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Phase fluctuations in a quasi 1D BEC

L

lC : coherence length

Theoretical prediction for an elongated condensate
D. Petrov, J. Walraven, G. Shlyapnikov, PRL 85, 3545 (2000), 87, 050404 (2001)
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Reminiscence of no 1D homogeneous BEC 
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• density fluctuations suppressed

• axial phase fluctuations ⇒ lc < L
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< Tc if  L large

Density fluctuations after free expansion (phase fluctuations convert into 
density fluctuations in the far field diffraction pattern): not fully quantitative

First experimental evidence (Hannover, 2001)

Effect of phase fluctuations also observed in Amsterdam (« focusing », 2002)
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Momentum distribution: a global way 
to measure the coherence length

L

lC

Momentum distribution ( )zpP
= Fourier transform of the 

correlation function

(1) *( ) ( ) ( )C z dz z z zδ ψ ψ δ= +∫

(1) ( )C zδ

z

• Fully quantitative method (cf MIT: transverse coherence length = BEC size)
• Analogous to traditional (dispersion) spectroscopy – i.e. meas. of  

spectral distribution I(ω) – compared to Fourier transform 
spectroscopy – i.e. meas. of field correlation function Γ(τ).
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when lc << L ↔ T >> Tφ 3



Bragg spectroscopy of the 
momentum distribution: principle

Energy and momentum conservation 
(atom-photons interaction): resonant 
outcoupling of atoms of momentum pz
determined by the detuning δ
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By scanning δ one can measure the momentum distribution ( )zpP

cf MIT, NIST, Weizmann

Number of extracted atoms reflects ( )zpP

ω+δ ω

original cloud Outcoupled atoms

TOF 21 ms

ω+δ ω

original cloud Outcoupled atoms

TOF 21 ms

Wave interpretation: resonant Bragg scattering of atomic matterwaves
with a de Broglie wavelength matching the period of the thick grating
sliding at velocity δ / 2kL
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Cellule

Shielding  of the  ambient magnetic 
field by iron yoke

40 cm

Strong quad. gradient (1.4 kG /cm) 
with moderate electric power

Elongated 87Rb BEC in an 
iron core electromagnet

Compensated dipole: 
decoupling curvature
from bias field

Excellent alignment of laser holes
with long axis

Large a… ratio: 760 Hz / 5 Hz

•B. Desruelle et al., EPJD 1, 255 (1998)
•B. Desruelle et al., PRA 60, R1759 (1999)

anisotropy
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Bragg spectroscopy along the axis 
of an elongated BEC: a challenge 

L

ωω+δ ω

A major problem: collisions between the extracted atoms and the
remaining condensate. Mean free path << L

Solution: let the (quasi) condensate expand for 2 ms;

• density drops by 10−2; 

• expansion mostly radial; 

• axial pz distribution unaffected

ωωω+δ

… then apply Bragg lasers

Laser beam must be perfectly orthogonal to expansion!



Bragg spectroscopy along the axis 
of an elongated BEC

Frequency jitter between counterpropagating lasers as small as possible:

Critical 
mirror

6 max 6100Hz  4 10  m / s 20 10 m
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Overlapping laser beams with orthogonal polarisations, retroreflected

• Two counterpropagating lattices with 
orthogonal polarizations 

• Extract + pz and − pz simultaneously

• 4 photons transition to increase separation
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Bragg spectroscopy of the 
momentum distribution: results

Example of result
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∆ν vs. T
120Hzν∆ =

∆ν clearly increases with T, i.e. lc decreases, as predicted by theory

But large dispersion of individual measurements. Quantitative comparison 
to theory?



Averaging the momentum profiles
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T=300nK

One elementary spectrum
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3000 elementary data

For a given condensate temperature (controlled
within 20 nK), average many spectra, taken at
different hold times after BEC (averaging over
possible residual breathing oscillations) 

0
1
2
3
4
5

-2 -1 0 1 2

co
up

le
d

fr
ac

tio
n

T=100 nK3000 elementary
spectra

0
1
2
3
4
5

-2 -1 0 1 2

co
up

le
d

fr
ac

tio
n

δ / 2π (kHz)

T=100 nK3000 elementary
spectra

Quantitative comparison to theory becomes possible: shape, width



Shape of momentum distribution 
( )/ 1T Tφ
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Lorentzian residual Gaussian residual

After averaging:
unambiguous discrimination 
between Gaussian and
Lorentzian

/ 1T TφFor                  , 
Lorentzian momentum
profile:
exponential decrease of
correlation function (lC << L):
phase fluctuations dominate
effect of density profile

/ 1T Tφ



Width of the momentum profile:
theoretical predictions

Coherence length at the center of quasi condensate
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1D density at center

1(0)nL
Tpφ

φ

∆ = ∝
h

: convenient parameter

Momentum distribution width of a trapped quasicondensate

p pφα∆ = ∆Averaging over the density profile

for a Thomas Fermi pr0.6 le7 ofiα =
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Width of the momentum profile:
experimental strategy

