
II Phase Transitions and Critical 
Behavior: 

A. Phenomenology (ibid., Chapter 10)
B. mean field theory (ibid., Chapter 11)
C. Failure of MFT
D. Phenomenology Again (ibid., Chapter 12)  //
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Phenomenology 
Given either a classical or a quantum system there 
are several qualitatively different situations or 
“phases” possible
1. Normal Phase: Let us define this phase of natural 
systems by saying that all the average properties of 
the measure able quantitates in the system depend 
smoothly (analytically) upon all the parameters in the 
Hamiltonian.  This dull phase of matter is what we 
see much of the time. In systems which obey 
classical physics, this is the behavior of any finite 
system with finite interactions, and of most infinite 
ones.  In QM there is an extra requirement that one 
be in a non-degenerate state.  In these cases,  all 
derivatives with respect to parameters (like 
temperature, interaction strength, h) are finite. 
There is no broken symmetry, all systems have the 
same basic symmetry as their Hamiltonian. 
Proof: look at z.  It is a finite sum of positive smooth 
terms, exponentials, .. all derivatives of its logs are 
harmless.  By varying the parameters in the system 
one can usually reduce the system to a non-
interacting one-- changing nothing along the way
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2. “First order” transition point. A situation in which a 
system can jump from one phase to another.  In the 
jump some quantity, called an order parameter, 
jumps discontinuously.  Example a single-domain  
ferromagnet, which then has a non-zero 
magnetization.    Usually if the magnetization can 
point in one direction, it can equally well point in 
exactly the opposite direction.  This example has 
two-fold symmetry.  Higher symmetries of rotation 
invariance in two or three dimensions are also 
possible.  Superconductors have a full two-
dimensional symmetry of a rotation of the phase of 
their order parameter.   Another example is a liquid 
gas phase transition. Order parameter is density.  
There is no exact symmetry between liquid and 
vapor. Nonetheless system does jump between the 
two phases, as when you boil water.
3. “second order” transition point.  System is 
between order and disorder.  Limit of 1st order as 
order parameter goes to zero.   System becomes 
confused.  Large portions of system choose one 
ordering, other portions another pick another 
ordering.  Interesting decision-making process is 
involved. Typically the mass goes to zero (x goes to 
infinity) as second order transition is approached. 
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Start with a Simple Model of a Phase Transition called 
“Mean Field Theory”

e.g. apply to Ising Model, s=

† 

±1

Spin in a magnetic field d-dimensions:
- b H{s} =

† 

Ks r
<n .n .>
Â s s + hrs r

r
Â

“Mean Field Theory” assume the spin at r sits in the 
average field produced by its neighboring spins
- b Heff(sr) =

† 

Ks r
<s  n.n .  to  r>

Â < s s > +hs r +const

                 = sr heff

heff =  

† 

h + K
s n.n .to r
Â < s s >= h + zK < s >

<sr> = tanh heff        

† 

heff = hr + K < s s >
s  n .n . to  r

Â

no space dependence
•••  <s> =tanh(h+z K<s>)    •••

phase diagram:
look at magnetization versus temperature for 
various values of K (or better T)
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Drawing

T

<s>

h=0
h>0

h<0

no states
here

Tc

critical region

System chooses for itself at h=0, T<Tc
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Computer Plot of Phase Diagram
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Note left-right flip in comparison to last picture

So below the critical point, we can have a first order 
phase transition at h=0. At the critical point 
h=0,T=Tc we have a second order transition.  
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Focus on Critical Region
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We know that there is something wrong with the 
model.  It seems to apply to all dimensions and to 
systems which might as well be finite. The model 
shows phase transitions.  However, there are no 
phase transitions in either the finite system or the 
on-dimensional one.  Nonetheless we press on to 
explore the model’s consequences.
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Algebra
Note that interesting things are happening around 
<s>=0  where h is close to 0 and Kz is close to 1. 

