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Abstract
In statistical physics, a very considerable effort has 
gone into studying the shapes of two-dimensional 
objects. especially fractals.  Shapes of critical 
clusters are important in percolation and phase 
transitions, and in many dynamical problems.
Conformal mappings in the complex plane provide 
another mechanism for producing shapes. This one is 
particularly natural for physics since analytic 
functions automatically obey Laplace’s equation. This 
method has been directly used by Hastings and 
Levitov to study DLA.       
Loewner devised a method to use conformal maps 
for constructing fractal line patterns. This method is 
described and explained. More recently Loewner’s 
method has been used to solve shape problems in 
percolation, self-avoiding walks, and critical 
phenomena.  These applications are described.
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Preface
Long ago, a bunch of us cracked the problem the 
theory of critical phenomena, or phase transition 
theory.  We were able to describe how information 
about the system’s local order could be transferred 
to one part of the system to another, and especially 
how this information could be transferred over long 
distances near the critical point. The description was 
in terms of local quantities like density r(r) and 
magnetization s(r) at the point r and of correlations 
among these. 
A typical problem was the Ising model in which there 
was a lattice and at each lattice site there was a 
spin- variable, s(r), which took on the values plus 
one and minus one.  Spins at neighboring sites were 
coupled together so that they tended to line up.  
The local alignment was strong at low temperatures 
and weak at high temperatures.
The system has three phases:  At high temperatures 
a disordered (paramagnetic phase) in which far 
distant points had no correlation. At low 
temperatures a ordered (ferromagnetic phase) in 
which correlation among spins extend over the entire 
system with a majority spins being (say) positive.   
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At some intermediate temperature there is a critical 
phase in which large islands (domains) of spins tend 
to be lined up, but with the alignment getting weaker 
and weaker average as the clusters get larger.    
By 1975 or so we thought we were done.  We 
understood how <s(r)> might depend upon the 
thermodynamic variables measuring distance from 
the critical point and how correlations like <s(r) 
s(s)> might behave. 
We also understood something about the basic 
global  symmetries in the problem: the usual 
rotational and translational invariance, the spin-flip 
symmetry.  At the critical point we saw in addition 
universality (rather different problems showed 
identical large-scale behavior), scaling (the large 
scale behavior was the same at all scales), and 
conformal invariance (a slight mysterious symmetry 
under complex analytic transformations of the 
space).    So many of us went on to other things.
But the old problem was not dead. We had left 
behind a crucial issue.  How can one characterize the 
shapes of the spin clusters that form in critical 
phenomena? We did not even realize that we had 
left something behind. 
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Percolation.  
Probability p that a site will be occupied (black) 
versus empty (red).  Small p--small isolated clusters

P close to one, same story. If p is close to one half, 
lots of large clusters of both colors are formed
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In 1981 Witten & Sander developed a dynamical 
model called DLA.  This model was intended to 
construct scale-invariant, (fractal) objects.  It did so, 
but despite a huge amount of work, we developed 
little understanding of the universality, scaling, or 
conformal properties of that model.      
Late in the 20th century,  a new point of view was 
developed which enabled one to calculate the 
shapes of “domains”, i.e. correlated regions, in two 
dimensions. This point of view was somewhat 
mathematical in character and was in some sense 
invented by the mathematician Oded Schramm.  I’ll 
try to tell about it and how it fits in to the other two 
development. trans,trans.
  

On to DLA:   
DLA is a model invented by Witten and Sander to 
describe how tiny bits of soot may come together 
and form one large, fractal aggregate.  It was one of 
the first models to be initially expressed  as a 
computer algorithm trans,trans.
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Conformal Maps

We don’t teach much complex analysis to physics 
students.  So I’ll say some elementary things here. 
A point   

† 

r r = (x,y) can also be written as z=x+iy. A 
bunch of points define a shape. Take z=eiq = cos q  + 
i sin q with q  between 0 and 2 π and you get a circle. 

z
  

Functions of a complex variable automatically obey 
Laplace’s equation at every point where there is no 
singularity.  If w=1/z=1/(x+iy) =(x-iy)/(x2+y2) then 
we automatically know that

 [(∂x)2 +(∂y)2] [x/(x2+y2)]  =0  

except at z=0.
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zDD

Here is another curve.  It sits in the z-plane.  Let 
w=f(z)=(z+1/z)/2.  What do you get? Take the 
curvey part described by  z=eiq with q real and in 
[0,π].  Plug this into f.  All these points together give 
a line segment, w=cos q. Now take the right hand 
straight part given by z=eu, u>0.   This gives a line 
segment, w=cosh u,  extending from 1 to infinity.  All 
together you get the shape shown below. 

