Not Yet

Introduction to Mesoscopics

Boris Altshuler Princeton University,
NEC Laboratories America,

ORIGINS

E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956
P.W. Anderson, "Absence of Diffusion in Certain Random Lattices"; Phys.Rev., 1958, v.109, p. 1492
L.D. Landau, "Fermi-Liquid Theory" Zh. Exp. Teor. Fiz.,1956, v.30, p. 1058
J. Bardeen, L.N. Cooper \& J. Schriffer, "Theory of Superconductivity"; Phys.Rev., 1957, v.108, p.1175.

Part 1 Without interactions

Random Matrices, Anderson Localization, and Quantum Chaos

RANDOM MATRIX THEORY

$N \times N$ ensemble of Hermitian matrices with random matrix element

$$
N \rightarrow \infty
$$

\boldsymbol{E}_{α}

$\delta_{1} \equiv\left\langle\boldsymbol{E}_{\alpha+1}-\boldsymbol{E}_{\alpha}\right\rangle$
$\langle\ldots . .$.

$$
\boldsymbol{s} \equiv \frac{\boldsymbol{E}_{\alpha+1}-\boldsymbol{E}_{\alpha}}{\delta_{1}} \quad \begin{gathered}
\text { - spacing between nearest } \\
\text { neighbors }
\end{gathered} ~
$$

- spectrum (set of eigenvalues)
- mean level spacing
- ensemble averaging
- distribution function of nearest neighbors spacing between

Spectral Rigidity

 $\boldsymbol{P}(\boldsymbol{s}=0)=0$ Level repulsion
Dyson Ensembles and Hamiltonian systems

Matrix elements
real
complex
2×2 matrices simplectic 4

Gaussian Orthogonal Ensemble

Poisson - completely uncorrelated levels

RANDOM MATRICES

$\boldsymbol{N} \times \boldsymbol{N}$ matrices with random matrix elements. $\quad \boldsymbol{N} \rightarrow \infty$

Dyson Ensembles

Matrix elements Ensemble $\underline{\beta} \quad$ realization

real orthogonal 1

T-inv potential
complex
2×2 matrices simplectic $4 \quad$ T-inv, but with spinorbital coupling

Reason for $P(s) \rightarrow 0$ when $s \rightarrow 0$:
$\hat{H}=\left(\begin{array}{ll}H_{11} & H_{12} \\ H_{12}^{*} & H_{22}\end{array}\right)$

$$
E_{2}-E_{1}=\sqrt{\left(H_{22}-H_{11}\right)^{2}+\left|H_{12}\right|^{2}}
$$

1. The assumption is that the matrix elements are statistically independent. Therefore probability of two levels to be degenerate vanishes.
2. If H_{12} is real (orthogonal ensemble), then for S to be small two statistically independent variables $\left(H_{22}-H_{11}\right)$ and $\left.H_{12}\right)$ should be small and thus $P(s) \propto s \quad \beta=1$
3. Complex H_{12} (unitary ensemble) \Longrightarrow both $\operatorname{Re}\left(H_{12}\right)$ and $\operatorname{Im}\left(H_{12}\right)$ are statistically independent \Longrightarrow three independent random variables should be small $\Longrightarrow P(s) \propto s^{2} \quad \beta=2$

Dyson Ensembles and Hamiltonian systems

Matrix elements

real
complex

Ensemble
orthogonal
unitary
2

4

realization

T-inv potential
broken T-invariance (e.g., by magnetic field)

T-inv, but with spinorbital coupling

Main goal is to classify the eigenstates in terms of the quantum numbers

For the nuclear excitations this program does not work

Study spectral statistics of a particular quantum system

- a given nucleus

Random Matrices	Atomic Nuclei
• Ensemble	• Particular quantum system
- Ensemble averaging	- Spectral averaging (over α)

Nevertheless
Statistics of the nuclear spectra are almost exactly the same as the Random Matrix Statistics

 Particular nucleus
 ${ }^{166} \mathrm{Er}$

Spectra of several nuclei combined (after rescaling by the mean level spacing)

Why the random matrix theory (RMT) works so well for nuclear spectra

Original answer:

These are systems with a large number of degrees of freedom, and therefore the "complexity" is high

Later it there exist very "simple" systems with as many as 2 degrees of freedom (d=2), which demonstrate clear that RMT - like spectral statistics

Classical $(\hbar=0)$ Dynamical Systems with d degrees of freedom

Integrable Systems

The variables can be separated and the problem reduces to d onedimensional problems

Examples

1. A ball inside rectangular billiard; $d=2$

- Vertical motion can be separated from the horizontal one
- Vertical and horizontal components of the momentum, are both integrals of motion

2. Circular billiard; $d=2$

- Radial motion can be separated from the angular one
- Angular momentum and energy are the integrals of motion

Classical Dynamical Systems with \boldsymbol{d} degrees of freedom

Integrable Systems

The variables can be separated $\Rightarrow d$ one-dimensional problems $\Rightarrow d$ integrals of motion

Rectangular and circular billiard, Kepler problem, ..., 1d Hubbard model and other exactly solvable models, . .

Chaotic Systems

The variables can not be separated \Rightarrow there is only one integral of motion - energy

Examples

Sinai billiard

Kepler problem
in magnetic field

Classical Chaos $\hbar=0$

-Nonlinearities

-Lyapunov exponents
-Exponential dependence on the original conditions

- Ergodicity

Quantum description of any System with a finite number of the degrees of freedom is a linear problem Shrodinger equation

What does it mean Quantum Chaos

$\hbar \neq 0$

Volume 52

Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws

O. Bohigas, M. J. Giannoni, and C. Schmit

Division de Physique Théorique, Institut de Physique Nucléaire, F-91406 Orsay Cedex, France (Received 2 August 1983)
It is found that the level fluctuations of the quantum Sinai's billiard are consistent with the predictions of the Gaussian orthogonal ensemble of random matrices. This reinforces the belief that level fluctuation laws are universal.

