

Elongated BEC's : experimental results and open questions

3rd Windsor Summer School on Condensed Matter Theory

Alain Aspect

Groupe d'Optique Atomique

Laboratoire Charles Fabry de l'Institut d'Optique - Orsay

http://atomoptic.iota.u-psud.fr

First experimental evidence (Hannover, 2001)

Density fluctuations after free expansion (phase fluctuations convert into density fluctuations in the far field diffraction pattern): not fully quantitative Effect of phase fluctuations also observed in Amsterdam (« focusing », 2002)

- Fully quantitative method (cf MIT: transverse coherence length = BEC size)
- Analogous to traditional (dispersion) spectroscopy *i.e.* meas. of spectral distribution *I*(ω) compared to Fourier transform spectroscopy *i.e.* meas. of field correlation function Γ(τ).

If
$$l_{\rm C} < L$$
, $\Delta p_z > \frac{\hbar}{L}$

Good for « broad spectrum », i. e. when $l_c \ll T \gg T_{\phi}$

Bragg spectroscopy of the momentum distribution: principle *cf* MIT, NIST, Weizmann

Energy and momentum conservation (atom-photons interaction): resonant outcoupling of atoms of momentum p_z determined by the detuning δ

$$\boldsymbol{\delta} = 2\frac{\hbar k_L^2}{M} + 2k_L \frac{\boldsymbol{p}_z}{M}$$

Number of extracted atoms reflects $P(p_z)$

By scanning δ one can measure the momentum distribution P (p_z)

Wave interpretation: resonant Bragg scattering of atomic matterwaves with a de Broglie wavelength matching the period of the thick grating sliding at velocity $\delta/2k_{\rm L}$

Elongated ⁸⁷Rb BEC in an iron core electromagnet

Strong quad. gradient (1.4 kG/cm) with moderate electric power

Compensated dipole: decoupling curvature from bias field

Excellent alignment of laser holes with long axis

Shielding of the ambient magnetic field by iron yoke

•B. Desruelle *et al.*, EPJD 1, 255 (1998)
•B. Desruelle *et al.*, PRA 60, R1759 (1999)

Large anisotropy ratio: 760 Hz / 5 Hz

 $0+\delta$

Solution: let the (quasi) condensate expand for 2 ms;

- density drops by 10⁻²;
- expansion mostly radial;
- axial p_z distribution unaffected
- ... then apply Bragg lasers

Laser beam must be perfectly orthogonal to expansion!

Ω

Bragg spectroscopy along the axis of an elongated BEC

Frequency jitter between counterpropagating lasers as small as possible:

- Two counterpropagating lattices with orthogonal polarizations
- Extract + p_z and p_z simultaneously
- 4 photons transition to increase separation

Bragg spectroscopy of the momentum distribution: results

 $\Delta \nu$ clearly increases with *T*, i.e. l_c decreases, as predicted by theory

But large dispersion of individual measurements. Quantitative comparison to theory?

Averaging the momentum profiles

For a given condensate temperature (controlled within 20 nK), average many spectra, taken at different hold times after BEC (averaging over possible residual breathing oscillations)

3000 elementary data

Quantitative comparison to theory becomes possible: shape, width

Shape of momentum distribution

 $(T / T_{\phi} \Box \mathbf{1})$

After averaging: unambiguous discrimination between Gaussian and Lorentzian

Institut d'Optique

For $T/T_{\phi} \square 1$, Lorentzian momentum profile: exponential decrease of correlation function ($l_{\rm C} << L$): phase fluctuations dominate effect of density profile

Width of the momentum profile:

Coherence length at the center of quasi condensate

$$2L_{\phi} = \frac{2\hbar^2 n_1(0)}{2Mk_{\rm B}T} \implies \Delta p_{\phi} = \frac{\hbar}{2L_{\phi}}$$
$$\longrightarrow \Delta p_{\phi} = \frac{\hbar}{L_{\phi}} \propto \frac{T}{n_1(0)} \qquad : \text{ convenient parameter}$$

Momentum distribution width of a trapped quasicondensate

Averaging over the density profile

$$\Delta p = \alpha \, \Delta p_{\phi}$$

 $\alpha = 0.67$ for a Thomas Fermi profile

Width of the momentum profile: experimental strategy

Theoretical prediction (in experimentalist units)

$$\Delta v = \alpha \Delta v_{\phi}$$
 with $\Delta v_{\phi} \propto \frac{n_1(0)}{T}$

Experimental strategy

 \Rightarrow measure $\Delta v, n_1(0)$, and T and plot Δv vs. Δv_{ϕ}

 \Rightarrow deduce α and compare to theoretical value of 0.67

Deconvolution from the resolution function

When the momentum width associated with phase fluctuations is not large compared to the experimental resolution function: fit by a Voigt profile (convolution of a Lorentzian by a Gaussian).