RR w

What we have just done? We have constructed a 
conformal mapping, which takes the colored curve in 
the z-plane into the line in the w-plane. It also takes  
the region above the curve in z,  D,  into the region 
above the line in w, R,R, in a one to one manner.    
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Definition: Conformal Map

A conformal mapping, is a function f(z) analytic 
within a simply connected region D of the complex z-
plane, and which has the property that df/dz is never 
zero in D.  It then provides a one-to-one mapping of 
the interior of D into the interior of another simply 
connected region R R and likewise maps the curves 
which bounds these regions into one another. 
Riemann proved that for finite regions the mapping is 
unique.  To go backwards from R R to D you use the 
inverse function g(w) which obeys  g(f(z))=z. This 
too is unique. 

In the complex plane analysis and geometry are the 
same thing.  
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Going Backwards

w=f(z)=(z+z-1)/2   takes D into RR.

zD

w
R

Solve for z.  

† 

z = w + w2 -1   z=g(w)  Then g takes R 
into DD.

Note that non-analyticity at w=1,-1, z=0 and 
vanishing derivatives z=1,-1 at all give interesting 
behavior. 
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Composition Properties

w=f1(z)=(z+z-1)/2   takes D1 to RR.

w=f2(z)=[(z-0.5+(z-0.5)-1]/2   takes D2 to RR.

zD
1

zD
2

w=f2(f1(z))=takes a larger region to RR.
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Diffusion Limited Aggregation, Again
One can equally well form DLA aggregates by doing 
a bump map many many times. On picks a map of 
the form

† 

w = fa(z) = (z- a +
r2

z - a
) / 2,

which makes bumps with radius r and position a. (r 
and a must be real.) The one puts together a bunch 
of bumps by successively forming the maps one 
after the other:

† 

F(z) = fa5
( fa4

( fa3
( fa2

( fa1
(z))))) 

One bump:

many bumps tend to clump

trans
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Basic math behind this: (Hastings and Levitov) The 
probability for finding a random walker someplace is 
defined by a diffusion process, which thus obeys the 
discrete analog of 

 [(∂x)2 +(∂y)2] p(x,y)=0 

with the relative probability, p(x,y), being zero on 
the aggregate.  The actual probability of hitting is 
the value of the probability on a site next to the 
aggregate, which is proportional to the normal 
gradient of the probability at the aggregate. 
Using complex analysis we know precisely how to 
construct such a function.  Take our strange shaped 
object.  Let the outside of that object be the region 
RR in the z plane.  Construct the map which takes RR 
into the upper half of the w-plane. The map gives p: 
w=f(z)=f(x+iy)=q(x,y)+ip(x,y). 
To check note that f(z) obeys the Laplace equation, 
is real on the boundary and has the right behavior at 
infinity.  
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Physical models:  
DLA: bumps appear at random positions in w, all 
equal in size.  (Hastings and Levitov) 
Noise-reduced DLA: many hits in the neighborhood 
of a given w are required before a bump is raised. 
Chao Tang: result is different. 
Other models: bump size =1.  New bump is produced 
at a “distance” Dw = k0.5  from last bump and a 
random direction. This random walk produces fractals 
very different from DLA. Structure of fractals differs 
depending on value of k (Oded Schramm had the 
basic insights, further developed by Lawler and 
Warner, and then Hastings translated them into this 
language.)    
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On to Loewner 
There is a connection between the work of Hastings 
and Levitov and the much earlier work of C. Loewner 
who was studying the generation of singularities in 
conformal maps.  He looked at the map ft(z) and 
asked himself how he could produce smooth 
deformations of this map. As part of this he turned 
to consideration of the equation 

† 

d
dt tf (z) =

2
ft - x(t )

      with the initial condition f0(z)=z  

Here f and z are complex, t and x are real. The time 
development of f(z), as generated by this equation 
is called the Loewner evolution.
This equation has been used to prove some 
important and fundamental propitious of analytic 
functions.  However, we wish to look at it from a 
geometrical point of view:  w=ft(z) is a mapping 
which takes you from a point z in region, D,D, 
contained in the upper half of the z-plane to another 
region R which is the upper half of the w plane.  The 
geometry of D D is the primary focus of our interest. 

