Nonlinear σ model for **disordered systems: an introduction**

Igor Lerner

School of Physics & Astronomy

OUTLINE

- What is that & where to take it from?
- How to use it (1 or 2 simple examples)?
- Including interactions

3rd Windsor School on Condensed Matter Theory, 2004

What is that

$$F = \int d^d r \operatorname{Tr} \left[\frac{\pi \nu D}{8} \left(\nabla Q \right)^2 + \frac{i \pi \nu \omega}{4} \Lambda Q \right]$$

Nonlinearity condition:

$$Q^2 = 1 \qquad \text{Tr}\,Q = 0$$

How to get here – and where from? How to use this? Why to be bothered?

Why to be bothered?

The first application (1979-1981):

putting some foundation under the Gang-of-Four* speculations

*Abrahams, Anderson, Licciardello, and Ramakrishnan, 1979

And more ...

NL σ M describes, apart from g(*L*) itself

- mesoscopic distribution functions (of UCF *etc*)
- correlations of energy levels and wavefunctions
- long-time asymptotics of different observables
- statistics of rare events

and changing of the above with increasing disorder.

Also, it's a natural tool for describing some nonperturbative (ie non-analytic in g^{-1}) effects

• and more ...

Where to get it from?

Starting Point: The TOE model

A field-theoretical approach :

- addressing only low-energy modes
- averaging over *weak* disorder

Start with a toy model (to get to the TOE one)

A generic, after diagonalization, 1-particle Hamiltonian

$$H = \sum_{\alpha} \varepsilon_{\alpha} a^{\dagger}_{\alpha} a_{\alpha} \implies H |\alpha\rangle = \varepsilon_{\alpha} |\alpha\rangle$$

Green's function: $(\varepsilon - H) G = I$

$$\hat{G} = \left(\varepsilon - \hat{H}\right)^{-1} \sum_{\alpha} |\alpha\rangle \langle \alpha| = \sum_{\alpha} \frac{|\alpha\rangle \langle \alpha|}{\varepsilon - \varepsilon_{\alpha}}$$
$$\int_{\mathcal{C}^{\pm}} G_{\varepsilon}^{\pm}(\mathbf{r}, \mathbf{r}') \equiv \langle \mathbf{r} | \hat{G}^{\pm} | \mathbf{r}' \rangle = \sum_{\alpha} \frac{\langle \mathbf{r} | \alpha\rangle \langle \alpha | \mathbf{r}' \rangle}{\varepsilon - \varepsilon_{\alpha} \pm i\delta} \equiv \sum_{\alpha} \frac{\varphi_{\alpha}^{*}(\mathbf{r}) \varphi_{\alpha}(\mathbf{r}')}{\varepsilon^{\pm} - \varepsilon_{\alpha}}$$

Gaussian Integrals

$$\int_{-\infty}^{\infty} \mathrm{d}x \, \mathrm{e}^{i(\varepsilon^+ - \varepsilon)x^2} = \sqrt{\frac{\pi}{i(\varepsilon^+ - \varepsilon)}} \implies \frac{1}{\varepsilon^+ - \varepsilon} = \int \frac{\mathrm{d}c^* \mathrm{d}c}{2\pi} \, \mathrm{e}^{ic^*(\varepsilon^+ - \varepsilon)c}$$

Represent det $(\varepsilon - H)^{-1} = \prod_{\alpha} (\varepsilon - \varepsilon_{\alpha})^{-1}$ as a Gaussian integral:

$$\det(\varepsilon - H)^{-1} = \prod_{\alpha} \int \frac{\mathrm{d}c_{\alpha}^* \mathrm{d}c_{\alpha}}{2\pi} e^{ic_{\alpha}^* (\varepsilon^+ - \varepsilon_{\alpha})c_{\alpha}}$$
$$\equiv \int \mathcal{D}c^* \mathcal{D}c e^{i\sum_{\alpha} c_{\alpha}^* (\varepsilon^+ - \varepsilon_{\alpha})c_{\alpha}}$$

 $\mathcal{D}c^*\mathcal{D}c$ is a symbolic notation for the product over all dc_{α}

Functional Integral

Transform the exp:

$$\sum_{\alpha} c_{\alpha}^{*} (\varepsilon^{+} - \varepsilon_{\alpha}) c_{\alpha} = \sum_{\alpha\beta} c_{\alpha}^{*} (\varepsilon^{+} - \varepsilon_{\alpha}) c_{\beta} \int d^{d}r \varphi_{\alpha}^{*} \varphi_{\beta}$$

"Partition function":

$$Z^{+} \equiv \det \left(\varepsilon^{+} - \hat{H} \right)^{-1} = \int \mathcal{D}\psi^{*} \mathcal{D}\psi e^{iS^{+}}$$

Integration over "all fields" means integration over all $c \& c^*$

Green's Functions

obtained by variable's shift in a Gaussian integral: $x \rightarrow x + h/\alpha$

$$\sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} \mathrm{d}x \mathrm{e}^{-\alpha x^2 + 2hx} = \mathrm{e}^{h^2 \alpha}$$

Apply to the functional integral, a product of Gaussian ones:

$$Z_h^+ \equiv \int \mathcal{D}\psi^* \mathcal{D}\psi e^{iS+i(\psi^* \cdot h + h^* \cdot \psi)} = Z^+ e^{-ih^* \cdot G^+ \cdot h}, \text{ using}$$
$$\psi \mapsto \psi - G^+ \cdot h \qquad \psi^* \mapsto \psi^* - h^* \cdot G^+ \qquad (\varepsilon^+ - \hat{H})G^+ = I$$