Chaotic classical analog

 summary, the question at issue is to prove or disprove the following conjecture: Spectra of time-reversal-invariant systems whose classical analogs are K systems show the same fluctuation properties as predicted by GOE

Wigner- Dyson spectral statistics

No quantum numbers except energy

What does it mean Quantum Chaos

Two possible definitions

Chaotic
classical
analog

Wigner -Dyson-like spectrum

Classical
 Quantum

Poisson

Chaotic

WignerDyson

Poisson to Wigner-Dyson crossover

Important example: quantum particle subject to a random potential - disordered conductor察 Scattering centers, e.g., impurities

- As well as in the case of Random Matrices (RM) there is a luxury of ensemble averaging.
-The problem is much richer than RM theory -There is still a lot of universality.
Anderson Iocalization (1958)

At strong enough
disorder all eigenstates are localized in space

ORIGINS

E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956
P.W. Anderson, "Absence of Diffusion in Certain Random Lattices"; Phys.Rev., 1958, v.109, p. 1492
L.D. Landau, "Fermi-Liquid Theory" Zh. Exp. Teor. Fiz.,1956, v.30, p. 1058
J. Bardeen, L.N. Cooper \& J. Schriffer, "Theory of Superconductivity"; Phys.Rev., 1957, v.108, p.1175.

Correlations due to Localization in Quantum Eigenfunctions of Disordered Microwave Cavities

Prabhakar Pradhan and S. Sridhar
Department of Physics, Northeastern University, Boston, Massachusetts 02115
(Received 28 February 2000)

Anderson Insulator
Anderson Metal

Poisson to Wigner-Dyson crossover

Important example: quantum particle subject to a random potential - disordered conductor

- Scattering centers, e.g., impurities

Models of disorder:
Randomly located impurities
White noise potential
Lattice models
Anderson model
Lifshits model

Anderson Model

- Lattice - tight binding model
(Q) Onsite energies ε_{i}-random

- $\theta_{i} \theta^{\otimes}$
- Hopping matrix elements $I_{i j}$ $I_{i j}= \begin{cases}I & \begin{array}{l}i \text { and } \dot{j} \text { are nearest } \\ \text { neighbors }\end{array} \\ 0 & \text { otherwise }\end{cases}$

Anderson Transition

$I<\boldsymbol{I}_{c}$

Insulator
All eigenstates are localized Localization length ξ

$$
\quad I>I_{c}
$$

There appear states extended all over the whole system

Anderson Transition

$I<I_{c}$

Insulator

All eigenstates are localized Localization length ξ

The eigenstates, which are localized at different places will not repel each other

Poisson spectral statistics

$I>I_{c}$

Metal
There appear states extended all over the whole system

Any two extended eigenstates repel each other

Wigner - Dyson spectral statistics

Zharekeschev \& Kramer.
Exact diagonalization of the Anderson model
$3 D$ cube of volume $20 \times 20 \times 20$

Realizations:

- Metallic clusters
- Gate determined confinement in 2D gases (e.g. GaAs/AlGaAs)
- Carbon nanotubes

One-particle problem (Thouless, 1972)

Energy scales

1. Mean level spacing

$$
\delta_{1}=1 / v \times L^{d}
$$

底

2. Thouless energy
 $\boldsymbol{E}_{T}=\boldsymbol{h D} / \mathbf{L}^{2}$

D is the diffusion const
\boldsymbol{E}_{T} has a meaning of the inverse diffusion time of the traveling through the system or the escape rate (for open systems)
dimensionless

$$
g=\boldsymbol{E}_{T} / \delta_{1}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { dimensionless } \\
\text { Thouless } \\
\text { conductance }
\end{array}
\end{aligned} \quad g=\boldsymbol{G h} / \boldsymbol{e}^{2}
$$

Thouless Conductance and One-particle Spectral Statistics

Poisson spectral statistics

Extended states Metal

Wigner-Dyson spectral statistics
$N \times N$
Random Matrices

Quantum Dots
with Thouless

The same statistics of the random spectra and oneparticle wave functions (eigenvectors)

Scaling theory of Localization

(Abrahams, Anderson, Licciardello and Ramakrishnan 1979)

$g=\boldsymbol{E}_{T} / \delta_{1}$
 Dimensionless Thouless conductance
 $g=G h / e^{2}$

$$
L=2 L=4 L=8 L \ldots
$$

without quantum corrections

$$
\boldsymbol{E}_{\boldsymbol{T}} \propto \boldsymbol{L}^{-2} \quad \delta_{1} \propto \boldsymbol{L}^{-d}
$$

$$
\mathbf{g}=\mathbf{g}=\mathbf{g}=\mathbf{g}
$$

volume $=8 \times 8 \times 8$

volume $=20 \times 20 \times 20$

Critical electron eigenstate at the Anderson transition
Conductance \boldsymbol{g}

$100 \times 100 \times 100$

 Anderson model cube
Anderson transition in terms of pure level statistics

Correlations due to Localization in Quantum Eigenfunctions of Disordered Microwave Cavities
Prabhakar Pradhan and S. Sridhar
Department of Physics, Northeastern University, Boston, Massachusetts 02115

Chaotic All integrable systems are integrable in their own way

All chaotic systems resemble each other.

