
Windsor Lectures 
on 

Classical Statistical 
Mechanics

for 
Quantum Scientists

by

Leo P. Kadanoff
University of Chicago

e-mail: LeoP@UChicago.edu 

Windsor Lectures I 8/18/04                      page 1



Outline
   0. Importance of Phase Transitions (from Leo P. 
Kadanoff, “Statistical Physics”, World Scientific, 
Chapter 10)

I. From Classical to Quantum (ibid., Chapter 4)
A. One Ising variable
B. One dimensional Ising model
C. Averages, Coherence Length, 
D. two dimensional model
E. its phase transition             //

II. Phase Transitions and Critical Behavior: 
A. Phenomenology (ibid., Chapter 10)
B. mean field theory (ibid., Chapter 11)
C. Failure of MFT
D. Phenomenology Again (ibid., Chapter 12)  //

III. The RG Method
A. 1 d Example (ibid., Chapter 13)
B. 2d Example  (ibid., Chapter 14)    //

IV. Other Examples of Scale Invariant Behavior
A. DLA
B. SLE

 

Windsor Lectures I 8/18/04                      page 2



From Stat Mech in d dimensions
to Quantum Theory in d-1

IA  The Simplest Problems in State Mech
One spin in a magnetic field:
H=-m B s

prob(s) ~ exp(- b H(s)) 
prob(s) = exp( hs)/z      h=B m b
z=2 cosh h
< s >  =Ss [prob(s)  s ] = tanh h

note that we can also calculate this from z as
        = (d/dh) ln z 

Two Coupled Spins

z=Ss m  exp(K s m) = 4 cosh K

< s m > = (d/dK) ln z = tanh K

Windsor Lectures I 8/18/04                      page 3



IB.  One Dimensional Stat Mech
A simple problem in classical stat mech:
chain of N atoms represented by their spin sj =± 1, 
j=1,2, ..., N , each coupled to its nearest neighbor 
with coupling K with periodic boundary conditions.  
We wish to calculate the partition function written as

† 

z = eKs1s 2 eKs 2s 3 ....eKs Ns 1

s1 ..s N

Â
 After a little thought we see that we can calculate 
this partition function for any N by replacing the 
classical problem by a quantum problem formulated 
in matrix language.  Let s and m each take on values 
± 1, and write each term in the product as a matrix 
element

† 

eKsm = (s | T | m) =
eK e-K

e-K eK

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

† 

z = eKs1s 2 eKs 2s 3 ....eKs Ns 1

s 1 ..s N

Â

= (s 1 | T |s 2 )
s 1 ..s N

Â (s 2 | T | s 3)...(s N | T | s1)

T is called a transfer matrix because it transfers you 
from one step in the chain to the next. 
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Properties of Transfer Matrix 
We can think that the matrix is labeled by 
eigenvalues called s and m of the standard Pauli spin 
matrix t3-- the quantum representation of a z-
direction spin vector.    We can analyze this situation 
using the other Pauli matrices  t1 and t2  which each 
anti-commute with  t3 and one another.  For example, 
the matrix T may be written as

† 

T =1eK +t1e
-K

where  

† 

t1 is a pauli spin matrix and has eigenvalues  
± 1. We shall also use the log of T

† 

ln T =1 ˜ K o +t1
˜ K 

where 

† 

˜ K , defined by  

† 

exp(-2 ˜ K ) =tanh K, is big 
when K is small and vice versa.  

Duality:
Note that
sinh 2K sinh 2 

† 

˜ K   =1      
There is a “dual” connection between K and 

† 

˜ K , i.e. if 

† 

˜ K =F(K)  then equally K=F(

† 

˜ K ), so that F is its own 
inverse.  Another way of putting this is that 
F(F(K))=K      for all K.

Windsor Lectures I 8/18/04                      page 5



From Sum to Matrix Product
The most important thing about T is that the sum 
defining the partition function may be written as a 
trace of a matrix product. Recall from your matrix 
mechanics that a product is defined by

† 

(s | M
n

Â | n )(n | N | m) = (s | M
n

Â N | m) 

while the trace of a matrix is 

† 

trace N = (v |
n

Â N | n )

 Therefore 

† 

z = eKs1s 2 eKs 2s 3 ....eKs Ns 1

s1 ..s N

Â

= (s 1 | T |s 2 )
s 1..s N

Â (s 2 | T | s 3)...(s N | T | s1)

= (s 1 | TN |s 1)
s1

Â = trace  TN

Thus the partition function is evaluated as a trace of 
a multiple product of matrices.
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Calculation of Partition Function
Since we know the eigenvalues of T we know the 
trace is the sum of those eigenvalues to the Nth 
power, and hence we know the partition function. 