Thus,

$$\hat{G} = \frac{i}{Z} \frac{\partial^2 Z_h}{\partial h \partial h^*} \bigg|_{\substack{h = 0 \\ h^* = 0}} = \frac{i}{Z} \int \psi^* \psi \, e^{iS} \mathcal{D} \psi^* \mathcal{D} \psi$$

Fermions do it like Bosons

... but upside down

$$Z^{+} \equiv \det \left(\varepsilon^{+} - \hat{H} \right) = \int \mathcal{D} \overline{\psi} \mathcal{D} \psi \, \mathrm{e}^{iS^{+}}$$

$$\hat{G} = \frac{i}{Z} \int \overline{\psi} \psi \, \mathrm{e}^{iS} \mathcal{D} \overline{\psi} \mathcal{D} \psi \quad S = \int \mathrm{d}^d r \overline{\psi}(\mathbf{r}) (\varepsilon - H) \psi(\mathbf{r})$$

For our 1-particle toy model both fermionic and bosonic representations are equivalent.

Having the TOE model as a target, we will deal with fermions from now on.

From the Toy to Anderson model

Averaging Green's Function(s)

 $\langle G \rangle = \int G_V P(V) \mathcal{D}V$ with the white-noise Gaussian potential of the previous slide

Explicit form of the Gaussian distribution:

$$P\left\{V(\mathbf{r})\right\} \sim \exp\left[-\pi\nu\tau_{\rm el}\int \mathrm{d}^d r V^2\right]$$

Gaussian integration of G_V which is exp of V would be straightforward, if only G_V were not a fraction:

$$G_{V} = \frac{\int \overline{\psi} \psi e^{iS} \mathcal{D} \overline{\psi} \mathcal{D} \psi}{\int e^{iS} \mathcal{D} \overline{\psi} \mathcal{D} \psi}$$
$$S = \int d^{d}r \overline{\psi}(\mathbf{r}) \left[\varepsilon - \hat{\varepsilon}_{p} - V(r) \right] \psi(\mathbf{r})$$

Replica Method (or Trick)

 $\overline{\psi} \mapsto \left(\overline{\psi}_1, \ldots, \overline{\psi}_n\right) \equiv \overline{\Psi}$ *n* "replicas" of the field

Then
$$G = \frac{i}{n} \frac{\int \overline{\Psi} \cdot \Psi e^{iS_n} \mathcal{D}\overline{\Psi} \mathcal{D}\Psi}{Z_n}$$
, $Z_n = Z_1^n$

As $Z_n \rightarrow 1$ as $n \rightarrow 0$, in this "replica" limit the denominator of *G* can be averaged independently of the numerator:

$$\langle G \rangle = \lim_{n \to 0} \frac{1}{n} \frac{\langle \dots \rangle_V}{\langle \dots \rangle_V}$$

The averaged 1-particle G is trivial, but $\langle GG \rangle$ is as easy:

$$\left\langle G^+(\varepsilon + \frac{1}{2}\omega)G^-(\varepsilon - \frac{1}{2}\omega)\right\rangle = \lim_{n \to 0} \frac{1}{n^2} \frac{\langle \dots \rangle_V}{\langle \dots \rangle_V}$$

Why it works ?

Perturbatively, this is a method, not a trick. One expands S to get diagrams to be compared with those of direct diagrammatic technique

Killed by the replica trick: each closed loop has an extra n

An interaction loop does survive

Alternatives

ALSO KILLED IN SUSY TECHNIQUES AS FERMION AND BOSON LOOPS HAVE OPPOSITE SIGNS

NEVER APPEAR IN KELDYSH TECHNIQUES

Why Replicas?

- •SUSY by far the best for non-perturbative calculations for non-interacting electrons cannot be generalised for interactions in any meaningful way
- •Keldysh techniques would probably be better but replicas are considerably easier

How it works?

One just calculates the Gaussian integral:

$$\langle \ldots \rangle_V \mapsto (\ldots) \int \mathcal{D}V \mathrm{e}^{-\int i\overline{\Psi} \cdot V \cdot \Psi - \pi\nu\tau_{\mathrm{el}} V_{\mathrm{el}}^2} = (\ldots) \exp\left[\frac{\int (\overline{\Psi} \cdot \Psi)_{\mathrm{el}}^2}{4\pi\nu\tau_{\mathrm{el}}}\right]$$

Thus, one arrives at a quartic in Ψ action S. Particularly, in calculating the product $\left\langle G^+(\varepsilon + \frac{1}{2}\omega)G^-(\varepsilon - \frac{1}{2}\omega)\right\rangle$ the action is

$$S = \int \mathrm{d}^{d} r \left\{ \overline{\Psi} \left(-\hat{\xi} + \frac{1}{2} \omega \Lambda \right) \Psi - \frac{1}{4\pi\nu\tau_{\mathrm{el}}} \left(\overline{\Psi} \cdot \Psi \right)^{2} \right\}$$

 $\xi \equiv \varepsilon_{\mathbf{p}} - \varepsilon_{\mathbf{F}}, \ \Lambda = \operatorname{diag}(\mathbbm{1}_n, -\mathbbm{1}_n), \text{ and } \Psi \text{ is 2n-component:}$

$$\overline{\Psi} = \left(\overline{\psi}_1^+, \dots, \overline{\psi}_n^+, \overline{\psi}_1^-, \dots, \overline{\psi}_n^-,\right)$$

Slow Modes

The full action is too complicated. A proper FT describes interacting slow modes that should be extracted from $(\overline{\Psi}\cdot\Psi)^2$