Disordered Systems:

$\boldsymbol{E}_{\boldsymbol{T}}>\delta_{1} ; \quad \boldsymbol{g}>1$
Anderson metal;
Wigner-Dyson spectral statistics
$\boldsymbol{E}_{T}<\delta_{1} ; \quad \boldsymbol{g}<1{ }^{\text {Anderson insulator; }}$
Poisson spectral statistics

> Is it a generic scenario for the - Wigner-Dyson to Poisson crossover

Speculations

Consider an integrable system. Each state is characterized by a set of quantum numbers.

It can be viewed as a point in the space of quantum numbers. The whole set of the states forms a lattice in this space.

A perturbation that violates the integrability provides matrix elements of the hopping between different sites (Anderson model !?)

Q:
 Does Anderson localization provide? a generic scenario for the Wigner-?

 Dyson to Poisson crossoverConsider an integrable system. Each state is characterized by a set of quantum numbers.

It can be viewed as a point in the space of quantum numbers. The whole set of the states forms a lattice in this space.

A perturbation that violates the integrability provides matrix elements of the hopping between different sites (Anderson model !?)

Weak enough hopping - Localization - Poisson Strong hopping - transition to Wigner-Dyson

The very definition of the localization is not invariant - one should specify in which space the eigenstates are localized.

Level statistics is invariant:

Poissonian statistics

马 basis where the

- eigenfunctions are localized

Wigner -Dyson statistics
\forall basis the eigenfunctions are extended

Example 1

Low concentration of donors

Higher donor concentration

Doped semieondurtor

Electrons are localized on donors \Rightarrow Poisson

Electronic states are extended \Rightarrow Wigner-Dyson

Example 2 Reetangular hilliapd Two $\underset{\substack{\text { integrals } \\ \text { of motion }}}{p_{x}}=\frac{\pi n}{L_{x}} ; \quad p_{y}=\frac{\pi m}{L_{x}}$
Line (surface) of constant energy

Ideal billiard - localization in the
Lattice in the momentum space
momentum space \Rightarrow Poisson

Deformation or - delocalization in the smooth random momentum space potential \Rightarrow Wigner-Dyson
${ }^{a 7}$ Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, 2000 Maribor, Slovenia (Received 29 July 1996)

$\varepsilon \rightarrow 0$ Integrable circular billiard
Angular momentum is the integral of motion

$$
\hbar=0 ; \quad \varepsilon \ll 1
$$

Diffusion in the angular momentum space

D.Poilblanc, T.Ziman, J.Bellisard, F.Mila \& G.Montambaux Europhysics Letters, v.22, p.537, 1993

1D Hubbard Model on a periodic chain

$$
H=t \sum_{i, \sigma}\left(c_{i, \sigma}^{+} c_{i+1, \sigma}+c_{i+1, \sigma}^{+} c_{i, \sigma}\right)+U \sum_{i, \sigma} n_{i, \sigma} n_{i,-\sigma}+V \sum_{i, \sigma, \sigma^{\prime}} n_{i, \sigma} n_{i+1, \sigma^{\prime}}
$$

$V=0 \begin{gathered}\text { Hubbard } \\ \text { model }\end{gathered}$ integrable extended Hubbard nonintegrable

12 sites
3 particles
Zero total spin
Total momentum $\pi / 6$

D.Poilblanc, T.Ziman, J.Bellisard, F.Mila \& G.Montambaux Europhysics Letters, v.22, p.537, 1993

Realizations:

- Metallic clusters
- Gate determined confinement in 2D gases (e.g. GaAs/AlGaAs)
- Carbon nanotubes

Part 2 Disorder/Chaos + Interactions

Zero-Dimensional Fermi-liquid

ORIGINS

E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956
P.W. Anderson, "Absence of Diffusion in Certain Random Lattices"; Phys.Rev., 1958, v.109, p. 1492
L.D. Landau, "Fermi-Liquid Theory" Zh. Exp. Teor. Fiz.,1956, v.30, p. 1058
J. Bardeen, L.N. Cooper \& J. Schriffer, "Theory of Superconductivity"; Phys.Rev., 1957, v.108, p.1175.

What does it mean-mon-Fermi liquid?

What does it mean Fermi liquid
$?$

Fermi Liquial

- Fermi statistics
- Low temperatures
- Not too strong interactions

Fermi Liquid

- Translation invariance

W'nat cloes it mean?

- Fermi statistics
- Low temperatures

Fermi
Liquid

It means that

1. Excitations are similar to the excitations in a Fermi-gas:
a) the same quantum numbers - momentum, spin $1 / 2$, charge e
b) decay rate is small as compared with the excitation energy
2. Substantial renormalizations. For example, in a Fermi gas

$$
\partial n / \partial \mu, \quad \gamma=c / T, \quad \chi / g \mu_{B}
$$

are all equal to the one-particle density of states. These quantities are different in a Fermi liquid

Signatures of the Fermi - Liquid state

1. Resistivity is proportional to T^{2} :

L.D. Landau \& I.Ya. Pomeranchuk "To the properties of metals at very low temperatures"; Zh.Exp.Teor.Fiz., 1936, v.10, p. 649

The increase of the resistance caused by the interaction between the electrons is proportional to T^{2} and at low temperatures exceeds the usual resistance, which is proportional to T^{5}.
... the sum of the momenta of the interaction electrons can change by an integer number of the periods of the reciprocal lattice. Therefore the momentum increase caused by the electric field can be destroyed by the interaction between the electrons, not only by the thermal oscillations of the lattice.

Signatures of the Fermi - Liquid state

1. Resistivity is proportional to T^{2} :
L.D. Landau \& I.Ya. Pomeranchuk "To the properties of metals at very low temperatures"; Zh.Exp.Teor.Fiz., 1936, v.10, p. 649 Umklapp electron - electron scattering dominates the charge transport (?!)
2. Jump in the momentum distribution function at $T=0$.

