case

ˆ H int = eV ˆ n + Ec ˆ n 2 + J ˆ S 2 + λBCS
ˆ T + ˆ T .

Only three coupling constants describe all of 
the effects of e-e interactions



In a very general case only three coupling constants 
describe all effects of electron-electron interactions:

.ˆˆˆˆˆˆ

ˆˆ

22
int

int

TTSJnEneVH

HnH

BCSc
++++=

+= ∑
λ

ε
α

αα

I.L. Kurland, I.L.Aleiner & B.A., 2000
See also
P.W.Brouwer, Y.Oreg & B.I.Halperin, 1999
H.Baranger & L.I.Glazman, 1999
H-Y Kee, I.L.Aleiner & B.A., 1998



In a very general case only three coupling constants 
describe all effects of electron-electron interactions:

.ˆˆˆˆˆˆ

ˆˆ

22
int

int

TTSJnEneVH

HnH

BCSc
++++=

+= ∑
λ

ε
α

αα

For a short range interaction with a coupling constant λ
Ec =

λδ1

2
J = −2λδ1 λBCS = λδ1 2 − β( )

where       is the one-particle mean level spacingδ1



ˆ H 0 = εα
α
∑ nαˆ H = ˆ H 0 + ˆ H int

ˆ H int = eV ˆ n + Ec ˆ n 2 + J ˆ S 2 + λBCS
ˆ T + ˆ T .

Only one-particle part of 
the Hamiltonian,       ,
contains randomness

ˆ H 0



ˆ H 0 = εα
α
∑ nαˆ H = ˆ H 0 + ˆ H int

ˆ H int = eV ˆ n + Ec ˆ n 2 + J ˆ S 2 + λBCS
ˆ T + ˆ T .

Ec
determines the charging energy 
(Coulomb blockade)

describes the spin exchange interaction

determines effect of superconducting-like
pairing

J

λBCS
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Example 1: Coulomb Blockade

so
ur

ce
dr

ai
n

ga
te

gate voltage
gV

QDQD

cu
rr

en
t

valley peak



0.08

0.06

0.04

0.02

0

g 
(e

2

/h
)

-300 -280 -260 -240 -220
Vg (mV)

1 µm

6.2
6.0
5.8
5.6
5.4
5.2

∆

-400 -350 -300 -250
Vg (mV)

 B =  30 mT
 B = -30 mT

Coulomb Blockade Peak Spacing
Patel, et al. PRL 80 4522 (1998)
(Marcus Lab)



Example 2: Spontaneous Magnetization

e e

e e

e

× ×

×
×

×

1. Disorder 
(×impurities)

2. Complex 
geometry

3. e-e interactions

chaotic
one-particle
motion

What is the spin of the Quantum 
Dot in the ground state



How to measure the Magnetization – motion of the Coulomb 
blockade peaks in the parallel magnetic field



In the presence of magnetic field

SBSJnH
rrr
ˆˆˆ

int •++= ∑ 2

α
ααε

the probability to find a ground state at a given 
magnetic field, B, with a given spin, S, depends on 
the combination rather than on B and J separately

Scaling:

X = J + gµB
B

2S



Probability to observe a triplet 
state as a function of the 
parameter X

- results of the calculation 
based on the universal 
Hamiltonian with the RM one-
particle states

The rest – exact diagonalization 
for Hubbard clusters with 
disorder. No adjustable 
parameters 



ˆ H 0 = εα
α
∑ nαˆ H = ˆ H 0 + ˆ H int

ˆ H int = eV ˆ n + Ec ˆ n 2 + J ˆ S 2 + λBCS
ˆ T + ˆ T .

I. Excitations are similar to the excitations in a disordered Fermi-gas.
II. Small decay rate
III. Substantial renormalizations

Isn’t it a Fermi liquid ?

