Coulomb drag in high Landau levels

Alexander D. Mirlin

Forschungszentrum Karlsruhe \& Universität Karlsruhe, Germany
I.V. Gornyi (Forschungszentrum Karlsruhe)
F. von Oppen (Freie Universität Berlin)
cond-mat/0406176

Outline:

- Introduction \& Background: Coulomb Drag
- Experiments: Coulomb drag in strong magnetic fields
- Qualitative considerations: particle-hole asymmetry enhanced by Landau quantization.
- Microscopic theory: Strong- B diagrammatics
- Theory vs Experiment
- Conclusions \& Outlook

Coulomb drag: Setup and standard theory

Response of the "passive" layer (2) to a current in the "active" layer (1) mediated by the Coulomb Interaction.

transresistivity (drag resistivity):

$$
\rho_{\alpha \beta}^{D}=-E_{2 \alpha} / j_{1 \beta} \simeq \rho_{\alpha \gamma}^{(1)} \sigma_{\gamma \delta}^{D} \rho_{\delta \beta}^{(2)}
$$

transconductivity:
more convenient for diagrammatics

$$
\sigma_{\alpha \beta}^{D}=-j_{2 \alpha} / E_{1 \beta}
$$

$\rho_{x x}^{D}=\frac{\hbar^{2}}{e^{2} n_{1} n_{2}} \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \frac{1}{2 T \sinh ^{2}(\omega / 2 T)} \int \frac{d^{2} q}{(2 \pi)^{2}} q_{x}^{2}|U(\omega, \mathrm{q})|^{2} \operatorname{Im} \Pi_{1}(\omega, \mathrm{q}) \operatorname{Im} \Pi_{2}(\omega, \mathrm{q})$
Zheng, MacDonald '93; Jauho, Smith '93; Kamenev, Oreg '95; Flensberg et al. '95
$U(\omega, \mathrm{q})$ - interaction, $\quad \Pi_{i}(\omega, \mathrm{q})$ - density-density response function
$\longrightarrow \rho_{x x}^{D}$ positive, \quad Fermi liquid: $\rho_{x x}^{D} \propto T^{2}$

"Coulomb drag": why interesting

- no drag without interaction between electrons
- provides information about inelastic scattering
- correlations between layers: "drag" as indicator of phase-coherent phenomena
- Relation to particle-hole asymmetry

Important recent eperiments:

- Drag in 1D: Correlations and inelastic scattering in quantum wires: Luttinger liquid signatures? Debray et al.'00-01
- Correlations between two Quantum Hall layers with $\nu \simeq 1 / 2$

Eisenstein et al. '99-04, Lok et al. '03

- $T^{4 / 3}$ dependence: Gauge-field interaction between composite fermions
- new strongly correlated ground state: Excitionic condensate
- Oscillatory anomalous drag in high Landau levels Feng et al.'98, Lok et al. '01-03
earlier theories: Bonsager, Flensberg, Hu, Jauho'98; Khaetskii,Nazarov'99,...: conventional formula for $\rho_{x x}^{D}$ valid also in strong magnetic fields.

Experiment: Oscillatory Coulomb drag in strong B
Feng et al. '98, Lok et al. '01, Muraki et al '03:

- GaAs double quantum wells, $\quad B \simeq 0.2 \div 1 \mathrm{~T}$
- Oscillatory transresistivity; double-peak structure within a LL;
- Non-monotonic temperature dependence;
- Drag positive for matched $(\delta \nu=0)$ and negative for mismatched $(\delta \nu=1)$ densities.

Magnetodrag: Qualitative considerations

Particle-hole asymmetry is necessary for the Coulomb drag.

Strong magnetic fields: two sources of the particle-hole asymmetry:
(i) curvature of the zero- B spectrum \rightarrow "normal" positive drag at high T
(ii) LL DOS \rightarrow "anomalous" drag \rightarrow oscillatory sign at low T

Microscopic theory: Matsubara diagrammatics

$$
\sigma_{i j}^{D}=\frac{e^{2}}{16 \pi T S} \sum_{\mathrm{q}} \int_{-\infty}^{\infty} \frac{d \omega}{\sinh ^{2}(\omega / 2 T)} \Gamma_{i}^{(1)}(\mathrm{q}, \omega, B) \Gamma_{j}^{(2)}(\mathrm{q}, \omega,-B)|U(\mathrm{q}, \omega)|^{2}
$$