Hubbard-Stratonovich transfomation

 $q \equiv \frac{2}{\pi\nu} \psi \otimes \psi^{\dagger}$ - the "disorder" field that includes both slow channels: cooperon and diffuson

To get rid of
$$-\frac{1}{4\pi\nu\tau_{\rm el}} (\overline{\Psi}\cdot\Psi)^2 \propto -\operatorname{tr} q^2$$
, use

$$\int_{-\infty}^{\infty} e^{-Q^2 + 2qQ} dQ = e^{-q^2} \int_{-\infty}^{\infty} e^{-Q^2} dQ$$
Applying to the matrix field q above gives

 $Z = \int e^{iS} \mathcal{D}Q \,\mathcal{D}\overline{\Psi} \,\mathcal{D}\Psi \qquad \text{Q is } 2n \text{x}2n \text{ matrix field and}$ $iS \mapsto \int d^d r \text{Tr} \left\{ -\frac{\pi\nu}{8\tau_{\text{el}}} Q^2 + i\overline{\Psi} \left[-\hat{\xi} + \frac{1}{2}\omega\Lambda + \frac{i}{2\tau_{\text{el}}} Q \right] \Psi \right\}$

Effective Functional

Integrate out Ψ using det $A = \int \mathcal{D}\overline{\Psi} \cdot \Psi \exp\{i\overline{\Psi}A\Psi\}$

The remarkable identity det A = exp[tr ln A] gives $iS \rightarrow -F$ with

$$F = \frac{\pi\nu}{8\tau} \operatorname{Tr} Q^2 - \frac{1}{2} \operatorname{Tr} \ln \left[-\hat{\xi} + \frac{1}{2}\omega\Lambda + \frac{i}{2\tau}Q \right] , \ Z_n = \int \mathcal{D}Q e^{-F}$$

the saddle-point approximation at $\omega = 0$:

approximation at
$$\omega = 0$$
:

$$Q = \frac{2}{\pi\nu} \int \frac{\mathrm{d}^d p}{(2\pi)^d} \left(-\hat{\xi} + \frac{i}{2\tau_{\mathrm{el}}} Q \right)^{-1}$$

$$Q = U^{\dagger} \Lambda U$$

 $\Lambda = \operatorname{diag}(\mathbb{1}_n, -\mathbb{1}_n)$

This is equivalent to

$$Q^2 = 1 \qquad \text{Tr}\,Q = 0$$

It makes the first term in F irrelevant (const), leaving one to deal only with Tr In (...)

Gradient Expansion

Substitute $Q = U^+ \Lambda U$ into Tr ln $(U \dots U^+)$

$$F = -\frac{1}{2} \operatorname{Tr} \ln \left[-\hat{\xi} + \frac{i}{2\tau} \Lambda - U \left[\hat{\xi}, U^{+} \right] + \omega U \Lambda U^{\dagger} \right]$$
Solution to the saddle -point approximation
Since $\xi \equiv \hat{p}^{2}/2m - \mu \approx v_{\mathrm{F}} \mathbf{n} \cdot \nabla$, one expands this in powers of ∇Q and ω , with expansion parameters Q^{ℓ} and $\omega \tau$

$$F = \int d^d r \operatorname{Tr} \left[\frac{\pi \nu D}{8} \left(\nabla Q \right)^2 + \frac{i \pi \nu \omega}{4} \Lambda Q \right]$$

The lowest nonvanishing orders of the expansion

Finally, the nonlinear σ model

Limits of validity

Saddle-point + gradient expansion are legitimate provided that min is deep enough (dimensionless $F \gg 1$):

Dimensionless conductance

$$g_0 \equiv \nu D L^{d-2} \gg 1$$

Massive modes $(Q^2 \neq 1)$ can be neglected at the same condition that justifies the gradient expansion:

$$q\ell \gg 1$$

This variant of the NL σ M is not applicable to the ballistic regime, $L < \ell$

Symmetry classes

Matrix elements	Ensemble	ß	Realization in NL σ M
real	orthogonal	1	symplectic space
complex	unitary	2	unitary space
quarternions	simplectic	Λ	orthogonal space
$(2 \times 2 \text{ matrices})$	Simplectic	4	or mogorial space

Diagrammatics in NL*o***M**

Lecture 2: OUTLINE

- Observable quantities in $NL\sigma M$
- Parameterization & diagrams
- Level Sratistics
- Beyond perturbations with replicas

3rd Windsor School on Condensed Matter Theory, 2004

Observable quantities

Response functions

LDoS correlations

Observables & source fields

A product of any number of Green functions can be written as a pre-exponential factor in the ψ - ψ field theory

A better alternative is to introduce source fields that allow one to exponentiate these factors "in groups":

$$= \overline{\psi}h\psi \mapsto \operatorname{tr} \left(h \cdot \psi \otimes \overline{\psi}\right) \mapsto \frac{\partial}{\partial h} \mathrm{e}^{\operatorname{tr} \left(h \cdot \psi \otimes \overline{\psi}\right)} \Big|_{h=0}$$

Any number of such groups is obtained by repeated dif. :

$$\underbrace{ \left. \left. \begin{array}{c} \\ \\ \end{array} \right. \right. \right. } \left. \left. \left. \begin{array}{c} \delta^2 \\ \delta h^2 \end{array} e^{iS + \operatorname{tr} \left(h \cdot \psi \otimes \overline{\psi} \right)} \right|_{h=0} \right. \right.$$

As $\psi \otimes \overline{\psi} \to Q$, this structure is preserved in NL σ M

Conductance in NL₀**M**

 $\sigma(\mathbf{r},\mathbf{r'})$ is a response to an external \mathbf{E} field introduced by

$$p \rightarrow p - eA_{\omega} \implies \nabla \rightarrow \partial \equiv \nabla - eA$$