2a. Pole in the one-particle Green function

$$
G(\varepsilon, \vec{p})=\frac{Z}{i \varepsilon_{n}-\xi(\vec{p})}
$$

$$
\text { Fermi liquid }=0<Z<1 \quad \text { (?!) }
$$

Landau Fermi - Liquid theory

Momentum

\vec{p}

Momentum distribution $n(\vec{p})$

Total energy $E\{n(\vec{p})\}$

Quasiparticle energy
$\xi(\vec{p}) \equiv \delta E / \delta n(\vec{p})$

Landau f-function
$f\left(\vec{p}, \vec{p}^{\prime}\right) \equiv \delta \xi(\vec{p}) / \delta n\left(\vec{p}^{\prime}\right)$

Can Fermi - liquid survive without the momenta
Does it make sense to speak about the Fermi - liquid state in the presence of a quenched disorder

- Does it make sense to speak about the Fermi -- liquid state in the presence of a quenched disorder

1. Momentum is not a good quantum number - the momentum uncertainty is inverse proportional to the elastic mean free path, \boldsymbol{l}. The step in the momentum distribution function is broadened by this uncertainty

2. Neither resistivity nor its temperature dependence is determined by the umklapp processes and thus does not behave as T^{2}
3. Sometimes (e.g., for random quenched magnetic field) the disorder averaged oneparticle Green function even without interactions does not have a pole as a function of the energy, ε. The residue, \mathbb{Z}, makes no sense.

Nevert'neless even in th'ne presence of t'ne clisorcler
I. Excitations are similar to the excitations in a disordered Fermi-gas.
II. Small decay rate
III. Substantial renormalizations

One-particle problem (Thouless, 1972)

Energy scales

1. Mean level spacing

$$
\delta_{1}=1 / v \times L^{d}
$$

底

2. Thouless energy
 $\boldsymbol{E}_{T}=\boldsymbol{h D} / \mathbf{L}^{2}$

D is the diffusion const
\boldsymbol{E}_{T} has a meaning of the inverse diffusion time of the traveling through the system or the escape rate (for open systems)
dimensionless

$$
g=\boldsymbol{E}_{T} / \delta_{1}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { dimensionless } \\
\text { Thouless } \\
\text { conductance }
\end{array}
\end{aligned} \quad g=\boldsymbol{G h} / \boldsymbol{e}^{2}
$$

Zero DimensionalFermi Liguid

Finite
 System

At the same time, we want the typical energies, ε, to exceed the mean level spacing, δ_{1} :
$\delta_{1} \ll \varepsilon \ll E_{T}$

$$
g \equiv \frac{E_{T}}{\delta_{1}} \gg 1
$$

$N \times N$
 Random Matrices

Quantum Dots with dimensionless conductance g

The same statistics of the random spectra and oneparticle wave functions (eigenvectors)

Two-Body Interactions

Set of one particle states. σ and a label correspondingly spin and orbit.

$$
\hat{H}_{0}=\sum_{\alpha} \varepsilon_{\alpha} a_{\alpha, \sigma}^{+} a_{\alpha, \sigma} \quad \hat{H}_{\mathrm{int}}=\sum_{\substack{\alpha, \beta, \gamma, \delta \\ \sigma, \sigma^{\prime}}} M_{\alpha \beta \gamma \delta} a_{\alpha, \sigma}^{+} a_{\beta, \sigma^{\prime}}^{+} a_{\gamma, \sigma} a_{\delta, \sigma^{\prime}}
$$

ε_{α}-one-particle orbital energies
$\boldsymbol{M}_{\alpha \beta \gamma \delta}$-interaction matrix elements

Nuclear
Physics $\quad M_{\alpha \beta \gamma \delta}$ are assumed to be random

Quantum
$\varepsilon_{\alpha} \quad$ RANDOM; Wigner-Dyson statistics
Dots

$$
M_{\alpha \beta \gamma \delta} \text { ?? ? ? ? ? ? ? }
$$

Matix Elements

$$
\hat{H}_{\mathrm{int}}=\sum_{\substack{\alpha, \beta, \gamma, \delta \\ \sigma, \sigma^{\prime}}} M_{\alpha \beta \gamma \delta} a_{\alpha, \sigma}^{+} a_{\beta, \sigma^{\prime}}^{+} a_{\gamma, \sigma} a_{\delta, \sigma^{\prime}}
$$

Diagonal - $\alpha, \beta, \gamma, \delta$ are equal pairwise

Matrix
 Elements $M_{\alpha \beta \gamma \delta}$
 Offdiagonal - otherwise

$\alpha=\gamma$ and $\beta=\delta$ or $\alpha=\delta$ and $\beta=\gamma$ or $\alpha=\beta$ and $\gamma=\delta$

It turns out that

 in the limit $g \rightarrow \infty$- Diagonal matrix elements are much bigger than the offdiagonal ones

$$
M_{\text {diagonal }} \gg M_{\text {offdiagonal }}
$$

- Diagonal matrix elements in a particular sample do not fluctuate - selfaveraging

Toy model:

Short range ese interactions
$U(\vec{r})=\frac{\lambda}{\nu} \delta(\vec{r}) \quad \lambda$ is dimensionless coupling constant v is the electron density of states

$$
M_{\alpha \beta \gamma \delta}=\frac{\lambda}{v} \int d \vec{r} \psi *_{\alpha}(\vec{r}) \psi *_{\beta}(\vec{r}) \psi_{\gamma}(\vec{r}) \psi_{\delta}(\vec{r})
$$