Data (Δv_{exp} and Δv_{ϕ}) fitted with α and Δv_{res} as free parameters

half width (Hz)

Momentum width: results

Result of fit	$\Delta v_{\rm res} = 176(16) \text{ Hz}$	convincing
	$\alpha = 0.64(5)(5)$	deconvolution

Good agreement with theory : a = 0.67

Institut d'Optique Coherence length vs. temperature

- Coherence length $l_{\rm C}$ definitely smaller than condensate size L for $T >> T_{\phi}$
- Good agreement with theory $\frac{l_{\rm C}}{I} = \frac{T_{\phi}}{T}$
- Also checked: suppression of density fluctuations: $\langle n^2 \rangle = \langle n \rangle^2$ (5% accuracy)

How to investigate the situation $T/T_{\phi} \approx 1$? (Case of large coherence length)

 p_z resolution not good enough (Δv_{ϕ} too small)

Go to Fourier space (conjugate variable z): atom interferometry

Interference visibility vs separation δz :

direct measurement of the correlation function

$$C^{(1)}(\delta z) = \int dz \psi^*(z - \frac{\delta z}{2})\psi(z + \frac{\delta z}{2})$$

cf coherence measurement of a 3D condensate (MIT, NIST, Munich): $l_c = L$

Method used in Hannover (2003) to explore the regime $l_c / L \square = 1$

Encouraging results: fringe visibility decay length with separation *s* (coherence length) varies as expected as a function of $n_1(0)/T$ even at large separation

Fringes that should not be there

 $S = 48 \ \mu m$ 60 72

There should be no fringes out of the overlap of the two condensate copies

How can I trust a measurement of visibility of fringes that I do not understand ? Help appreciated!

Institut d'Optique How do quasi condensates grow?

Theory

- Kagan, Svistunov, Shlyapnikov (1992): BEC's grow in 2 stages
 - 1. Kinetic stage: macroscopic population builds in low levels; suppression of density fluctuations; phase fluctuations (quasi condensates, coherence length smaller than condensate size)
 - 2. Phase coherence development across the condensate
- Gardiner et al.: analytic expression for the growth of condensed fraction

Experiments

- Miesner et al. (1998)
- Köhl et al., (2002)
- Schvarchuk et al. (2001)

Condensed fraction grows in agreement with Gardiner's prediction

Delayed development of phase coherence? Still an open question

Condensate growth: our experimental strategy

- Start from thermal cloud just above T_c
- Sudden lowering of RF knife, kept at new position: Boltzmann distribution truncated at $\eta = U_{\text{knife}} / k_{\text{B}}T \square 3.3$
- Observe condensate growth
 - ✓ Condensed fraction
 - ✓ Momentum distribution width (phase coherence)
 - NB: study with elongated trap: anisotropy ratio of 100

Condensed fraction growth

Delay time t_0 before onset of condensate growth: 30 - 180 ms~ $15 \rightarrow 40 \tau_{coll}$

Agreement (to be double checked) with Gardiner equation for delay and time constant

NB: At equilibrium: $T/T_{\phi} = 5 \rightarrow 10 \leftrightarrow$ quasi-condensate regime

Momentum width evolution (Bragg spectra width)

 Δp decreases with time

 $\rightarrow l_c$ increases

Phase coherence onset?

Need to compare to steady state value Δp_{th} (thermal equilibrium of elongated condensate)

 \Rightarrow Measure *T* and $n_1(0)$

 $\Rightarrow \text{Calculate } \Delta p_{\text{th}} \text{ and } \\ \text{compare to } \Delta p$

Comparison to equilibrium condensate

No time decrease of $\Delta p_{\text{meas}} / \Delta p_{\text{th}}$

 Δp_{meas} seems to follow adiabatically the evolution of temperature and condensed fraction

Excess to 1 ???

Attributed to residual quadrupole oscillations

Quadrupole oscillations

/ N^{1/5} $N_i = 8 \ge 10^5$ 140 120 100 · 80 · 200 400 0 100 300 500 600 Time (ms) 0.6 **3EC fraction** 0.5 +0.4 -0.3 0.2 -0.1 0.0 100 200 300 400 500 600 0 Time (ms)

Regime of deep schock cooling (*cf.* Schvarchuk et *al.*, *PRL 2002*)

- axial hydrodynamic regime
- Initial cooling below local T_c all along the axis of the thermal cloud

Residual oscillations likely to exist even in the « soft » shock cooling: a serious experimental issue

Two components quadrupole oscillations

Any interest for theorists?

A lot still to be done! Suggestions welcome

Institut d'Optique Team with and without the boss