Fermi liquid behavior  follows from the fact that 
different wave functions are almost uncorrelated



CONCLUSIONS
Anderson localization provides a generic scenario for the 
transition between chaotic and integrable behavior.
One-particle chaos + moderate interaction of the electrons a
to a rather simple Hamiltonian of the system, which can be 
called Zero-dimensional Fermi liquid.
The main parameter that justifies this description is the 
Thouless conductance, which is supposed to be large
Excitations are characterized by their one-particle energy, 
charge and spin, but not by their momentum.
These excitations have the lifetime, which is proportional to 
the Thouless conductance, i.e., is long.
This approach allows to describe Coulomb blockade 
(renormalization of the compressibility), as well as the 
substantial renormalization of the magnetic susceptibility and 
effects of superconducting pairing  



BCS Hamiltonian Finite systems

2 2ˆˆ ˆ ˆˆ .c BCSH n E n JS T Tα α
α

ε λ += + + +∑ , ,T̂ a aα α
α

+ + +
↑ ↓= ∑

does not commute 
with K.E. 

commute with 
each other

ˆ ˆ ˆ.BCSH n T Tα α
α

ε λ += +∑



ˆ ˆ ˆ.BCSH n T Tα α
α

ε λ += +∑

double 
occupied(α)

(β) empty

(γ) single 
occupied(δ)



ˆ ˆ ˆ.BCSH n T Tα α
α

ε λ += +∑

intĤ

This single-occupied
states are not effected 
by the interaction. 

They are blocked

The Hilbert space is 
separated into two 
independent Hilbert 
subspaces

a a a aα α β β
+ +

↑ ↓ ↑ ↓ mixes and

a a a aα α β β
+ +

↑ ↓ ↑ ↓ =at the same time 0

(α) (β)
(γ,δ)double 

occupied(α)

Blocking effect . 
(V.G.Soloviev, 1961)

(β) empty

(γ) single 
occupied(δ)



One-particle 
energy

The energy is 
measured relative 
to the Fermi level

BCS 
interaction



BCS Hamiltonian; no single-occupied states
n one-particle levels; one-particle energies εα

, , , , , ,
0 1 0 , 1

,

ˆ
BCS BCS

n n

H a a a a a aα α σ α σ α α β β
α α β

α βσ

ε λ+ + +
↑ ↓ ↑ ↓

≤ ≤ − ≤ ≤ −
≠=↑ ↓

= −∑ ∑

Anderson spin chain

, , , , , ,
,

1ˆ ˆ1
2

zT a a T a a T aα α σ α σ α α̂ aα α α
σ

+ + + + −
α↑ ↓ ↑

=↑ ↓

⎛ ⎞
= − + = =⎜ ⎟

⎝ ⎠
∑ ↓

SU2
algebra

0 1 0 1 0 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆz z
BCS BCS p p BCS

n n n

H T T T T L Lα α α α
α α β α

ε λ ε λ+ −
+ −

≤ ≤ − ≤ ≠ ≤ − ≤ ≤ −

= − = −∑ ∑ ∑

ˆ ˆL Tα
α

±
± ≡ ∑



Anderson spin chain
ˆ ˆL Tα

α

≡ ∑
r r

, , , , , ,
,

1ˆ ˆ ˆ1
2

zT a a T a a T a aα α σ α σ α αα α α α
σ

+ + + + −
↑ ↓ ↑ ↓

=↑ ↓

⎛ ⎞
= − + = =⎜ ⎟

⎝ ⎠
∑

0 1 0 1 0 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆz z
BCS BCS p p BCS

n n n

H T T T T L Lα α α α
α α β α

ε λ ε λ+ −
+ −

≤ ≤ − ≤ ≠ ≤ − ≤ ≤ −

= − = −∑ ∑ ∑

α

0 εα
1 ˆˆ
BCS

Tα ∆
λ

+ ≡∑ Superconducting 
order parameter

ˆ ˆzT Nα ≡∑
ˆˆ , 0N ∆⎡ ⎤ ≠⎣ ⎦Total number of 

the particles



Anderson spin chain

, , , , , ,
,

1ˆ ˆ ˆ1
2

zT a a T a a T a aα β σ β σ α αα α α α
σ

+ + + + −
↑ ↓ ↑ ↓

=↑ ↓

⎛ ⎞
= − + = =⎜ ⎟

⎝ ⎠
∑

0 1 0 1 0 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆz z
BCS BCS p p BCS

n n n

H T T T T L Lα α α α
α α β α

ε λ ε λ+ −
+ −

≤ ≤ − ≤ ≠ ≤ − ≤ ≤ −

= − = −∑ ∑ ∑

ˆ ˆzT Nα ≡∑ Total number of the particles

For a fixed number of the particles (closed 
system we can add the term –gN2=const to the 
hamiltonian: ( )2