$\psi_{\alpha}(\vec{r})$ one-particle eigenfunctions

$\Psi_{\alpha}(\boldsymbol{x})$ is a random function that rapidly oscillates

$$
\left|\psi_{\alpha}(x)\right|^{2} \geq 0
$$

$$
\psi_{\alpha}(x)^{2} \geq 0 \begin{aligned}
& \text { as long as } \\
& \\
& \\
& \text { is preserved }
\end{aligned}
$$

In the limit

- Diagonal matrix elements are much bigger than the offdiagonal ones
$g \rightarrow \infty \quad M_{\text {diagonal }} \gg M_{\text {offdiagonal }}$
- Diagonal matrix elements in a particular sample do not fluctuate - selfaveraging

$$
\begin{gathered}
M_{\alpha \beta \alpha \beta}=\frac{\lambda}{v} \int d \vec{r}\left|\psi_{\alpha}(\vec{r})\right|^{2}\left|\psi_{\beta}(\vec{r})\right|^{2} \\
\left|\psi_{\alpha}(\vec{r})\right|^{2} \Rightarrow \frac{1}{\text { volume }}
\end{gathered}
$$

$$
M_{\alpha \beta \alpha \beta}=\lambda \delta_{1}
$$

More general: finite range interaction potential $U(\vec{r})$

$$
\left.M_{\alpha \beta \alpha \beta}=\frac{\lambda}{v} \int\left|\psi_{\alpha}\left(\vec{r}_{1}\right)\right|^{2} \right\rvert\, \psi_{\beta}\left(\vec{r}_{2}\right)^{2} U\left(\vec{r}_{1}-\vec{r}_{2}\right) d \vec{r}_{1} d r_{2}
$$

The same conclusion

Universal (Random Matrix) limit - Random Matrix symmetry of the correlation functions:

All correlation functions are invariant under arbitrary orthogonal transformation:

$$
\tilde{\psi}_{\mu}(\vec{r})=\sum_{v} \int d \vec{r}_{1}{ }_{\mu}^{v}\left(\vec{r}, \vec{r}_{1}\right) \psi_{v}\left(\vec{r}_{1}\right)
$$

$$
\int d \vec{r}_{1} O_{\mu}^{\prime}\left(\vec{r}, \vec{r}_{1}\right) O_{v}^{\eta}\left(\vec{r}_{1}, \vec{r}^{\prime}\right)=\delta_{\mu \eta} \delta\left(\vec{r}-\vec{r}^{\prime}\right)
$$

There are only three operators, which are quadratic in the fermion operators a^{+}, a, and invariant under RM transformations:

$$
\begin{aligned}
& \hat{n}=\sum_{\alpha, \sigma} a_{\alpha, \sigma}^{+} a_{\alpha, \sigma} \\
& \hat{S}=\sum_{\alpha, \sigma_{1}, \sigma_{2}} a_{\alpha, \sigma_{1}}^{+} \vec{\sigma}_{\sigma_{1}, \sigma_{2}} a_{\alpha, \sigma_{2}} \\
& \hat{T}^{+}=\sum_{\alpha} a_{\alpha, \uparrow}^{+} a_{\alpha, \downarrow}^{+}
\end{aligned}
$$

total number of particles

total spin

????

Charge conservation (gauge invariance)

$\boldsymbol{\theta} \boldsymbol{T} \backsim \hat{T}^{+} \hat{T} \hat{T}^{+}$

Invariance under rotations in spin space $\hat{S}-\hat{S}^{2}$

Therefore, in a very general case

$$
\hat{H}_{\mathrm{int}}=e V \hat{n}+E_{c} \hat{n}^{2}+J \hat{S}^{2}+\lambda_{B C S} \hat{T}^{+} \hat{T}
$$

Only three coupling constants describe all of the effects of e-e interactions

In a very general case only three coupling constants describe all effects of electron-electron interactions:

$$
\begin{aligned}
& \hat{H}=\sum_{\alpha} \varepsilon_{\alpha} n_{\alpha}+\hat{H}_{\mathrm{int}} \\
& \hat{H}_{\mathrm{int}}=e V \hat{n}+E_{c} \hat{n}^{2}+J \hat{S}^{2}+\lambda_{B C S} \hat{T}^{+} \hat{T}
\end{aligned}
$$

I.L. Kurland, I.L.Aleiner \& B.A., 2000

See also
P.W.Brouwer, Y.Oreg \& B.I.Halperin, 1999
H.Baranger \& L.I. Glazman, 1999

H-Y Kee, I.L.Aleiner \& B.A., 1998

In a very general case only three coupling constants describe all effects of electron-electron interactions:

$$
\hat{H}=\sum_{\alpha} \varepsilon_{\alpha} n_{\alpha}+\hat{H}_{\mathrm{int}}
$$

$$
\hat{H}_{\mathrm{int}}=e V \hat{n}+E_{c} \hat{n}^{2}+J \hat{S}^{2}+\lambda_{B C S} \hat{T}^{+} \hat{T}
$$

For a short range interaction with a coupling constant λ

$$
E_{c}=\frac{\lambda \delta_{1}}{2} \quad J=-2 \lambda \delta_{1} \quad \lambda_{B C S}=\lambda \delta_{1}(2-\beta)
$$

where δ_{1} is the one-particle mean level spacing

$$
\overline{\hat{H}_{0}}=\sum_{\alpha} \varepsilon_{\alpha} n_{\alpha}
$$

$\hat{H}_{\mathrm{int}}=e V \hat{n}+E_{c} \hat{n}^{2}+J \hat{S}^{2}+\lambda_{\mathrm{BCC}} \hat{S}^{+} \hat{T}$.

