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What is thatWhat is that

Nonlinearity condition:

How to get here – and where from?

How to use this?

Why to be bothered?



Why to be bothered?Why to be bothered?

The first application (1979-1981): 

putting some foundation under the Gang-of-
Four* speculations 

*Abrahams, Anderson, Licciardello, and Ramakrishnan, 1979
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And more And more ……
NLσM describes, apart from g(L) itself

• mesoscopic distribution functions (of UCF etc)

• correlations of energy levels and wavefunctions
• long-time asymptotics of different observables
• statistics of rare events

and changing of the above with increasing disorder.

Also, it’s a natural tool for describing some non-
perturbative (ie non-analytic in g−1) effects

• and more …



Where to get it from?Where to get it from?



Starting Point: The TOE modelStarting Point: The TOE model

• addressing only low-energy modes
• averaging over weak disorder

A field-theoretical approach :
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Start with a toy model (to get to Start with a toy model (to get to 
the TOE one)the TOE one)

Green’s function: (ε−H) G = I

A generic, after diagonalization, 1-particle Hamiltonian



Gaussian IntegralsGaussian Integrals

Represent det(ε−H)−1=Π
α
(ε−ε

α
)−1 as a Gaussian integral:

Dc*Dc is a symbolic notation for the product over all dc
α



Functional IntegralFunctional Integral
Transform the exp:

“Action” S+

“Partition function”:

Integration over “all fields” means integration over all c & c*



GreenGreen’’s Functionss Functions

Apply to the functional integral, a product of Gaussian ones:

, using

Thus,

obtained by variable’s shift in a 
Gaussian integral: x→x+h/α



Fermions do it like BosonsFermions do it like Bosons
… but upside down           

For our 1-particle toy model both fermionic and bosonic
representations are equivalent.

Having the TOE model as a target, we will deal with 
fermions from now on.



From the Toy to Anderson modelFrom the Toy to Anderson model
by diagonalizing

Gaussian white noise:

A typical value of a short 
range (rc~λF) potential is εF

r

T

random V

electron energy

V



Averaging GreenAveraging Green’’s s Function(sFunction(s))
with the white-noise Gaussian 
potential of the previous slide

Explicit form of the
Gaussian distribution:

Gaussian integration of GV which is exp of V would be 
straightforward, if only GV were not a fraction:



Replica Method (or Trick)Replica Method (or Trick)

The averaged 1-particle G is 
trivial, but 〈GG〉 is as easy:

n “replicas” of the field

Then

As Zn→1 as n→0, in this “replica” limit the denominator 
of G can be averaged independently of the numerator: 



Why it works ?Why it works ?
Perturbatively, this is a method, not a trick. One expands S to get 
diagrams to be compared with those of direct diagrammatic technique

exist in the impurity 
techniques

exist in QFT but not 
in the impurity techniques

An interaction loop does survive

Killed by the replica trick: each closed loop has an extra n 



AlternativesAlternatives
ALSO KILLED IN SUSY TECHNIQUES AS 
FERMION AND BOSON LOOPS HAVE 
OPPOSITE SIGNS

NEVER APPEAR IN KELDYSH TECHNIQUES

Why Replicas?Why Replicas?

•SUSY – by far the best for non-perturbative calculations   
for non-interacting electrons cannot be generalised for 
interactions in any meaningful way

•Keldysh techniques would probably be better but 
replicas are considerably easier



Thus, one arrives at a quartic in Ψ action S. Particularly, in 

calculating the product  ,   the action is

How it works?How it works?
One just calculates the Gaussian integral: 

, and Ψ is 2n-component:



The full action is too complicated. A proper FT describes 
interacting slow modes that should be extracted from 

Slow ModesSlow Modes

Cooperons

(pª−p)

Diffusons

(pªp)

Hikami
box



HubbardHubbard--StratonovichStratonovich transfomationtransfomation

– the  “disorder” field that includes both 
slow channels: cooperon and diffuson

q≡

To get rid of ∝−tr q2, use 

Q is 2nx2n matrix field and

Applying to the matrix 
field q above gives 



Effective FunctionalEffective Functional

the saddle-point 
approximation at ω=0:

This is equivalent to  

The remarkable identity det A = exp[ tr ln A] gives iS→−F with

Integrate out Ψ using det A = ∫D D exp{i Α   }

It makes the first term in F 
irrelevant (const), leaving one 
to deal only with Tr ln (…) 



Gradient ExpansionGradient Expansion
Substitute Q=U+ΛU into Tr ln (U … U+)

solution to the saddle
-point approximation

Since , one 
expands this in powers of ∇Q and ω, 

with expansion parameters ql and ωτ

Finally, the nonlinear σ model

The lowest
nonvanishing
orders of the 
expansion



Limits of validityLimits of validity

Saddle-point + gradient expansion are legitimate provided 
that min is deep enough (dimensionless F à1):