0 1

ˆˆ ˆ z
BCS BCS

n

H T Lα α
α

ε λ
≤ ≤ −

−∑
r ˆ ˆL Tα

α

≡ ∑
r r



( )2

0 1

ˆˆ ˆ z
BCS BCS

n

H T Lα α
α

ε λ
≤ ≤ −

−∑
r ˆ ˆL Tα

α

≡ ∑
r r

Integrable model
Richardson solution – Bethe Ansatz

0 1 0 1

1 2 1
2n nBCS E E Eβ βα β α βλ ε≤ ≤ − ≤ ≤ −

−
+ =

− −∑ ∑
0 1n

E Eα
α≤ ≤ −

= ∑

n equations for the parameters Ep

How to describe dynamics in the time domain ?



Gaudin Magnets

ˆ ˆ, 0H Hα β⎡ ⎤ =⎣ ⎦0 1

ˆ ˆ
ˆ ˆ2 0,1,2,..., 1z

n

T T
H AT nα β

α α
β α β

β α

α
ε ε≤ ≤ −

≠

= − = −
−∑

r r

0 intgrals of moti nˆ oHβ > −0 Hamiltoˆ nianH −

BCS Hamiltonian

0 1

2ˆ ˆ
BCS BCS

n

H H const
Aα α

α

ε λ
≤ ≤ −

= + =∑



Overhauser interaction of electronic spins in quantum dots

e



Overhauser interaction of electronic spins in quantum dots

e

B



Overhauser interaction of electronic spins in quantum dots

N NN N

N NN N

N N

N N

e

•More than 106 of nuclear spins per electron
•Excange interaction of the electronic spin with the 
nuclear ones.

•Collective effect of the nuclei on the electron is 
pretty strong.

•No interaction between the nuclear spins 

0 0
1 1

ˆ ˆ ˆˆ z
eN

n

H S S BSα α
α

γ
≤ ≤ −

= −∑
r r

( ) 2
rα αγ ψ∝
r

( )

0

0

.
|

ˆ

.
|

ˆ spin of the electron

nuclear spins
the electron w f

magnetic fiel z
r

d

S

S

B

α

αψ
>

−

−
−

−

r

r

r



Overhauser interaction of electronic spins in quantum dots

N NN N

N NN N

N N

N N

e

0 0
1 1

ˆ ˆ ˆˆ z
eN

n

H S S BSα α
α

γ
≤ ≤ −

= −∑
r r

0 1,

ˆ ˆ2ˆ ˆ z

n

T T
H ATα β

α α
β β α α βε ε≤ ≤ − ≠

= −
−∑
r r

Central spin problem
Gaudin problem

0
0

ˆ ˆ

2ˆ ˆ
eN

S T

H H

B A

α α

α
α

γ
ε ε

⇒

= ⇒
−

⇒

r r



0 0
1 1

ˆ ˆ ˆˆ z
eN

n

H S S BSα α
α

γ
≤ ≤ −

= −∑
r r

0 1,

ˆ ˆ2ˆ ˆ z

n

T T
H ATα β

α α
β β α α βε ε≤ ≤ − ≠

= −
−∑
r r

Central spin problem

0
0

ˆ ˆ

2ˆ ˆ
eN

S T

H H

B A

α α

α
α

γ
ε ε

⇒

= ⇒
−

⇒

r r
Gaudin problem

Idea:
•Can we consider the classical dynamics of these Hamiltonians?
•Can it be described explicitly?
•What are connections between the classical and quantum dynamics?

T̂ sα α⇐
r r

L̂ J⇐
r r

Substitute quantum 
spin operators by 
classical vectors
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