Only one-particle part of the Hamiltonian, H_{0}, contains randomness

$$
\hat{H}=\hat{H}_{0}+\hat{H}_{\mathrm{int}} \quad \hat{H}_{0}=\sum_{\alpha} \varepsilon_{\alpha} n_{\alpha}
$$

$$
\hat{H}_{\mathrm{int}}=e V \hat{n}+E_{c} \hat{n}^{2}+J \hat{S}^{2}+\lambda_{B C S} \hat{T}^{+} \hat{T}
$$

E_{c}determines the charging energy (Coulomb blockade)
J describes the spin exchange interaction
$\lambda_{B C S} \quad \begin{aligned} & \text { determines effect of superconducting-like } \\ & \text { pairing }\end{aligned}$

ORIGINS

E.P. Wigner, Conference on Neutron Physics by Time of Flight, November 1956
P.W. Anderson, "Absence of Diffusion in Certain Random Lattices"; Phys.Rev., 1958, v.109, p. 1492
L.D. Landau, "Fermi-Liquid Theory" Zh. Exp. Teor. Fiz.,1956, v.30, p. 1058
J. Bardeen, L.N. Cooper \& J. Schriffer, "Theory of Superconductivity"; Phys.Rev., 1957, v.108, p. 1175.

Example 1: Coulomb Blockade

Coulomb Blockade Peak Spacing
Patel, et al. PRL 804522 (1998)
(Marcus Lab)

Example 2: Spontaneous Magnetization

1. Disorder

 (ximpurities)2. Complex geometry
3. $\mathbf{e}-\mathbf{e}$ interactions
chaotic
one-particle motion

- What is the spin of the Quantum - Dot in the ground state

How to measure the Magnetization blockade peaks in the
 magnetic field

In the presence of magnetic field

$\hat{H}_{\mathrm{int}}=\sum \varepsilon_{\alpha} n_{\alpha}+J \overrightarrow{\hat{S}}^{2}+\vec{B} \bullet \overrightarrow{\hat{S}}$ α

Scaling:

the probability to find a ground state at a given magnetic field, \boldsymbol{B}, with a given spin, \boldsymbol{S}, depends on the combination rather than on \boldsymbol{B} and \boldsymbol{J} separately

$$
X=J+g \mu_{B} \frac{B}{2 S}
$$

Probability to observe a triplet state as a function of the parameter X

- - results of the calculation based on the universal Hamiltonian with the RM oneparticle states

The rest - exact diagonalization for Hubbard clusters with disorder. No adjustable parameters

$$
\hat{H}=\hat{H}_{0}+\hat{H}_{\mathrm{int}}
$$

$$
\hat{H}_{0}=\sum_{\alpha} \varepsilon_{\alpha} n_{\alpha}
$$

$\hat{H}_{\mathrm{int}}=e V \hat{n}+E_{c} \hat{n}^{2}+J \hat{S}^{2}+\lambda_{B C S} \hat{T}^{+} \hat{T}$
I. Excitations are similar to the excitations in a disordered Fermi-gas.
II. Small decay rate
III. Substantial renormalizations

Isn't it a Fermi liquid ?

Fermi liquid behavior follows from the fact that different wave functions are almost uncorrelated

Anderson localization provides a generic scenario for the transition between chaotic and integrable behavior.
One-particle chaos + moderate interaction of the electrons \mapsto to a rather simple Hamiltonian of the system, which can be called Zero-dimensional Fermi liquid.
The main parameter that justifies this description is the Thouless conductance, which is supposed to be large
Excitations are characterized by their one-particle energy, charge and spin, but not by their momentum.
These excitations have the lifetime, which is proportional to the Thouless conductance, i.e., is long.
This approach allows to describe Coulomb blockade (renormalization of the compressibility), as well as the substantial renormalization of the magnetic susceptibility and effects of superconducting pairing

BCS Hamiltonian
 Finite systems

$$
\hat{H}=\sum_{\alpha} \varepsilon_{\alpha} n_{\alpha}+E_{c} \hat{n}^{2}+J \hat{S}^{2}+\lambda_{B C S} \hat{T}^{+} \hat{T} .
$$

$$
\hat{T}^{+}=\sum_{\alpha} a_{\alpha, \uparrow}^{+} a_{\alpha, \downarrow}^{+}
$$

1 1

commute with each other

does not commute with K.E.

$$
\hat{H}=\sum_{\alpha} \varepsilon_{\alpha} n_{\alpha}+\lambda_{\text {BCS }} \hat{T}^{+} \hat{T} .
$$

$\hat{H}=\sum_{\alpha} \varepsilon_{\alpha} n_{\alpha}+\lambda_{\text {BCS }} \hat{T}^{+} \hat{T}$.
(α) \propto - $\begin{aligned} & \text { double } \\ & \text { occupied }\end{aligned}$
(β) ———empty
(r) - \mathbb{Q} - single
(δ) occupied

$$
\hat{H}=\sum_{\alpha} \varepsilon_{\alpha} n_{\alpha}+\lambda_{B C S} \hat{T}^{+} \hat{T}
$$

double occupied

$$
a_{\alpha \uparrow}^{+} a_{\alpha \downarrow}^{+} a_{\beta \uparrow} a_{\beta \downarrow} \operatorname{mixes}(\alpha) \text { and }(\beta)
$$

at the same time $a_{\alpha \uparrow}^{+} a_{\alpha \downarrow}^{+} a_{\beta \uparrow} a_{\beta \downarrow}(\gamma, \delta)=0$
$(\beta) \longrightarrow$ empty

This single-occupied states are not effected by the interaction.

