
III Renormalization: 
A. 1 d Example (ibid., Chapter 13)
B. 2d Example  (ibid., Chapter 14)     

The Concept
The idea of renormalization is very simple.  Imagine 
that we compare two problems in d dimensions: one 
with N spins called sr the other with say N/2d spins 
called mR.  The new lattice, R, is interleaved in the old 
one r.  In fact, the new variables are functions of the 
neighboring old ones.  In making this happen we have 
changed the lattice constant  of the system by a 
factor of two.  We can fix up the transformation so 
that the free energy of the two systems are 
identical and so are the long-ranged correlations.  I’ll 
show you how this might be done in a moment. 

 Then what we have done is changed the problem, 
but kept the answers the same.    Since we have 
some sort of universality in the problems we have 
been describing, we might imagine that we have a 
mechanism for changing the form of the problem 
(the Hamiltonian or the couplings) but not the nature 
of the answer.  This sounds like, and is, a powerful 
idea. 
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One Dimensional Ising Model Example
Return to our calculation of the partition function  

† 

z = eKs1s 2 eKs 2s 3 ....eKs Ns 1

s1 ..s N

Â

† 

= (s 0 | T | s1)(s1 | T | s 2 )
s1..s N

Â (s2 | T | s 3)(s 3 | T | s 4 )

                ...(sN-2 | T | s N-1)(s N-1 | T | s0 )
 Imagine a new problem in which all the even spins 
are held constant, but renamed according to 

† 

s0 = m0    s2 = m1        
s 4 = m2  

while all the odd-numbered s’s serve as summation 
variables.  The sum now looks like

† 

=
m0m1...
Â (m0 | T | s1)(s1 | T | m1)

s1

Â  
s3

Â (m1 | T | s 3)(s 3 | T | m2 )....

      ...
s N-1

Â (mN /2-1 | T | s N-1)(s N-1 | T | m0)

                

 

 The sums over s’s are matrix multiplication so 

† 

z =
m0m1...
Â (m0 | ¢ T | m1)(m1 | ¢ T | m2)....(mN /2-1 | ¢ T | m0 ). 

¢ T = TT                
The new T has a new coupling constant 

† 

¢ K 
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The New Coupling

† 

const  e ¢ K m0m1 = eKm0s eKs m1 .
s

Â

† 

const  e ¢ K = 2cosh (2K )

† 

const  e- ¢ K 
= 2

† 

e2 ¢ K = cosh (2K )

What happens? Imagine that the old coupling is large. 
Then to exponential accuracy

† 

e2 ¢ K = e2K /2    or   ¢ K = K - (ln2) / 2

Therefore in each iteration the coupling gets smaller 
and smaller until, finally, one reaches a small value of 
the coupling....and the problem gets easy to solve.

In the meantime, one can look at the coherence 
length for large values of K.  This length has the 
form   

† 

x = a0 f (K )  where f is an unknown function. If 
we renormalize the correlation length retains the 
exact same value but the coupling decreases while 
the lattice constant doubles.  We have

† 

x = a0 f (K ) = (a0 ¢ ) f ( ¢ K ) = (2a0 ) f ( ¢ K )   so  that  f ( ¢ K ) = F(K) /2   
Inspection shows that for large K, f(K)=e2K so that 
the coherence length grows exponentially with K.
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Phenomenology
The phases of a statistical system are determined 
by the result of many successive renormalizations 
transforms upon the system. By some process of 
summation, we go from our “starting problem” with 
lattice constant 

† 

a0  and N degrees of freedom to 
another situation with a new, larger, lattice constant

† 

(a0 ¢ ) = la0   with   l >1 

and fewer degrees of freedom 

† 

¢ N = N / ld  where d is 
the dimension of the system.  As this happens, we 
may generate new kinds of interaction terms with 
new coupling constants.  If {K} is the set of all 
possible coupling constants, nearest neighbor, next 
neighbor, four-spin , etc. Then we can view the 
renormalization process a generating a 
transformation to a new set of couplings 

† 

{ ¢ K } = Rl({K }).  We then imagine doing this many, 
many different times.    Given either a classical or a 
quantum system there are several qualitatively 
different situations or “phases” possible
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Phases
1. Normal (weak coupling) Phase: After many 
transformations each having 

† 

(a0 ¢ ) = la0   with   l >1  the couplings will get weak.  
The system has now fallen into its normal phase in 
which there are only finite length correlations among 
the different parts of the system and every physical 
quantity is an analytic function of all couplings. 
Depending on how the renormalization is set up the 
system may end up with various different values of 
couplings, but they will all show the same sort of 
scale invariance: all correlations will extend over zero 
or finite distances.  
2. Ordered (strong coupling) phase.  This is what we 
get at a first order transition.  At least one coupling 
gets stronger and stronger.  Thus the system shows 
a behavior in which it is in an ordered phase and 
some correlations extend over an infinite distance.  
The are several different nearby phases (e.g. 
positive <s> and negative). Which phase is realized 
depends upon such things as whether a particular 
coupling goes to plus infinity or minus infinity.  In turn 
that may depend sensitively upon the initial 
couplings.  
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3. critical phase. characteristic of “second order” 
phase transition point.  System is between order and 
disorder.  Couplings approach a finite values, 
However these are several couplings (magnetic 
field) or (T-Tc) in which a small positive initial value 
may produce an entirely different outcome from a 
small negative value.  If these special, “relevant” 
couplings are set to their critical values, then after 
many renormalizations the couplings approach some 
set of finite values, depending upon the RG 
transform.  When that happens we say that the 
system has approached a “fixed point”, and argue 
that the fixed point represents a scale invariant 
critical behavior.  
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Stability
The nature of the phases are largely determined by 
stability considerations. 