Dimensionless 
conductance

Massive modes (Q2≠1) can be neglected at the same 
condition that justifies the gradient expansion:

This variant of the NLσM is not applicable to 
the ballistic regime, L<{



Regions of applicabilityRegions of applicability

It’s indispensible in 
describing crossover   
to strong disorder   
(when dimensionless 
conductance g decreases)

δ Ec=hD/L2 h/τel εF

Ergodic Diffusive Ballistic
ε

ε
δ~Ec h/τel~εF

Ergodic Critical Ballistic

g−1

g~1

Ballistic SUSY NLσM



Symmetry classesSymmetry classes
Ensemble

orthogonal

unitary

simplectic

    β
    1
    2
    

4

Realization in NLσM

symplectic space

unitary space

orthogonal space

Matrix elements

real

complex

quarternions
(2 × 2 matrices)



DiagrammaticsDiagrammatics in in NLNLσσMM

Lecture 2: OUTLINE
• Observable quantities in NLσM
• Parameterization & diagrams
• Level Sratistics
• Beyond perturbations with replicas

3rd Windsor School on Condensed Matter Theory, 2004



Observable quantitiesObservable quantities
Response functions

Conductivity σ(r,r’)

LDoS correlations



Observables & source fieldsObservables & source fields
A product of any number of Green functions can be 
written as a pre-exponential factor in the ψ-ψ field theory 

A better alternative is to introduce source fields that allow 
one to exponentiate these factors “in groups”:

Any number of such groups is obtained by repeated dif. :



Conductance in Conductance in NLNLσσMM
σ(r,r’) is a response to an external E field introduced by

Current density j∝δ/δA so that σ(r,r’) is given by



DoSDoS in in NLNLσσMM
Since DoS by itself is not affected by disorder, we consider  
DoS correlation function 

– 1

By Ω → Ω(r) this can be generalised to a spatial 
correlation function of two LDoS

Although no source field is required, it’s better to have one

How to carry out calculations?



ParameterizationParameterization

Bn is unconstrained 

nxn matrix field 

First one resolves constraints Q2=1 & Tr Q=0. Examples:

Expanding Q in W, one finds F=F0(W)+δF(W) where

Note that higher powers depend on the parameterization!



How it works perturbativelyHow it works perturbatively
• Expand e−F  in δF and δF in W
• Calculate Gaussian integrals 〈 (δF )m 〉0

In this order R2 is contributed by                        :

R2 = Ω

W

W

Ω

W

W

Ω

W

W

Omitted matrix 
indices are vital 
for taking the n=0 
replica limit



RR2 2 in the diffusive regimein the diffusive regime

In a finite system, q=(2π/L)(nx,ny,nz), integers ni ≥0

For d=2, this does not work:



Higher ordersHigher orders
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Contributions come from 〈 (δF
Ω

)2 〉0 and 〈 (δF
Ω

)2δF(∇Q)2 〉0.

Both replica limit and angular integration severely cut the 
number of contributing diagrams

does not 
contribute in 
the 2nd order



RR2 2 in the diffusive regime in 2Din the diffusive regime in 2D



RR2 2 in the in the ergodicergodic regime, regime, ωωÜÜEEcc

It is not that good at Ec á ωá∆ either.  Exact result

Higher order perturbative corrections  ∼(∆/ω)m :
Perturbation theory breaks down for ωÜ∆

unitary case
β=2 

Non-analytic in ∆/ω  fi nonperturbative.



Exploring Replica SymmetryExploring Replica Symmetry

• For ω<Εc the NLσM contains the ω term only:

• The saddle-point: Q obeys [Q,Λ]=0, i.e. Q is a diagonal  
matrix with equal (as Tr Q=0) number of ±1 elements.

• ∴ the saddle-point is highly degenerate. 

Λp=diag(1n-p,−1p, 1p,−1n-p)

• Normal choice p=0; any p gives the same perturbatively



Breaking Replica SymmetryBreaking Replica Symmetry

• Calculating the integrals yields

Breaking replica symmetry leads to correct non-
perturbative results

•Symmetry is broken by extending summation to p=∞ (as 
Fn

p=0 for n>p), and taking the replica limit n→0.
•It works: Fn

p∝np as n→0 and only p=0,1 terms contribute:

gives the exact result for S2 and thus R2.