They are blocked
The Hilbert space is separated into two independent Hilbert subspaces

Blocking effect . (V.G.Soloviev, 1961)

Theory of Superconductivity*

J. Bardeen, L. N. Cooper, \dagger and J. R. Schrieffer \ddagger Department of Physics, University of Illinois, Urbana, Illinois (Received July 8, 1957)

$$
H_{\mathrm{red}}=2 \sum_{k>k_{F}} \epsilon_{\mathrm{k}} b_{\mathrm{k}}^{*} b_{\mathrm{k}}+2 \sum_{k<k F}\left|\epsilon_{\mathrm{k}}\right| b_{\mathrm{k}} b_{\mathrm{k}}^{*}
$$

$$
\begin{equation*}
-\sum_{\mathbf{k k}^{\prime}} V_{\mathbf{k k}^{\prime}} b_{\mathbf{k}^{\prime}}, b_{\mathrm{k}} . \tag{2.14}
\end{equation*}
$$

$$
\begin{aligned}
& \text { One-particle } \\
& \text { energy }
\end{aligned}
$$

$$
\begin{aligned}
b_{\mathrm{k}} & =c_{-\mathrm{k} \downarrow} c_{\mathrm{k} \mathrm{t}}, \\
b_{\mathrm{k}}^{*} & =c_{\mathrm{k}} \mathrm{t}^{*} c_{-\mathrm{k} \downarrow} *
\end{aligned}
$$

The energy is measured relative to the Fermi level

BCS Hamiltonian; no single-occupied states

\boldsymbol{n} one-particle levels; one-particle energies \mathcal{E}_{α}

$$
\hat{H}_{B C S}=\sum_{\substack{0 \leq \alpha \leq n-1 \\ \sigma=\uparrow, \downarrow}} \varepsilon_{\alpha} a_{\alpha, \sigma}^{+} a_{\alpha, \sigma}-\lambda_{B C S} \sum_{\substack{0 \leq \alpha, \beta \leq n-1 \\ \alpha \neq \beta}} a_{\alpha, \uparrow}^{+} a_{\alpha, \downarrow}^{+} a_{\beta, \uparrow} a_{\beta, \downarrow}
$$

Anderson spin chain

$$
\begin{aligned}
& {\hat{t_{t}}} \equiv \sum_{\alpha} \hat{r}_{\alpha}^{t}
\end{aligned}
$$

Anderson spin chain

$$
\hat{T}_{\alpha}^{z}=\frac{1}{2}\left(-1+\sum_{\sigma=\uparrow, \downarrow} a_{\alpha, \sigma}^{+} a_{\alpha, \sigma}\right) \quad \hat{T}_{\alpha}^{+}=a_{\alpha, \uparrow}^{+} a_{\alpha, \downarrow}^{+} \quad \hat{T}_{\alpha}^{-}=a_{\alpha, \uparrow} a_{\alpha, \downarrow} \quad \overrightarrow{\hat{L}} \equiv \sum_{\alpha} \overrightarrow{\hat{T}}_{\alpha}
$$

$$
\hat{H}_{B C S}=\sum_{0 \leq \alpha \leq n-1} \varepsilon_{\alpha} \hat{T}_{\alpha}^{z}-\lambda_{B C S} \sum_{0 \leq \alpha \neq \beta \leq n-1} \hat{T}_{\alpha}^{+} \hat{T}_{\alpha}^{-}=\sum_{0 \leq \alpha \leq n-1} \varepsilon_{p} \hat{T}_{p}^{z}-\lambda_{B C S} \hat{L}_{+} \hat{L}_{-}
$$

$$
\begin{array}{cc}
\sum \hat{T}_{\alpha}^{+} \equiv \frac{1}{\lambda_{B C S}} \hat{\Delta} \begin{array}{l}
\text { Superconducting } \\
\text { order parameter }
\end{array} \\
\sum \hat{T}_{\alpha}^{z} \equiv \hat{N} & \text { Total number of }
\end{array} \quad[\hat{N}, \hat{\Delta}] \neq 0
$$ the particles

Anderson spin chain

$$
\hat{T}_{\alpha}^{z}=\frac{1}{2}\left(-1+\sum_{\sigma=\uparrow, \downarrow} a_{\beta, \sigma}^{+} a_{\beta, \sigma}\right) \quad \hat{T}_{\alpha}^{+}=a_{\alpha, \uparrow}^{+} a_{\alpha, \downarrow}^{+} \quad \hat{T}_{\alpha}^{-}=a_{\alpha, \uparrow} a_{\alpha, \downarrow}
$$

$$
\hat{H}_{B C S}=\sum_{0 \leq \alpha \leq n-1} \varepsilon_{\alpha} \hat{T}_{\alpha}^{z}-\lambda_{B C S} \sum_{0 \leq \alpha \neq \beta \leq n-1} \hat{T}_{\alpha}^{+} \hat{T}_{\alpha}^{-}=\sum_{0 \leq \alpha \leq n-1} \varepsilon_{p} \hat{T}_{p}^{z}-\lambda_{B C S} \hat{L}_{+} \hat{L}_{-}
$$

$$
\sum \hat{T}_{\alpha}^{2}=\hat{N}
$$

Total number of the particles

For a fixed number of the particles (closed system we can add the term $-g N^{2}=$ const to the hamiltonian:

$$
\hat{H}_{B C S} \sum_{0 \leq \alpha \leq n-1} \varepsilon_{\alpha} \hat{T}_{\alpha}^{z}-\lambda_{\text {BCD }}(\hat{\bar{L}})^{2} \quad \hat{\bar{L}} \equiv \sum_{\alpha} \hat{\vec{T}}_{\alpha}
$$