Current density $j \propto \delta/\delta A$ so that $\sigma(\mathbf{r},\mathbf{r'})$ is given by

$$\left\langle \sigma_{\alpha\beta}(\boldsymbol{r},\boldsymbol{r}') \right\rangle = \frac{1}{16\pi n^2} \left. \frac{\partial^2 \ln Z[\boldsymbol{A}]}{\partial A_{\alpha}(\boldsymbol{r}) \partial A_{\beta}(\boldsymbol{r}')} \right|_{\substack{\boldsymbol{A} = 0 \\ n = 0}} \quad \text{where}$$

$$Z[\mathbf{A}] \equiv \int \mathcal{D}Q \,\mathrm{e}^{-F[\mathbf{A}]} \,, \quad F[\mathbf{A}] = \mathrm{Tr} \left[\frac{\pi \nu D}{8} \left(\partial Q \right)^2 + \frac{i \pi \nu}{4} \omega \Lambda Q \right]$$

Finally, $G_{\alpha\beta} = \frac{1}{L^2} \int \sigma_{\alpha\beta}(\mathbf{r}, \mathbf{r}') \,\mathrm{d}^d r \mathrm{d}^d r'$

DoS in NL*o***M**

Since DoS by itself is not affected by disorder, we consider DoS correlation function

$$R_2(\omega) = \frac{1}{\langle \nu \rangle^2} \langle \nu(\varepsilon + \omega)\nu(\varepsilon) \rangle - 1$$

Although no source field is required, it's better to have one

$$R_2(\omega) = \frac{1}{\left(\pi n L^d\right)^2} \Re e \frac{\partial^2 \ln Z[\Omega]}{\partial \Omega^2} \bigg|_{\substack{\Omega = 0 \\ n = 0}}, \quad F[\Omega] = F + \frac{i\pi\nu\Omega}{4} \operatorname{Tr} \Lambda Q$$

By $\Omega \rightarrow \Omega(\mathbf{r})$ this can be generalised to a spatial correlation function of two LDoS

How to carry out calculations?

Parameterization

First one resolves constraints $Q^2=1$ & Tr Q=0. Examples:

$$Q = \Lambda e^W$$
 or $Q = \Lambda \left(W + \sqrt{1 + W^2} \right)$ or $Q = \left(1 - \frac{W}{2} \right) \Lambda \left(1 - \frac{W}{2} \right)^{-1}$

$$\Lambda = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \otimes \mathbb{I}_n, \ W = \begin{pmatrix} 0 & B_n \\ -B_n^{\dagger} & 0 \end{pmatrix} \ \begin{array}{c} B_n \text{ is unconstrained} \\ n \mathbf{x} n \text{ matrix field} \end{array}$$

Expanding Q in W, one finds $F = F_0(W) + \delta F(W)$ where

$$F_0 = -\frac{\pi\nu}{8} \operatorname{Tr} \left[D \left(\nabla W \right)^2 - i\omega W^2 \right]$$
$$\delta F = \frac{i\pi\nu}{8} \operatorname{Tr} \Omega W^2 + \text{higher powers in } W$$
Note that higher powers depend on the parameterization!

How it works perturbatively

Omitted matrix

replica limit

indices are vital

for taking the n=0

- Expand e^{-F} in δF and δF in W
- Calculate Gaussian integrals $\langle (\delta F)^m \rangle_0$

$$\langle WW \rangle_0 \equiv \frac{1}{Z} \int WW e^{-F_0} \propto \frac{1}{Dq^2 - i\omega} \equiv mm$$

In the lowest order
$$\delta F_{\Omega} = \frac{i\pi\nu}{8} \operatorname{Tr} \Omega W^2 \implies \Omega \checkmark_{W}^{W}$$

n this order
$$R_2$$
 is contributed by $\frac{1}{2} \left\langle (\delta F_{\Omega})^2 \right\rangle_0$:
 $R_2 = \Omega$

1, \

$$R_{2} \text{ in the diffusive regime}$$

$$R_{2}(\omega) = \frac{\Delta^{2}}{\pi^{2}} \Re e \sum_{q} \frac{1}{(Dq^{2} - i\omega)^{2}}, \qquad \Delta \equiv \frac{1}{\langle \nu \rangle L^{d}}$$

In a finite system, $q = (2\pi/L)(n_x, n_y, n_z)$, integers $n_i \ge 0$

Dif. regime:
$$q^2 \ll \frac{\omega}{D} \equiv L_{\omega}^{-2} \Leftrightarrow E_c \equiv \frac{D}{L^2} \ll \omega, \Rightarrow \sum_{q} \to L^d \int \frac{\mathrm{d}^d q}{(2\pi)^d}$$

$$R_2(\omega) \sim \frac{L^{d-4}}{g^2} \Re e \int \frac{\mathrm{d}^d q}{(q^2 - iL_{\omega}^{-2})^2} \simeq \frac{C_d}{g^2} \left(\frac{L_{\omega}}{L}\right)^{4-d} \equiv \frac{C_d}{g^{d/2}} \left(\frac{\Delta}{\omega}\right)^{2-d/2}$$

For d=2, this does not work:

$$\Re e \int \frac{\mathrm{d}^d q}{(q^2 - iL_{\omega}^{-2})^2} = 2\pi \Re e \int_0^{\infty} \frac{q \mathrm{d}q}{(q^2 - iL_{\omega}^{-2})^2} = \pi \Re e \int_{-\infty}^{\infty} \frac{\mathrm{d}z}{(z - iL_{\omega}^{-2})^2} = 0$$