† 

z  = trace  TN = trace(1eK +t1e
-K )N

   = (2coshK )N + (2sinh K )N

We have gone from 1 dimensional statistical 
mechanics to ordinary (zero dimensional) quantum 
theory). 

As N goes to infinity, the first term dominates
As K goes to infinity, the terms become equal. There 
is a nonuniform passage to the limit, characteristic of 
a phase transition...here at K=∞.
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Averages
The calculation of averages uses the relative 
weights found in the  formula for the partition 
function:

 

† 

z = eKs1s 2 eKs 2s 3 ....eKs Ns 1

s1 ..s N

Â
Thus the average of the product of the 2nd spin 
times the Nth. spin is defined to be 

† 

   z < s2s N >

  = eKs1s 2s 2e
Ks2s3 ....s NeKsNs1

s1..sN

Â

  = (s1 | T | s 2 )
s1..sN

Â s 2(s 2 | T | s 3 )...s N (s N | T | s1)

= trace  (T 3t  TN-2
3t  T)  

   = trace  ( 3t T2
3t TN-2 )

The last line is obtained using the cyclic invariance of 
the trace.

Note how the placement of the Pauli matrix 
describes its j-value.  Thus T serves as a space 
displacement operator analogous to exp.(i H/  

† 

h) of 
quantum theory, which does a time displacement. 
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Evaluation of Correlation Function
Now we invoke a couple of quantum tricks to do this 
trace.  If N is very large TN is proportional to a 
projection operator onto the “ground state” of T, i.e. 
the one with largest eigenvalue, which we write as   
|0>< 0 |.  The bra and the ket here are each 
eigenstates of t1 with t1 equal to +1. If the 
eigenvalue is T0 the result is 

† 

<s 2s N >= 

† 

 (0 | 3t (T / T0 )2
3t | 0) 

Similarly if the two spins are separated by k units 
(with 0<k<<N)  we find for large N

† 

<s js j+k >= 

† 

 (0 | 3t (T / T0 )k
3t | 0)

Now 

† 

3t  

† 

3t  flips the eigenvalue of T:   

† 

3t |0> =  |1>, 
where |1> is the excited state of the transfer matrix. 
That has an eigenvalue given by 
(T1/T0)’ = 

† 

exp(-2 ˜ K ) so that
 

† 

<s js j+k >= 

† 

exp(-2k ˜ K ) 
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Correlation length
 This exponentially decaying result  can also be 
written in terms of the distance r between the two 
spins.  If ao  is the distance between nearest 
neighbors, r=ka0. The correlation function then falls 
off with a characteristic distance 

† 

x = a0(2 ˜ K ), called 
the correlation length.  The  resulting resulting form 
for the correlation function is 
  

† 

<s js j+k >= 

† 

exp(-r / x) 

In our later work, we shall have lots of use for the 
correlation length.  Here we should notice that at the 
phase transition, at K equal to infinity,  the 
correlation length also goes to infinity.

In the 1930’s Yakuza recognized the importance of 
exponential decay in particles physics.  For slow-
moving particles the probability of finding the 
particle virtually produced away from a source dies 
exponentially with decay constant 

† 

k = x -1 = m   
Here we denote the decay constant by kappa while 
in the context it is the particle mass, m.   
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Two Dimensional Problem in Stat Mech.
Consider a problem in two dimensional stat mech., 
with sites labeled by j and k, and with periodic 
boundary conditions in which j=N+1 is the same as 
j=1 and k=M+1 means the same as k=1.  The 
summation problem is

 

† 

z =
s 's
Â exp(W )

W = (Kxs j,k
j,k
Â s j+1,k + Kys j,ks j,k+1)  

By precisely the same trick as before, we reduce the 
summation problem to a trace over M different 
variables representing the spins on the different 
rows of the lattice.  The trace has the form

† 

z = trace  (Tx  Ty )N

Ty = exp( Ky 3
kt 3

k+1t )
k
Â

Tx = exp( (K0 + ˜ K x 1
kt )

k
Â )   

 

where the t’s are Pauli matrices which commute for 
different values of the y-index, k.  
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Nature of the Stat Mech. Problem
The next step is to see the large N and M limit of    
the problem we have just defined.  In this limit there 
are two possibilities: either Tx dominates or Ty does. 
In the latter case the couplings  in the y direction are 
strong while the “quantum” coefficient,

† 

˜ K , in the x 
direction is weak.  The effect of the strong coupling 
in Ty  is that the system is pushed into a state in 
which the y-direction-neighboring 