Theoretical prediction (in experimentalist units)

1   with   (0)n
Tφ φα ν νν = ∆ ∆ ∝∆
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Experimental strategy

1 , (0),    measure and and plot     .vs  n T φν ν ν∆ ∆ ∆⇒

⇒ deduce α and compare to theoretical value of 0.67



Deconvolution from the
resolution function

When the momentum width associated with phase fluctuations is not large 
compared to the experimental resolution function: fit by a Voigt profile 
(convolution of a Lorentzian by a Gaussian).

phase fluctuations resolution

Data (                             ) fitted with α and as free parametersexp and   φν ν∆∆ resν∆
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Momentum width: results
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Good agreement with theory :  a = 0.67



Coherence length vs. temperature
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lc / L
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• Coherence length lC definitely smaller than condensate size L for  T >> Tφ

• Good agreement with theory

• Also checked: suppression of density fluctuations: 22  (5% accuracy)n n=

C Tl
L T

φ=
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How to investigate the situation  ? (Case of large coherence length) / 1T Tφ ≈



How to measure the axial coherence 
length when ?

LInterference visibility vs
separation δ z : 

direct measurement of the 
correlation function δ z

cT T l Lφ≈ ⇒ ≈

pz resolution not good enough (∆νφ too small)

Go to Fourier space (conjugate variable z): atom interferometry

(1) *

2 2
( ) ( ) ( )z zC z dz z zδ δδ ψ ψ= − +∫

cf coherence measurement of a 3D condensate (MIT, NIST, Munich):  lc = L

Method used in Hannover (2003) to explore the regime / 1cl L
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Interferometric measurement of
the coherence length

π/2

π/2
z

t
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6 µm 12 µm    23 µm    35 µm

47 µm 59 µm    70 µm    82 µm

S =

S =

z

=2 vR T

Encouraging results: fringe visibility decay length with separation s 
(coherence length) varies as expected as a function of
even at large separation

1(0) /n T

But…
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Fringes that should not be there

s

There should be no fringes out of the overlap of the two condensate copies

How can I trust a measurement of visibility of fringes that I do not understand ?

Help appreciated!
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How do quasi condensates grow?
Theory
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• Kagan, Svistunov, Shlyapnikov (1992): BEC’s grow in 2 stages
1. Kinetic stage: macroscopic population builds in low levels; 

suppression of density fluctuations; phase fluctuations (quasi 
condensates, coherence length smaller than condensate size)

2. Phase coherence development across the condensate

• Gardiner et al.: analytic expression for the growth of condensed fraction

Experiments
• Miesner et al. (1998)

• Köhl et al., (2002)

• Schvarchuk et al. (2001)

Condensed fraction grows in agreement
with Gardiner’s prediction

Delayed development of phase coherence? 
Still an open question



Condensate growth: our
experimental strategy
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• Start from thermal cloud just above Tc

• Sudden lowering of RF knife, kept at
new position: Boltzmann distribution 
truncated at

• Observe condensate growth

Condensed fraction

Momentum distribution width
(phase coherence)

knife B/ 3.3U k Tη =

Uknife

T

fcNB: study with elongated
trap: anisotropy ratio of 100



Condensed fraction growth
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Delay time t0 before onset of 
condensate growth: 30 – 180 ms  

~ 15 → 40 τcoll

Agreement (to be double checked) with
Gardiner equation for delay and time constant

NB: At equilibrium: T/Tφ = 5 → 10 ↔ quasi-condensate regime
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Momentum width evolution
(Bragg spectra width)

0.4

0.3

0.2

0.1

0.0

   B
EC

 fr
ac

tio
n

25002000150010005000
   Time (ms)

1000

800

600

400

200

0

∆
p 

(k
H

z)

25002000150010005000
Ti ( )

∆p decreases with time

→ lc increases

Phase coherence onset?

Need to compare to steady
state value ∆pth (thermal 
equilibrium of elongated
condensate)

⇒ Measure T and n1(0)

⇒ Calculate ∆pth , and
compare to ∆p

Ni = 4.5 x 105
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Comparison to equilibrium
condensate
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No time decrease of ∆pmeas / ∆pth

∆pmeas seems to follow
adiabatically the evolution of
temperature and condensed
fraction

Excess to 1 ???

Attributed to residual
quadrupole oscillations



Quadrupole oscillations
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Regime of deep schock
cooling (cf. Schvarchuk
et al., PRL 2002)

• axial hydrodynamic
regime

• Initial cooling below
local Tc all along the
axis of the thermal 
cloud

Residual oscillations 
likely to exist even in 
the « soft » shock
cooling: a serious
experimental issue



Two components 
quadrupole oscillations

Thermal cloud
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Any interest for theorists?
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Conclusion
A lot still to be done! Suggestions welcome

The people (elongated BEC team)

Fabrice Gerbier

Simon Richard

Joseph Thywissen

Mathilde Hugbart

Andres Varon

Jocelyn Retter

Philippe Bouyer

past team present team Ze boss



Team with and without the boss
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