Contributions come from $\langle (\delta F_{\Omega})^2 \rangle_0$ and $\langle (\delta F_{\Omega})^2 \delta F_{(VQ)^2} \rangle_{0.}$ Both replica limit and angular integration severely cut the number of contributing diagrams

R_2 in the diffusive regime in 2D

Results:

$$R_2(\omega) \sim \frac{1}{g^2} \left(\frac{\Delta}{\omega}\right)$$

R_2 in the ergodic regime, $\omega \ll E_c$

$$R_2(\omega) = \frac{\Delta^2}{\beta \pi^2} \Re e \sum_{\boldsymbol{q}} \frac{1}{(Dq^2 - i\omega)^2} \mapsto -\frac{\Delta^2}{\beta \pi^2 \omega^2}$$

Higher order perturbative corrections $\sim (\Delta/\omega)^{m}$: **Perturbation theory breaks down for** $\omega \ll \Delta$

It is not that good at $E_c \gg \omega \gg \Delta$ either. Exact result

$$R_2(\omega) = -\left(rac{\Delta}{\omega}
ight)^2 \sin^2\left(rac{\omega}{\Delta}
ight)^2$$
 unitary case $eta=2$

Non-analytic in $\Delta/\omega \Rightarrow$ nonperturbative.

Exploring Replica Symmetry

• For $\omega < E_c$ the NL σ M contains the ω term only:

$$Z_n(\omega) = \int \mathcal{D}Q \exp\left[-i\frac{\omega}{2} \operatorname{Tr} \Lambda Q\right]$$

- The saddle-point: Q obeys $[Q,\Lambda]=0$, *i.e.* Q is a diagonal matrix with equal (as Tr Q=0) number of ± 1 elements.
- .:. the saddle-point is highly degenerate.

$$Z_{n}(\omega) = \sum_{p=0}^{n} (C_{n}^{p})^{2} \int \mathcal{D}Q \exp\left[-i\frac{\omega}{2} \operatorname{Tr}\Lambda_{p}Q\right]$$
$$\Lambda_{p} = \operatorname{diag}(1_{n-p}, -1_{p}, 1_{p}, -1_{n-p})$$

• Normal choice p=0; any p gives the same perturbatively

Breaking Replica Symmetry

• Calculating the integrals yields

$$Z_n(\omega) = \sum_{p=0}^n \left[F_n^p \right]^2 \cdot \frac{\mathrm{e}^{i\omega(2p-n)}}{(2\omega)^{(n-p)^2 + p^2}} \qquad F_n^p \equiv C_n^p \prod_{j=1}^p \frac{\Gamma(1+j)}{\Gamma(n+2-j)}$$

•Symmetry is broken by extending summation to $p=\infty$ (as $F_n^p=0$ for n>p), and **taking the replica limit** $n \rightarrow 0$.

•It works: $F_n^p \propto n^p$ as $n \rightarrow 0$ and only p=0,1 terms contribute:

$$Z_n(\omega) = \frac{\mathrm{e}^{-i\omega n}}{\omega^{n^2}} + n^2 \frac{\mathrm{e}^{i\omega(2-n)}}{4\omega^{(n-1)^2+1}}$$

gives the exact result for S_2 and thus R_2 .

Breaking replica symmetry leads to correct nonperturbative results

Summary

- It's up and running
- It's much easier to use than to derive, but this is much easier to declare than to demonstrate

Next time

- Including interactions (Coulomb and BCS)
- Mapping to various known models
- Describing superconductor-insulator transition

Announced at the last lecture:

- Including interactions (Coulomb and BCS)
- Mapping to various known models
- Describing superconductor-insulator transition

Lecture 3: changing gears to

Functional bosonization for Luttinger liquid

Hubbard-Stratonovich transfomation: change
from fermionic to bosonic representation
$$S = \int d\mathbf{x} \overline{\psi}_{\eta}(\mathbf{x}) (i\partial_{\tau} + \hat{\xi} - V(\mathbf{r})) \psi_{\eta}(\mathbf{x}) \qquad (\mathbf{x} \equiv \mathbf{r}, \tau) \\ + \frac{1}{2} \int d\mathbf{x} d\mathbf{x}' \overline{\psi}_{\eta}(\mathbf{x}) \overline{\psi}_{\eta'}(\mathbf{x}') V_0(\mathbf{x} - \mathbf{x}') \psi_{\eta'}(\mathbf{x}') \psi_{\eta}(\mathbf{x}) \\ \text{Note that we use the linearized spectrum} \\ \xi = \frac{p^2}{2m} - \varepsilon_{\text{F}} \approx v_{\text{F}}(|p| - p_{\text{F}}) \\ \text{but in d>1 it does not split e's into 2 species} \\ \frac{1}{2} \text{Tr} \left(\Phi U^{-1} \Phi + \frac{\pi \nu}{4\tau_{\text{el}}} Q^2 \right) - \frac{1}{2} \text{Tr} \ln \left(-i\partial_{\tau} - \hat{\xi} + \frac{iQ}{2\tau_{\text{el}}} + i\Phi \right)$$

 $NL\sigma M$ would follow from the saddle point approximation

Pure Interaction in 1D

$$H=H_0+H_{int}, \quad H_0 = \int dx \hat{\psi}_{\eta}^{\dagger}(x) \hat{\xi} \hat{\psi}_{\eta}(x)$$

 $H_{int} = \frac{1}{2} \int dx dx' \hat{\psi}_{\eta}^{\dagger}(x) \hat{\psi}_{\eta'}^{\dagger}(x') V_0(x-x') \hat{\psi}_{\eta'}(x') \hat{\psi}_{\eta}(x)$