1. No transition: Weak coupling phase: quite stable.  
Any small changes in the coupling strength send the 
system to the same behavior.

2. First order transition: Strong coupling phase: 
unstable.  Imagine a large value of K and a weak 
magnetic field in any dimension above one.  Under 
renormalization any tiny magnetic field will approach 
+∞ or -∞ depending upon whether it is initially 
positive or negative. This instability and infinity is 
characteristic of a first order transition.  
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....Critical Phase....
3. critical phase. characteristic of “second order” 
phase transition point.  System is between order and 
disorder.  Couplings approach finite values 
(unstably). The word “unstable” means that if we 
vary the couplings slightly the eventual destination is 
vastly different from the one in the critical phase. If 
the temperature is slightly higher than the critical 
one, or if the magnetic field is slightly different from 
zero, the system approaches the weak coupling 
phase.  On the contrary, if the magnetic field is zero 
but the couplings are slightly stronger than their 
critical values, the system approaches a strong 
coupling phase.   Thus, the critical phase is very 
sensitive to tiny variations in the coupling.
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For Example, d=2 Ising Model, s=

† 

±1
Spin in a magnetic field d-dimensions:
- b H{s} =

† 

Ks r
<n .n .>
Â s s + hrs r

r
Â

I want to describe the simplest transformation which 
gives the three kinds of fixed points described 
above.  I describe an approximation due to A.A. 
Migdal, later analyzed by me.  The basic approach is 
to take a square lattice with spins sij and nearest 
neighbor coupling constants Kx  in the x-direction 
and Ky  in the y-direction. We work 

† 

z = e-bH{s}

s

Â

to construct the partition 
function

on a square lattice 
We first sum over all spins 
with odd values of i holding 
the ones with even values 
fixed

X
X
X
X

X
X
X
X

X X
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We then sum over all spins 
with even i and odd values 
of j holding the ones with 
even j and i values fixed.  

X
X
X
X

X
X
X
X

X X
X X X

X X X

After this is all done we 
relabel the spins so as to 
represent a situation with 
doubled lattice constant.
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X
X

X
X

X X

X
X

X
X

However the green 
bonds connecting 
the x’s prevent us 
from doing the sum

 
Move these bonds
to equivalent
positions where
they won’t harm
our calculation.  Do
the calculation and
find

X X
X X

X
X

X
X

† 

Ky
' =  2Ky   and   K x

' = 0.5  ln(cosh 2K x ))
repeat in the other direction and find that the next 
set of couplings obey:

† 

Ky
¢¢ = .5  ln(cosh 4Ky )   and   K x

¢¢ = 2(.5  ln(cosh 2K x ))
Now let us draw a picture of what happens to these 
couplings.  
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Stability Near the Critical Point (again)
The system can approach any on the three critical 
points, weak couple, (K=0), strong coupling (K=∞) 
and critical (K=Kc). If you are near the weak coupling 
point, any little couplings that you put away will after 
several renormalization transforms, approach zero.  
Thus the system is completely stable against 
perturbations.  Physically, we see no sign of 
remaining correlation at large distances.  Near the 
critical coupling, the are two kinds of perturbations 
which can grow--a magnetic field perturbation--which 
breaks the essential spin flip symmetry--and a 
temperature perturbation, shown in the last plot 
which is a deviation from criticality which grows in 
each iteration of the RG. This transition is unstable 
against perturbations.  The magnetization and 
energy variables conjugate to the growing 
perturbations have very long-ranged correlations.  In 
the first order transition is at K approaches infinity  
and h=0. In this transition,  a small magnetic field will 
grow and grow, eventually sending you away from 
the transition.   It is known that this growth produces 
weak but long-ranged correlations of the 
magnetization variables. 
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Stability Near the Critical Point (again!)
There are thus three different kinds of behaviors for 
field variables near critical points:

1. Stable.  They die away after many 
renormalizations.  They are irrelevant to what 
happens at the critical point. Nothing much depends 
upon them.

2. Unstable.  These variables grow exponentially with 
the number of renormalizations.  So does the 
rescaled lattice constant length.  Hence they each 
grow algebraically with the length. These variables, 
usually (T-Tc) and magnetic field are set to zero so 
that we can be at the critical point.  Because they 
are zero, no property of the critical point is directly 
affected by these fields.

Hence nothing affects the critical behavior.  It is 
universal except for the cases in which there is a 
third kind of variable. 

3. Marginal.  Variables like this neither grow nor 
decay with successive renormalizations.  They 
remain constant and cause a variability (non-
universality) in critical behavior. They are rare, and 
do not appear in most problems. 
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