Next timeNext time

• It’s up and running

• It’s much easier to use than to derive, but this is 
much easier to declare than to demonstrate

SummarySummary

• Including interactions (Coulomb and BCS)

• Mapping to various known models
• Describing superconductor-insulator transition



Announced at the last lecture:Announced at the last lecture:
• Including interactions (Coulomb and BCS)
• Mapping to various known models

• Describing superconductor-insulator transition

Lecture 3: changing gears to

Functional Functional bosonizationbosonization for for 
LuttingerLuttinger liquidliquid



HubbardHubbard--StratonovichStratonovich transfomationtransfomation: change : change 
from from fermionicfermionic to to bosonicbosonic representationrepresentation

Note that we use the linearized spectrum

but in d>1 it does not split e’s into 2 species

NLσM would follow from the saddle point approximation



Pure Interaction in 1DPure Interaction in 1D
H=H0+Hint, 

repulsion: g<1; free Fermions g=1 (see Giamarchi’s lectures)

In the simplest spinless case, keeping only forward-
scattering local interaction, one gets  from a linearised
Tomonaga-Luttinger Hamiltonian a naïve bosonic one:

Hint=

H=



The aims of this talkThe aims of this talk

• To introduce a “functional bosonisation” for the 
Luttinger liquid in the spirit of the approach used 
in the derivation of NLσM

• As an application, to derive the LDoS ν(ε,x) at 
an arbitrary distance x from a single impurity 
(“end”) in the Luttinger liquid

Hubbard-Stratonovich in D>1 is an entirely different 
“bosonisation” procedure than the operator one in 1D



Effective FunctionalEffective Functional

No spin!; η=(L,R) ∫±, ξ∫ (x,τ);

H is obtained from the Hamiltonian by substituting fermionic
operators by continuous fields in the Matsubara representation



HubbardHubbard--StratonovichStratonovich transfomationtransfomation

( with                             )This results in the effective action

Introduce φ∝ρ – the  bosonic field to decouple the ρ2 term



FermionFermion--Boson DecouplingBoson Decoupling
Gauge transform eliminates the mixed term in the derivative

Thus, fermions and bosons decouple

Where is the trick? V≠ V0 because of the Jacobian of the GT



JacobianJacobian

The Jacobian of the gauge transformation gives the screening!

RPA polarization operator 
is exact for the LL 
(Dzyaloshinskii, Larkin, ‘73)

(see Appendix)

Igor



Exact GreenExact Green’’s functions function
Green’s function is (since                          ):

+S

⇒ we need 〈〈θηθη’〉〉 from 〈〈φξφξ’〉〉=V(ξ−ξ’)



BosonicBosonic AveragingAveraging

This equation is solved by the Fourier transform:

From 



Pure Pure LuttingerLuttinger Liquid:Liquid:
Summary of the ApproachSummary of the Approach

• Calculating GF in this way reproduces the 
results for LDoS in the pure LL

• Any correlation function can be calculated 
in terms of and



Adding an ImpurityAdding an Impurity

Impurity adds a new “coupling” term:

Himp=

left-movers right-movers Back-scattering couples 
left- and right-movers: 
the bosonic excitations 
are no longer free:



Impurity CouplingImpurity Coupling

couples fermionic and bosonic fields after the gauge transform:

Simp=

is to be calculated

Green’s function (that defines the tunnelling LDoS) is now

– the problem is no longer exactly solvable.



Calculating Calculating ZZλλ

Symbolically:

The fermionic average cancels an unpleasant 
denominator of the bosonic one, both resulting in 
a formal expression in terms of



Formal ResultsFormal Results

( )



,

ReRe--BosonizationBosonization

The functional average 〈…〉0 is performed with the weight

Z
λ

in terms of a new impurity functional above is given by

The Green’s function (with                                          )



SelfSelf--consistent harmonic consistent harmonic 
approximationapproximation

SCHA: the deviation of Θ from χ is prohibitive so that cos
potential is substituted by the quadratic approximation:

Assumption: αá λá1 (α∼Τ/εF)
the impurity potential λ(x)=λδ(x) is weak but non-perturbative

What is left is a (rather gory) calculation of Gaussian integrals



GreenGreen’’s Functions Function

Friedel oscillations can be easily extracted

x is the distance from the impurity,             ,



Suppression of the LDoS at the impurity point

Well known Well known LDoSLDoS

Corresponds to “end” and bulk LDoS in Leonid  Glazman’s
lecture this morning



Local Tunnelling Local Tunnelling DoSDoS
is obtained at an arbitrary distance from the impurity



Local Tunnelling Local Tunnelling DoSDoS
different regions at a distance x from the impurity

α∼Τ/εF



• Functional Bosonization works: it reproduces known results 
for Friedel Oscillations & LDoS and allows one to find LDoS
at an arbitrary distance from the impurity

• In many way, it is analogue of field-theoretical treatment of 
higher-dimensional models

• The operator and functional approaches are equivalent for 
exact results; however, ease of use for approximations may 
be different  

SummarySummary



Appendix : Appendix : JacobianJacobian

where

The nth term is

with Γ



2: 2: JacobianJacobian
Only symmetric part of the vertex contributes to the integral:

Sym[                    ]

By power counting, its order is n(n-3)/2>n(n+1)/2 – only 
possible for n=1 and n=2 loops, whose calculation is 
straightforward (after dealing with inevitable divergences)