In the simplest spinless case, keeping only forwardscattering local interaction, one gets from a linearised Tomonaga-Luttinger Hamiltonian a naïve bosonic one:

$$H = \frac{v}{4} \int_{-L/2}^{L/2} \frac{dx}{2\pi} * \left[\frac{1}{g} (\tilde{\rho}_L + \tilde{\rho}_R)^2 + g (\tilde{\rho}_L - \tilde{\rho}_R)^2 \right] (x)_*^*$$

repulsion: *g*<1; **free Fermions** *g*=1 (see Giamarchi's lectures)

Hubbard-Stratonovich in D>1 is an entirely different "bosonisation" procedure than the operator one in 1D

The aims of this talk

- To introduce a "functional bosonisation" for the Luttinger liquid in the spirit of the approach used in the derivation of NLσM
- As an application, to derive the LDoS v(e,x) at an arbitrary distance x from a single impurity ("end") in the Luttinger liquid

Effective Functional
$$S[\psi^*, \psi] = \int d\xi \Big[\psi_{\eta}^*(\xi) \partial_{\tau} \psi_{\eta}(\xi) - H(\psi^*, \psi) \Big]$$

No spin!; $\eta = (L,R) \equiv \pm, \xi \equiv (x,\tau); \int d\xi \equiv \int_{-L/2}^{L/2} dx \int_{0}^{\beta} d\tau$

H is obtained from the Hamiltonian by substituting fermionic operators by continuous fields in the Matsubara representation

$$Z = \int e^{-S[\psi^*,\psi]} \mathcal{D}\psi^* \mathcal{D}\psi$$

Hubbard-Stratonovich transfomation

Introduce $\phi \propto \rho$ – the bosonic field to decouple the ρ^2 term

$$e^{-\frac{1}{2}\rho * V_0 * \rho} = \frac{\int \mathcal{D}\phi \, e^{i\rho * \phi} e^{-\frac{1}{2}\phi * V_0^{-1} * \phi}}{\int \mathcal{D}\phi \, e^{-\frac{1}{2}\phi * V_0^{-1} * \phi}}$$

This results in the effective action (with $\partial_{\pm z} = \partial_{\tau} \mp i v_{F} \partial_{x}$)

$$S[\phi, \psi] = \int d\xi \,\psi_{\eta}^{*}(\xi) \left(\partial_{\eta} - i\phi\right) \psi_{\eta}(\xi) + \frac{1}{2} \int d\xi d\xi' \,\phi(\xi) \,V_{0}^{-1}(\xi - \xi') \,\phi(\xi')$$

Fermion-Boson Decoupling

Gauge transform eliminates the mixed term in the derivative

$$\psi_{\eta} \mapsto \psi_{\eta} e^{i\theta_{\eta}}, \quad \psi_{\eta}^* \mapsto \psi_{\eta}^* e^{-i\theta_{\eta}}, \qquad \partial_{\eta} \theta_{\eta} = \phi$$

Thus, fermions and bosons decouple

$$S_{\rm b} = \frac{1}{2} \int d\xi d\xi' \phi(\xi) V^{-1}(\xi - \xi') \phi(\xi')$$
$$S_{\rm f} = \int d\xi \, \psi_{\eta}^*(\xi) \, \partial_{\eta} \, \psi_{\eta}(\xi)$$

Where is the trick? $V \neq V_0$ because of the Jacobian of the GT

$$\begin{aligned} & \text{Jacobian} \\ \ln J[\phi] = \sum_{\eta=\pm} \operatorname{Tr} \ln \left| \frac{\partial_{\eta} - i\phi}{\partial_{\eta}} \right| = -\sum_{\eta=\pm} \sum_{n=1}^{\infty} \frac{1}{n} \operatorname{Tr} (i\phi g_{\eta})^n \\ \ln J = -\frac{1}{2} \int & \mathrm{d}\xi \mathrm{d}\xi' \,\phi(\xi) \Pi(\xi - \xi') \phi(\xi') \quad \text{(see Appendix)} \\ \Pi(q, \Omega) = \frac{1}{\pi v_{\mathrm{F}}} \frac{v_{\mathrm{F}}^2 q^2}{\Omega^2 + v_{\mathrm{F}}^2 q^2} \quad \begin{array}{c} & \text{RPA polarization operator} \\ & \text{is exact for the LL} \\ & \text{(Dzyaloshinskii, Larkin, '73)} \end{array} \end{aligned}$$

The Jacobian of the gauge transformation gives the screening!

$$V_0^{-1} \mapsto V^{-1} = V_0^{-1} + \Pi$$

Exact Green's function

Green's function is (since $\psi_\eta \mapsto \psi_\eta e^{i\theta_\eta}$):

 $\mathcal{G}_{\eta\eta'}(\xi;\xi') = \left\langle \left\langle \mathrm{e}^{i\theta_{\eta}(\xi) - i\theta_{\eta'}(\xi')}\psi_{\eta}(\xi)\psi_{\eta'}^{*}(\xi')\right\rangle \right\rangle$ $\langle\!\langle \ldots \rangle\!\rangle = \frac{1}{Z} \int \ldots e^{-S} \mathcal{D}\psi^* \mathcal{D}\psi \mathcal{D}\phi$ $\mathbf{S} = \frac{1}{2} \int \mathrm{d}\xi \mathrm{d}\xi' \phi(\xi) V^{-1}(\xi - \xi') \phi(\xi') + \int \mathrm{d}\xi \,\psi_{\eta}^*(\xi) \,\partial_{\eta} \,\psi_{\eta}(\xi)$ $\partial_{\eta}\theta_{\eta} = \phi \Rightarrow \text{we need } \langle \langle \theta_{\eta}\theta_{\eta'} \rangle \rangle \text{ from } \langle \langle \phi_{\xi}\phi_{\xi'} \rangle \rangle = V(\xi - \xi')$