† 

t3  are likely to 

have the same value. Thus, the spins in the rows line 
up. The weak 

† 

t1  coupling  in Tx means that 

whatever happens in one column is faithfully 
translated to the next.  The net effect is that 
correlations among the spins are transmitted 
through the entire system.  If the constants, Kx and 
Ky, are weak then the system is pushed into 
eigenstates of all the 

† 

t1
k ’s equal to +1 and as a result 

there is no long-range ordering of the 

† 

t3
k ’s.  Thus the 

system displays two different phases, one in which 
the K’s are strong and the ground state includes 
many lined-up spins, and the other in which the K’s 
are weak, and the eigenstates of the first Pauli 
matrices dominate the behavior.         
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The Phase Transition
The two phases just described are distinct, because 
the neighboring spin alignment produces a doubly 
degenerate state, one for spin up and the other for 
spin down, while the dominance of 

† 

t1
k ’s produces a 

single state.  Since the structure of the commutation 
relations among the 

† 

t3
kt3

k+1 ’s and the   

† 

t1
k ’s is 

symmetrical between the two kinds of operators, an 
important change must occur when the coefficients 
become equal. Indeed it is true that the system is in 
its ordered phase for 

† 

Ky > ˜ K x . If the sign of the 
inequality is reversed, the system is in its disordered 
phase, while if 

† 

Ky = ˜ K x the system is its critical 
phase.

The relation between the “ordering term” involving 
the third Pauli matrices and the “disorder term” 
involving the first Pauli matrix reflects a symmetry 
between the ordered and disordered phases of the 
two dimensional Ising model.  This relation is a more 
sophisticated kind of dual symmetry, like the relation 
between K and 

† 

˜ K . You recall this is a situation in 
which the symmetry operation is its own inverse, so 
that two symmetry operations take one back to the 
starting point.   
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Duality Demonstrated 
To see this duality it is useful to notice the 
relationship between the two kinds of terms in the 
transfer matrix uk =

† 

3
kt 3

k+1t   and vj= 

† 

1
jt  . In quantum 

theory, commutation relations fully determine the 
possibly values of the operators. For u and v the 
relations are: 

1. All u’s commute with each other 

2. All v’s commute with each other

3. uk2 =vj2 =1 and 

4.       uk vj  = - vj uk  for j =k or k+1

          uk vj  =  vj uk  otherwise

Therefore interchange of u’s and v’s gives us an 
equivalent problem.... one in which the roles of K and 

† 

˜ K   are interchanges.... while two such transforms 
take one back to the beginning.  

Using this logic Kramers and Wannier proposed that 
the 2d Ising model had its critical point where 

Ky = 

† 

˜ K x   .   This is the right answer.    
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Hamiltonian Formulation
One particularly interesting case occurs when Ky  and 

† 

˜ K x are both small.  This situation can bring us to any 
one of the three phases since the x-coupling must 
be large and balanced by a weak y-coupling. The two 
exponents can be combined 

† 

z = trace  (Tx  Ty )N

Ty = exp( Ky 3
kt 3

k+1t )
k
Â

Tx = exp( (K0 + ˜ K x 1
kt )

k
Â )  

z = trace  exp(-NH)

-H =  (Ky 3
kt 3

k+1t +
k

Â K0 + ˜ K x 1
kt )

 

Our statistical mechanics problem has now reduced 
itself to finding the properties of the Hamiltonian for 
a one-dimensional system.  This is quite non-trivial.  
It has been carried out by Onsager and by Onsager 
and Kauffman.  I shall not carry on only a little bit 
further here.
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Method of Solution
There are of whole collection of one dimensional 
quantum problems which have very elegant solutions 
that can be constructed via using an ansatz for the 
ground state of  a type first proposed by Bethe. 
(Recall that the N goes to infinity limit is a ground 
state calculation.) The two dimensional Ising model 
falls into this class, but it is even simpler.  It can be 
reduced to a non-interaction fermion problem. 

One can form fermion creation and annihilation 
operators  by using a string of t’s all multiplied 
together, as 

† 

mk = t1
1t1

2t1
3 ...t1

k-1t1
k

Now construct             

† 

b+

k = im kt3
k / 2

b-

k = m kt3
k+1 / 2

Note that all the b+’s anti-commute with b-’s except 
that for the case in which the two b’s have identical 
indices their anti-commutator is unity.  Hence they 
have exactly the same commutation properties as 
fermion creation and annihilation operators.  Since 
the exponents in the transfer matrices are bilinear in 
these fermion operators the commutation of 
transfer matrices and fermion operators can be 
calculated.  Onsager and Kaufmann did this to obtain 
all the properties of the 2d Ising model.    
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