$\hat{H}_{\text {BCS }} \sum_{0 \leq \alpha \leq n-1} \varepsilon_{\alpha} \hat{T}_{\alpha}^{2}-\lambda_{\text {BCS }}(\hat{\bar{L}})^{2} \quad \hat{\tilde{L}} \equiv \sum_{\alpha} \hat{\vec{T}}_{\alpha}$
Integrable model
Richardson solution - Bethe Ansatz
$\frac{-1}{\lambda_{\text {BCS }}}+\sum_{0 \leq \beta \leq n-1} \frac{2}{E_{\alpha}-E_{\beta}}=\sum_{0 \leq \beta \leq n-1} \frac{1}{E_{\alpha}-2 \varepsilon_{\beta}} \quad E=\sum_{0 \leq \alpha \leq n-1} E_{\alpha}$
n equations for the parameters E_{p}

How to describe dynamics in the time domain?

Gaudin Magnets

$$
\left.\left.\hat{H}_{\alpha}=2 \sum_{\substack{0 \leq \beta \leq n-1 \\ \beta \neq \alpha}} \frac{\hat{\vec{T}}_{\alpha} \hat{\vec{T}}_{\beta}}{\varepsilon_{\alpha}-\varepsilon_{\beta}}-A \hat{T}_{\alpha}^{z} \quad \alpha=0,1,2, \ldots, n-1\right] \quad \hat{H}_{\alpha}, \hat{H}_{\beta}\right]=0
$$

\hat{H}_{0} - Hamiltonian $\quad \hat{H}_{\beta>0}$ - intgrals of motion

BCS Hamiltonian

$$
\sum_{0 \leq S \leq n-1} \varepsilon_{\alpha} \hat{H}_{\alpha}=\hat{H}_{\text {BCS }}+\text { const } \quad \lambda_{B C S}=\frac{2}{A}
$$

Overhauser interaction of electronic spins in quantum dots

@

Overhauser interaction of electronic spins in quantum dots

Overhauser interaction of electronic spins in quantum dots

- More than 10^{6} of nuclear spins per electron
- Excange interaction of the electronic spin with the nuclear ones.
-Collective effect of the nuclei on the electron is pretty strong.
- No interaction between the nuclear spins

$$
\dot{\vec{S}}_{0} \text { - spin of the electron }
$$

$$
\hat{H}_{e N}=\sum_{1 \leq \alpha \leq n-1} \gamma_{\alpha} \hat{\vec{S}}_{0} \hat{\vec{S}}_{\alpha}-B \hat{S}_{0}^{z} \gamma_{\alpha} \propto\left|\psi\left(\vec{r}_{\alpha}\right)\right|^{2}
$$

$$
\hat{\bar{S}}_{\alpha>0}-\text { nuclear spins }
$$

$$
\psi_{\alpha}(\vec{r}) \text { - the electron w.f. }
$$

$$
\text { B - magnetic field } \| z
$$

Overhauser interaction of electronic spins in quantum dots

$$
\hat{H}_{e N}=\sum_{1 \leq \alpha \leq n-1} \gamma_{\alpha} \hat{\vec{S}}_{0} \hat{\vec{S}}_{\alpha}-B \hat{S}_{0}^{z}
$$

Central spin problem

$$
\hat{H}_{\alpha}=\sum_{0 \leq \beta \leq n-1, \beta \neq \alpha} \frac{2 \hat{\vec{T}}_{\alpha} \hat{\bar{T}}_{\beta}}{\varepsilon_{\alpha}-\varepsilon_{\beta}}-A \hat{T}_{\alpha}^{z}
$$

Gaudin problem

$$
\hat{\vec{S}}_{\alpha} \Rightarrow \hat{\vec{T}}_{\alpha}
$$

$$
\begin{array}{r}
\hat{H}_{e N}=\hat{H}_{0} \quad \gamma_{\alpha} \Rightarrow \frac{2}{\varepsilon_{0}-\varepsilon_{\alpha}} \\
B \Rightarrow A
\end{array}
$$

$$
\hat{H}_{\text {eN }}=\sum_{1 \leq \alpha<n-1} \gamma_{\alpha} \hat{\hat{S}}_{0} \hat{S}_{\alpha}-B \hat{S}_{0}^{2}
$$

Central spin problem

$$
\hat{H}_{\alpha}=\sum_{0 \leq \beta \leq n-1, \beta \neq \alpha} \frac{2 \hat{\vec{T}}_{\alpha} \hat{\bar{T}}_{\beta}}{\varepsilon_{\alpha}-\varepsilon_{\beta}}-A \hat{T}_{\alpha}^{z}
$$

Gaudin problem

$$
\begin{gathered}
\hat{\vec{S}}_{\alpha} \Rightarrow \hat{\vec{T}}_{\alpha} \\
\Rightarrow \frac{2}{\varepsilon_{0}-\varepsilon} \\
B \Rightarrow A
\end{gathered}
$$

$$
\hat{H}_{e N}=\hat{H}_{0} \quad \gamma_{\alpha} \Rightarrow \frac{2}{\varepsilon_{0}-\varepsilon_{\alpha}}
$$

Idea:

-Can we consider the classical dynamics of these Hamiltonians?
-Can it be described explicitly?
-What are connections between the classical and quantum dynamics?

> Substitute quantum $\hat{\vec{T}}_{\alpha} \Leftarrow \vec{s}_{\alpha}$ spin operators by classical vectors
> $\hat{\vec{L}} \Leftarrow \vec{J}$

Barankov, Levitov \& Spivak cond-mat/0312053

Yuzbashyan, BA,Kuznetsov \& Enolskii cond-mat/0407501