 $\theta_{-} = \theta_{+}^{*} \equiv \theta = \theta_{1} + i\theta_{2}$

Bosonic Averaging

From $(\partial_{\tau} - iv_F \partial_x)\theta(\xi) = \phi(\xi)$, it follows that, e.g. $(\partial_{\tau\tau}^2 + v_F^2 \partial_{xx}^2) \langle\!\langle \theta_1(\xi)\theta_1(\xi') \rangle\!\rangle = -\partial_{\tau\tau}^2 V(\xi),$

This equation is solved by the Fourier transform:

$$\begin{split} \left\langle \theta_{1}(\xi)\theta_{1}(\xi')\right\rangle_{\phi} =& \frac{1}{2}\ln\frac{|\sin(z_{\rm F}-z'_{\rm F})|}{|\sin(z-z')|^{1/g}}\\ z_{\rm F} =& \pi T(\tau+ix/v_{\rm F}) & z =& \pi T(\tau+ix/v)\\ v =& v_{\rm F}/g & g \equiv \left(1+V_{0}/\pi v_{\rm F}\right)^{-1/2}, \end{split}$$

where $V_0(q) \longrightarrow V_0 = V_0(q \sim T/v_F)$

Pure Luttinger Liquid: Summary of the Approach

• Any correlation function can be calculated in terms of $\langle\!\langle \theta_a(\xi)\theta_b(\xi')\rangle\!\rangle$ and $\langle\!\langle \psi^*(\xi)\psi (\xi')\rangle\!\rangle$

 Calculating GF in this way reproduces the results for LDoS in the pure LL

Adding an Impurity

Back-scattering couples left- and right-movers: the bosonic excitations are no longer free:

Impurity adds a new "coupling" term:

$$H_{\rm imp} = v_{\rm F} \int \mathrm{d}x \lambda(x) \left[\hat{\psi}^{\dagger}_{+}(x) \hat{\psi}_{-}(x) + \hat{\psi}^{\dagger}_{-}(x) \hat{\psi}_{+}(x) \right]$$

Impurity Coupling

$$S_{\rm imp} = -v_{\rm F} \int d\xi \,\lambda(x) \Big[\psi_{+}^{*}(\xi) \psi_{-}(\xi) + \psi_{-}^{*}(\xi) \psi_{+}(\xi) \Big]$$

couples fermionic and bosonic fields after the gauge transform: $S_{\rm imp} = -v_{\rm F} \int d\xi \lambda \left[e^{2\theta_2} \psi_+^*(\xi) \psi_-(\xi) + e^{-2\theta_2} \psi_-^*(\xi) \psi_+(\xi) \right]$

- the problem is no longer exactly solvable.

Green's function (that defines the tunnelling LDoS) is now

$$\mathcal{G}_{\eta\eta'}(\xi;\xi') = \frac{1}{Z_{\lambda}} \left\langle \left\langle \mathrm{e}^{i\theta_{\eta}(\xi) - i\theta_{\eta'}(\xi')} \psi_{\eta}(\xi) \psi_{\eta'}^{*}(\xi') \mathrm{e}^{-S_{\mathrm{imp}}} \right\rangle \right\rangle$$

 $Z_{\lambda} \equiv \left\langle \left\langle e^{-S_{\rm imp}} \right\rangle \right\rangle$ is to be calculated

Calculating Z_{λ}

Symbolically:

$$Z_{\lambda} = \sum_{n=0}^{\infty} \frac{v_{\mathrm{F}}^{2n}}{(n!)^2} \left\{ \left\langle \left(\int_{\xi} \psi_{+}^{*} \psi_{-} \right)^{2n} \right\rangle_{f} \left\langle \int_{\xi\xi'} \mathrm{e}^{n(\theta-\theta')} \right\rangle_{f} \right\}$$

The fermionic average cancels an unpleasant denominator of the bosonic one, both resulting in a formal expression in terms of

 $z=\pi T(\tau+ixg/v_{\rm F})$

Formal Results

1)

$$Z_{\lambda} = \sum_{n=0}^{\infty} \frac{1}{(n!)^2} \left(\frac{T}{2\alpha^{1-g}}\right)^{2n} \qquad (\alpha \sim T/\varepsilon_{\rm F} \ll \prod_{k=1}^{n} \int d\xi_k d\xi'_k \lambda(x_k) \lambda^*(x'_k) |P_n(z)|^{2g}$$

$$P_n(z) = \frac{\prod_{i < j}^n \sin(z_i - z_j) \sin(z'_i - z'_j)}{\prod_{i, j = 1}^n \sin(z_i - z'_j)}$$

Re-Bosonization

 Z_{λ} in terms of a new impurity functional above is given by $Z_{\lambda} = \left\langle e^{-S_{\lambda}[\Theta]} \right\rangle_{0}, \quad S_{\lambda}[\Theta] = -\frac{T}{\alpha} \int d\xi \,\lambda(x) \cos \Theta(\xi)$

The functional average $\langle \ldots \rangle_0$ is performed with the weight

$$S_0[\Theta] = \frac{1}{8\pi g v} \int \mathrm{d}\xi \left[(\partial_\tau \Theta)^2 + v^2 (\partial_x \Theta)^2 \right]$$