We wish to get the qualitative behavior in the 
neighborhood of the transition by expanding about 
h=0, <s>=0, Tc/T=zK=1 . It is important for us to 
identify the terms that can be neglected because 
they are of smaller relative order compared to the 
terms which dominate this neighborhood.  These left- 
out terms are called irrelevant.

 First expand in h

<s> = h /cosh2(z K<s>) +tanh(z K<s>) 

and then in <s>
<s> = h /[1+0.5(z K<s>)2] +(z K<s>) -(z K<s>)3/6

so that
<s> [1-z K]= h   -(z K<s>)3/6
Note that coefficient of <s> goes to zero at critical 
point.  That’s the reason we hold on to cubic term. 
Since zK is close to one we can set it equal to one in 
the last term and get our final result 
••• <s> [1-Tc/T]= h   - <s>3/6     •••
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Spontaneous Magnetization
let h=0.   
<s> [1-Tc/T]=    -<s>3 /6
Define zK=Tc/T. Here Tc is a critical temperature 
which will play a crucial role in what follows   Focus 
on zK=Tc/T very close to 1. Then,  

<s> [T-Tc]/T=    -(<s>)3 /6
Note that we always have one solution <s>=0, which 
gives the system zero magnetization. We look for 
additional solutions which have non-zero 
magnetization.  We must have  [T-Tc]/T=-(<s>)2 /6

 To get real magnetization we must have T below Tc 
and then 

† 

< s >= ± -6  (1- Tc /T )   

 Note the square root. It indicates a singularity in 
magnetization versus temperature at Tc.  This 
behavior is only possible in an infinite system. 
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Magnetization versus Field
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Free Energy Formulation
There is an elegant alternative formulation of the 
problem due to Lev Landau, imagine that we have a 
relatively slowly varying <sr> .  We want to 
understand the effects of relatively long-wave length 
fluctuations in this magnetization density. To do this 
imagine that we calculate a partition function based 
upon an effective Hamiltonian or free energy 
F{<sr>}.  We assume that the spatial dependence is 
derived from a term in which a magnetic field vies in 
space and gives a contribution to -F which is 

† 

hrs r
r

Â = (a0 )
-d

dr  hrs r  Ú

the remaining terms in the free energy density are 
assumed to be expandable in a series in the 
magnetization density, based upon the idea that the 
density is small.  The first term is independent of the 
density. We assume that this term is large but 
unimportant for our analysis.  The remaining terms 
must be even in the magnetization density, since a 
parity transformation flips the sign of that density 
without changing anything else.  An appropriate 
expansion might be that -F has terms of the form

-
  

† 

(a0 )
-d

dr  [a s r
2 /2 +b s r

4 / 4 +c  (—s r )o  (—s r )Ú / 2]
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 The gradient term is the simplest such term 
consistent with rotational and translational 
invariance. 

To get an equation obeyed by the magnetization 
density, use the concept from thermodynamics that 
all the internal parameters of the system adjust 
themselves to minimize the free energy.  In this way 
we find  

† 

hr = as r +bs r
3 - c—2s r

This is our mean field equation extended to include 
spatial variation.  The coefficient a is to be identified 
with 1-Tc/T, to make the critical temperature be a 
point of singularity.  The only other difference is that 
of notation.  Here we write 

† 

s r, previously we wrote 
<

† 

s r>.
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Universality
We have just found a mean field theory result of the 
form

† 

hr = A(1-Tc /T )s r +bs r
3 - c—2s r

where A, b, and c are some coefficients describing 
how an order parameter, 

† 

s r,  might depend upon a 
symmetry breaking field h and a deviation from the 
critical temperature.  This result, with different 
coefficients can equally well be applied to a wide 
variety of phase transitions--indeed almost any one 
with a scalar order parameter.  The consequences 
are then “universal” in that they apply equally to a 
whole variety of phase transitions.  These 
consequences include the conclusion that at h=0, the 
order parameter varies as the square root of         
(1-Tc/T) , while at T=Tc it varies as the 1/3 power 
of h, and that the coherence length, i.e. the range of 
important correlations diverges as 

