Cold atoms in microscopic traps

E.A. Hinds

Imperial College London

Windsor summer school, 19 August 2004

Outline

Part I

- Introduction
- Atom guiding with microscopic wires
 Making BEC

Part II

- Videotape atom chip
- Yet smaller structures
- Atom chips for quantum logic?

TEMPERATURE

A MOT of rubidium atoms

Principle of the magnetic guide for atoms

Two wire guide

Hollow silica fibre fabricated at the ORC, Southampton University

Basis for a de Broglie wave interferometer

Splitting the Ground State $\psi(0,0)$

Horizontal bias field increases to make horizontal splitting

Interferometry

Extremely sensitive to

- Gravity
- EM fields
- Other feeble
- forces

Nonlinear quantum games: number squeezing Heisenberg sensitivity etc.

The output ports are the (0,0) and (1,0) vibration states of the guide.

The 2-wire interferometer at CCM

The Mirror MOT

Loading the guide

Magnetic trap 2 10⁷ atoms 80 μK

Compressed Magnetic trap

.....the next step is evaporation

This means allowing the fastest atoms to escape

The remaining ones are slower

..... and therefore colder

http://www.colorado.edu/physics/2000/applets/bec.html

Evaporative cooling

Principle

Cooling rate is controlled by the elastic scattering rate γ_{el}

runaway evaporation

If the temperature falls faster than we lose atoms, the evaporation runs away

forced evaporation by rf transitions

Typical initial elastic collision rate $\gamma_{el} = 1 - 100 \text{ s}^{-1}$ Typical cooling time ~ $100 / \gamma_{el} \sim 1 - 100 \text{ s}$

Lifetime for loss from background gas collisions must be longer than this

Background pressure $<10^{-9} - 10^{-11}$ torr.

Phase space density and BEC

And atom density in phase space is $\propto N$ / T^3

If N goes down by 10³ and T by 2 $@10^3$, phase space density

phase space density goes up by 8910⁶

With more than 1 atom per cell of phase space, the gas can Bose condense.

Evaporating to the ground state

 $2 \ \mu m \times 60 \ \mu m$

Below 380 nK the atoms all jump into the ground state

The atoms behave collectively as a single quantum wave

.....Bose-Einstein condensate ____

Switch off the axial trap

....matter wave propagates along magnetic guide

ATOM LASER

Below 380 nK the cloud Bose condenses

the interferometer should now be ready, however

.... the atoms interact with the wire

The cloud breaks up when lowered

.... the lumps are due to ΔB_z - *along* the wire

 \ldots this decays as $K_1(ky)$

Conclusions about ΔB_z

Produced by transverse current (or spin)

centred on the wire axis

Amplitude ~R/2

↑ R

But we still don't know why the transverse current

Jones et al. J. Phys B 37, L15 (2004)

Henkel, Pötting and Wilkens Appl. Phys B 69,379 (1999)

Spin flip lifetime above metal wire

Atom/surface impedance matching

perfect conductor

insulator

skin depth ~ atom height
skin depth ~ atom height

$$\sim 50 \ \mu m$$
 skin depth?
 $\sim 50 \ \mu m$ skin depth?
 $\sim 50 \ \mu m$ skin depth?
 $\sim 50 \ \mu m$ skin depth?

Ways to improve the traps near a surface:

(i) Keep the metal thin

(ii) Use insulating surface

Videotape atom chip

Sinusoidally magnetised videotape makes an atom mirror

An extra, constant field corrugates the mirror

and makes an array of atom guides

Bouncing atoms on the chip

smooth reflector (bias field = 0)

corrugated reflector (bias turned on)

PRA 61 R31404 (2000) with Peter Rosenbusch, Brenton Hall, Ifan Hughes and Carlos Saba

collect atoms in mirror MOT

transfer to wire trap

Evaporate to make BEC

Evaporate to make BEC

atoms now in microtrap

Evaporate to make BEC

Videotape atom transporter

This videotape chip has a 250 guides on it

We are transporting cold atoms around above it

Other atom circuits on a chip

courtesy of Schmiedmayer *et al*. Heidelberg

courtesy of Reichel *et al*. Munich

Imaging in the videotape trap

Videotape also gives low spin-flip loss

$h = 28\mu m$, $\omega_r = 2\pi \times 31 \text{ kHz}$

Much lower spin flip loss due to surface

Physics of long, thin clouds

• Yet smaller structures (towards QIP)

structure of the magnetic film

15 bilayers of cobalt (0.4 nm) and platinum (1.0 nm)

This structure has Strong perpendicular remanence & high coercivity

an array of lines written in M-O film

MFM Image

The period is 2 μ m

Demagnetised film shows natural domain size: typically 250 nm

too much laser power

Microscopic circuits

The boundary of a magnetised region carries equivalent current I_0

We can write any arbitrary pattern of 22 mA current loops, including large arrays of traps and guides

e.g here is a z-trap we have made on M-O film

radial trap frequency f = 1 MHz at 1 μ m height

cond-matt 0406482 (2004)

Atom chips for quantum logic?

SOME REQUIREMENTS

1. many gates \checkmark

2. single atom preparation and readout \checkmark ?

3. controlled entanglement of 2 qubits ?

Gradually corrugate the trap

this phase transition is driven by quantum fluctuations

it has been made in the lab using a 3D lattice of light

.....here are the patterns made by the matter waves scattering from the lattice:

.....we will do it on a videotape chip

The atom string can be a quantum information register

each atom stores a bit of quantum information the direction of the arrow. spin-up represents 1 🛉 🥌 🏓 this atom represents spin down represents 0 0 and 1 both together controlled collisions can do calculationsthis leaves each atom entangled with its neighbour

With 1 μ m waist, 5-10 atoms can be seen in a single-pass But single atom sensitivity will need a cavity

Horak et al. Phys. Rev. A 67, 043806 (2003)

rds single atom sensitivity on a chip:

after coating with gold, we see focal spots under a microscope

concave mirrors etched in silicon

.....these mirrors form optical microcavities

with dielectric coating we expect to reach cavity QED strong coupling regime

this idea leads to Coherent exchange of quantum information between atom and photon

optical interface to atom quantum memory

..2 atoms in optical microcavity

an alternative quantum logic gate

atoms can be entangled through a shared cavity photon

Summary

The present

• We can make circuits of quantum gas floating above wires and permanent magnets on atom chips

Microscopic atom waveguides, motors, interferometers etc. are starting to make spectacular new instruments

The future

- It will soon be possible to prepare atom arrays on chips.
- Single atoms will be moved in controlled ways.
- They will be coupled to each other and to light cavities.

Quantum computing with neutral atoms will take a bit longer.

Many colleagues, postdocs and students have worked on these experiments

I thank them all

particular thanks go to

Ben Sauer Brenton Hall Chris Vale Anne Curtis Stefan Eriksson

supported by€ACQUIRE
QGATES
FASTNETEPSRC
PPARC
Royal Society