The Green's function (with $\chi(z_1) = \arg \frac{\sin(z_1 - z)}{\sin(z_1 - z')}$)

$$\widetilde{\mathcal{G}}_{\eta\eta'}(\xi,\xi') = Z_{\lambda}^{-1} \left\langle \mathrm{e}^{\frac{i\eta}{2}\Theta(\xi) - \frac{i\eta'}{2}\Theta(\xi')} \mathrm{e}^{-S_{\lambda}[\Theta-\chi]} \right\rangle_{0}$$

Self-consistent harmonic approximation

Assumption: $\alpha \ll \lambda \ll 1$ $(\alpha \sim T/\varepsilon_F)$ the impurity potential $\lambda(x) = \lambda \delta(x)$ is weak but non-perturbative

SCHA: the deviation of Θ from χ is prohibitive so that cos potential is substituted by the quadratic approximation:

$$S_{\Lambda}[\Theta - \chi] = \frac{\Lambda T}{2\alpha} \int d\tau_1 \left[\Theta(0, \tau_1) - \chi(0, \tau_1)\right]^2$$

What is left is a (rather gory) calculation of Gaussian integrals

Green's Function

$$\begin{split} &\frac{2\pi}{p_{\rm F}}\mathcal{G}(x,x;\tau) = \\ & \left\{ \begin{array}{l} \frac{\alpha^{\frac{1}{g}}}{\left(\sin\alpha\tilde{\tau}\right)^{\frac{1}{g}}} \left[\max(\Lambda^{-1},\tilde{x})\right]^{\frac{1}{2}\left(\frac{1}{g}-g\right)} \left[1-\cos(2p_{\rm F}x+\Phi)\right], \ \max(\tilde{x}\,,\Lambda^{-1}) \ll \tilde{\tau} \\ \frac{\alpha^{\frac{1}{2}\left(\frac{1}{g}+g\right)}}{\left(\sin\alpha\tilde{\tau}\right)^{\frac{1}{2}\left(\frac{1}{g}+g\right)}} \left[1-\left(\frac{\sin\alpha\tilde{\tau}}{\sinh\alpha\tilde{x}}\right)^{g}\cos(2p_{\rm F}x+\Phi)\right], \ \min(\tilde{x}\,,\Lambda^{-1}) \gg \tilde{\tau} \end{split} \right. \end{split}$$

x is the distance from the impurity, $\Lambda = \lambda^{\frac{1}{1-g}}$, $\tilde{x} = gp_{F}|x|$, $\tilde{\tau} = \varepsilon_{F}|\tau|$

Friedel oscillations can be easily extracted

Well known LDoS

Suppression of the LDoS at the impurity point

Corresponds to "end" and bulk LDoS in Leonid Glazman's lecture this morning

Local Tunnelling DoS

is obtained at an arbitrary distance from the impurity

$$\nu(x,\varepsilon) \sim \begin{cases} \varepsilon^{\frac{1}{g}-1} \Lambda^{-\frac{1}{2}\left(\frac{1}{g}-g\right)}, & \tilde{x} \ll \Lambda^{-1} \ll \varepsilon^{-1} \\ \varepsilon^{\frac{1}{g}-1} \tilde{x}^{\frac{1}{2}\left(\frac{1}{g}-g\right)}, & \Lambda^{-1} \ll \tilde{x} \ll \varepsilon^{-1} \\ \varepsilon^{\frac{1}{2}\left(\frac{1}{g}+g\right)-1}, & \tilde{x} \gg \Lambda^{-1}, \varepsilon^{-1} \end{cases}$$

Local Tunnelling DoS

different regions at a distance x from the impurity

- Functional Bosonization works: it reproduces known results for Friedel Oscillations & LDoS and allows one to find LDoS at an arbitrary distance from the impurity
- In many way, it is analogue of field-theoretical treatment of higher-dimensional models
- The operator and functional approaches are equivalent for exact results; however, ease of use for approximations may be different

Appendix : Jacobian

 $\ln J[\phi] = \sum_{a=\pm} \operatorname{Tr} \ln \left| \frac{\partial_a - i\phi}{\partial_a} \right| = -\sum_{a=\pm} \sum_{n=1}^{\infty} \frac{1}{n} \operatorname{Tr} (i\phi g_a)^n$ where $g_-(\xi, \xi') = g_+^*(\xi) = \frac{T}{2v_F} \frac{1}{\sin(z_F - z'_F)}$

The nth term is

$$\operatorname{Tr} (g_a \phi)^n = \int \prod_{k=1}^n \mathrm{d}x_k \mathrm{d}\tau_k \ \Gamma_n^{(a)}(z_{\mathbf{F}_1}; ...; z_{\mathbf{F}_n}) \ \prod_{i=1}^n \phi(x_i, \tau_i),$$

with Γ

$$\Gamma_n^{(a)}(z_{F_1};...;z_{F_n}) = \prod_{i=1} g_a(z_{F_i} - z_{F_{i+1}}) \propto \prod_{i=1} \frac{s_i}{s_i - s_{i+1}}, \quad s_i = e^{2iz_{F_i}}$$

2: Jacobian

Only symmetric part of the vertex contributes to the integral:

$$\mathsf{Sym}[\Gamma_n^+(z_{\mathsf{F}_1};\ldots;z_{\mathsf{F}_n})] \propto \frac{\mathcal{A}_n(s_1,\ldots,s_n)}{\prod_{i< j}^n (s_i-s_j)} \prod_{k=1}^n s_k$$

where \mathcal{A}_n is an absolutely anti-symmetric polynomial

By power counting, its order is n(n-3)/2>n(n+1)/2 – only possible for n=1 and n=2 loops, whose calculation is straightforward (after dealing with inevitable divergences)