At time zero the geometry is simple, f=z and D=R.D=R.
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The simplest case
The simplest case,  x(t)=x(0)=x0, is quite instructive. 
The equation is:  df/dz=2/(f -x0) or d ((f -x0)2)/dt=4 
so that [ft(z)-x0]2=4t+c(z)  where c is a “constant” 
of integration.  The initial condition, f=z then, implies

† 

ft (z)- x0 = (z -x0 )2 + 4t  . This solution has a branch cut, 
at which the square root changes sign, running up a 
line Re z=x0  from z=x0 to z=x0+2i

† 

t  . The region D is 
the upper half plane less the branch cut.  

z

A

B

C

One can work with these line segments in just the 
same way as Hastings worked with bumps.  One 

again the function of a function composition works to 
give more complex structures from simpler ones. 

w

A B C
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More On Loewner 
What a bore!  All this work and you get a line 
segment.  And it gets worse.  If x(t) is any smooth 
curve with 

† 

tÆs
lim

x(t)- x(s)
(t - s)1/2 = 0  then the geometrical 

object generated is just a curvey line. For example, 
for x(t) =t,  the trace looks like trans  
However, all this dullness is, if seen the right way, 
quite exciting.   The Loewner equation can be seen 
as a machine for producing a curve called a trace 
which depends upon the forcing function x(t). This 
machine has quite fantastic qualitative properties, 
which depend almost entirely upon the singularity 
structure of x(t). This is exciting in itself.  
The form of the trace has simple covariance 
properties under the operation of translation, 
rotation, and scale change.  
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xy plot of trace 
Wouter Kager   7/03
x(t) = t
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 For smooth forcing functions  
The trace is non-self-interecting and does not 
intersect the real axis.
Essentially any such curve can be generated in this 
fashion    
If the forcing is sufficiently singular, one can 
generate other shapes.  If we have 

† 

x(t ) = 2[k(1- t)]b   

then if b < 1/2 the trace will intersect itself. 
•For b = 1/2 and k < 4 we get a logarithmic spiral 
which circles around and infinite number of times. 
trans
•For b = 1/2 and k > 4 we get an intersection with 
the real line trans,trans,trans, 
• For b = 0, i.e. discontinuous forcing, one can get 
discontinuous traces. trans,

We have had lots of fun with this*, but let me move 
on to other things  

*coworkers:  Bernard Nienhuis, Isabelle Claus, Wouter 
Kager,  Panos Oikonomou, Marko Kleine Berkenbusch
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On to Stochastic  Evolution... 
The real fun comes when the forcing function is 
stochastic.  The first hint of this came from Hastings 
and Levitov and DLA.

To Stochastic Loewner Evolution... SLE

Look at the traces induced by the stochastic version 
of the Loewner equation in which the forcing is the 
Gaussian random process x(t)=

† 

k  B(t) where B 
represents normalized Brownian motion.  Specifically
<[x(t)-x(s)]2 > = k |t-s|
There are several qualitatively different forms of the 
traces depending upon the values of k.

The results are spectacular. 
We have already seen that if we chose x(t) to be a 
smooth real-valued function, the mapping ft(z) would 
give a conformal map from the upper half-plane, with 
a simple curve cut away. However because a 
Brownian walk contains small-scale singularities, we 
cannot be sure a priori what will happen.  Indeed the 
RMS separation  [x(t)-x(s)] is  (k |t-s|)1/2 which is just 
marginal for singularity production. What happens has 
been sorted out by some elegant mathematics, 
which shows that the result depends on k. 
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What Happens
is that the SLE process cuts away some portion of 
the z-plane.  For 0< k ≤ 4 the SLE trace is a non-self-
intersecting curve

 
for 4< k ≤ 8 a self-intersecting one and for  8 <k  a 
filled in region of the plane. These geometrical 
objects turn out to be closely related to scale 
invariant objects formed in critical phenomena and 
other physically interesting scale-invariant 
processes.
• There is are theorems which show that the 
ensemble of all  traces formed by different Brownian 
walks for  k= 8/3  have the same members with the 
same weights as the class of all self-avoiding walks. 
Or more precisely, the scaling limiting of the latter is 
identical to the SLE ensemble!  Thus SLE, which is 
relatively easily analyzed, describes this walk-
problem, which is not.
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  More problems solved
• Similarly, the percolation problem has a solution 
related to k = 6 SLE.  In the scaling limit,  critical 
percolating clusters have the same ensemble of 
shapes as the exterior boundaries of the intersecting 
SLE paths.   
These results are theorems.  Next comes a bunch of 
very plausible speculations about the relation 
between SLE and the critical limit of phase transition 
problems.  Concretely the speculation is that the 
ensemble of all SLE shapes give the shapes of the 
outline of clusters of the critical points of different 
phase transition problems.  Specifically, k=3 
corresponds to the Ising model.  
Finally Loewner evolution automatically give 
information about the electric field singularities which 
emerge when LE and SLE geometrical objects are 
taken to be charged conductors.  Judging from DLA, 
these questions about charging are quite relevant to 
the deeper geometrical meaning of these objects.    
The work of Duplantier on the electrical properties of 
critical clusters actually came before SLE but it has a 
similar spirit.
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