† 

x µ (|1-Tc /T |)-1/2  
both above and below the critical temperature. In 
this and many other respects the behavior is, expect 
for a few dimensional coefficients, expected to be 
model independent.
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Scaling
We have just found a mean field theory result of the 
form 

† 

hr = A(1-Tc /T )s r +bs r
3 - c—2s r .  In the critical 

region, all three of the variables in this equation are 
small and the spatial variation occurs over a long 
distance in comparison to the lattice size.  How can 
we characterize this smallness?  One way of doing 
this is to describe all variables by their relative sizes 
in comparison to appropriate powers of 

† 

(1-Tc /T ). To 
do this write

 R=r[A

† 

(1-Tc /T )/c]1/2

H=h A-3/2 b-1/2 

† 

(1-Tc /T )-3/2

M= s (A/b)-1/2 

† 

(1-Tc /T )-1/2

In terms of these scaled variables the mean field 
equation reads 

† 

HR = MR + M R
3 - —R

2MR
  , a completely 

universal form.  We describe this situation by saying 
that we have rescaled distances magnetizations and 
magnetic fields by the appropriate powers of 

† 

(1-Tc /T ),  and thereby generated a scaled equation 
for the local magnetization.
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Triumphs and Failures
The approach outlined here has had its major 
triumphs.  Its first appearance was in van der Waals 
work on the liquid-gas phase transition.  A similar set 
of equations was used by Weiss to describe 
ferromagnetism, for order-disorder transitions and 
for many others.  In 1937, Landau produced the 
free-energy argument which unified these and many 
others studies.  

These arguments had a very considerable success. 
They described the qualitative properties of phase 
diagram quite well.  They got all the gross physics 
right.  But near the critical point, where Landau’s 
expansion was believed to be particularly good there 
was trouble.  But the trouble only appeared in parts 
of Landau’s results.
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Comparison with Other Results
Many studies have verified that near the critical 
point, there is scaling and have shown aspects of the 
universality described here. Specifically

a. Numerical studies of phase transitions in Ising 
models showed a very considerable similarity among 
all three dimensional problems as well as among two 
dimensional problems.  However, the actual behavior 
was rather different in that for example the three 
dimensional model had magnetization going roughly 
as a one third power of the temperature deviation 
from criticality instead of the one half power 
described here.
b. Onsager developed an analytical theory of the two 
dimensional model, universal with respect to lattice, 
with was shown to have universality and scaling, 
however with different scaling indices than those 
given above.

c. Three-dimensional experiments showed scaling 
behavior which rather closely agreed with the 
numerical studies and hence differed considerably 
from the van-der Waals-Landau results.  A first set 
of such experiments were carried out by van der 
Waals himself.  Something new is needed. 

Windsor Lectures IIA 8/18/04                      page 16



 

Maybe the assumption that one could expand the 
free energy in the order parameter was as error.  
Maybe one needs a different starting point. 
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Fluctuations Can Dominate
V.Ginzburg constructed an argument which 
suggested that the assumption of a fluctuation-free 
mean field could be in error near the critical point. 
Then he looked at the fluctuations in  magnetization 
by studying the correlation function  

G(r)=<srs0> 

at criticality where 

† 

0 = bs r
3 - c—2s r  so that 

† 

—2G(r) = 0 , 
with the condition that at r of order the lattice 
constant the correlated fluctuations are of order 
unity.  The solution is G(r)~ (a0/r)d-2 at least up to r 
of order the correlation length. 

Substitute this length into the estimate and find 
<srs0> ~ (Tc-T)(d-2)/2 which then makes the 
fluctuations in the magnetization of order 

(Tc-T)(d-2)/4 .  
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  We conclude that the fluctuations are of order

   d s  ~  (Tc-T)(d-2)/4

A comparison with the average magnetization, which 
has

< s > ~  (Tc-T)1/2

implies that when (d-2)/4 >1/2  the fluctuations can 
be neglected.  This inequality says that we need d>4 
for mean field theory to be valid near the critical 
point.  

So mean field theory can be expected to fail near 
the critical point in our three-dimensional world. 
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