Triangle ("rectification") vertex: $\Gamma=\Gamma^{(a)}+\Gamma^{(b)}$

$$
\begin{aligned}
& \Gamma^{(a)}(\mathrm{q}, \omega)=\frac{\omega}{2 \pi i} \operatorname{tr}\left\{\mathrm{v} \mathcal{G}^{+}(\epsilon) e^{i \mathrm{qr}} \mathcal{G}^{+}(\epsilon) e^{-i \mathrm{qr}} \mathcal{G}^{+}(\epsilon)-\left(\mathcal{G}^{+} \rightarrow \mathcal{G}^{-}\right)\right\} \\
& \Gamma^{(b)}(\mathrm{q}, \omega)=\frac{\omega}{\pi i} \operatorname{tr}\left\{\operatorname{v\mathcal {G}}^{-}(\epsilon) e^{i \mathrm{qr}}\left[\mathcal{G}^{-}(\epsilon)-\mathcal{G}^{+}(\epsilon)\right] e^{-i \mathrm{qr}} \mathcal{G}^{+}(\epsilon)\right\}
\end{aligned}
$$

$\Gamma^{(b)}$ - quasiclassical
$\Gamma^{(a)}$ - quantum, negligible at $B \rightarrow 0$ but important in strong B

Triangle vertex

$$
\begin{aligned}
\Gamma_{\alpha}(\mathrm{q}, \omega) & \simeq \hat{q}_{\alpha} \frac{2 \omega \boldsymbol{R}_{c}}{\pi^{2} \ell^{2}} J_{0}\left(q \boldsymbol{R}_{c}\right) J_{1}\left(q \boldsymbol{R}_{c}\right) \\
& \times \operatorname{Im}\left[\boldsymbol{G}_{N}^{+} \gamma^{++}\right] \operatorname{Re}\left[G_{N}^{+}\left(\gamma^{++}-\gamma^{+-}\right)\right]
\end{aligned}
$$

$q \sim 1 / a, \quad a$ - interlayer distance $, \quad \gamma^{++}, \gamma^{+-}$- vertex corrections

- diffusive regime, $q R_{c} \ll 1 \longrightarrow \gamma^{+-} \gg \gamma^{++} \longrightarrow \Gamma^{(b)}$ dominates

$$
\Gamma(\mathrm{q}, \omega)=\frac{d \hat{\sigma}}{d(e n)} \mathrm{q} \operatorname{Im} \Pi(\mathrm{q}, \omega)
$$

quasiclassical local rectification coefficient von Oppen, Simon, Stern '01

- exper. relevant: ballistic regime, $q R_{c} \gg 1 \longrightarrow \gamma^{+-} \simeq \gamma^{++} \simeq 1$
$\longrightarrow \quad$ leading contribution vanishes:
cancellation between $\Gamma^{(a)}$ and $\Gamma^{(b)}$ in the leading order!
two sources of the particle-hole-asymmetry
$\longrightarrow \mathcal{O}\left(\Gamma / \omega_{c}\right)$ and $\mathcal{O}\left(q / k_{F}\right)$ corrections

Magnetodrag in the ballistic regime: Results

T

Low T: "anomalous drag":
Peak at $T \sim \Delta$ (Landau level width), oscillatory sign, amplitude $\sim 1 \Omega / \square$ for exper. parameters double peak structure in each Landau level: $\rho_{D} \propto \frac{\left(\mu-E_{N}\right)^{2}}{\Delta^{2}}\left[1-\frac{\left(\mu-E_{N}\right)^{2}}{\Delta^{2}}\right]^{2}$

Low-temperature drag for different inter-layer distances

Schematic \boldsymbol{T}-dependence of low-temperature drag in different regimes:
a) diffusive, $\quad R_{c} / a \ll 1$
b) weakly ballistic, $\quad 1 \ll R_{c} / a \ll \omega_{c} / \Delta$
c) ballistic, $\quad \omega_{c} / \Delta \ll R_{c} / a \ll N \Delta / \omega_{c}$
d) ultra-ballistic, $\quad N \Delta / \omega_{c} \ll R_{c} / a$

Outlook

- quantum kinetic equation for magnetodrag: particle-hole symmetry should be taken into account!
- Drag in non-equilibrium (large bias, microwaves,...)
- Composite-fermion-drag near filling factor $\nu=1 / 2$: "normal" vs. "anomalous" drag, pairing instability, effect of disorder (effective random magnetic field)
- Phonon drag in strong B
- Drag in the Quantum Hall regime: quantum interference, localization, criticality

Summary

- Low temperature, $T \ll \Delta$:
\longrightarrow particle-hole asymmetry due to Landau quantization \longrightarrow oscillatory Coulomb drag.
- Higher temperatures:
\longrightarrow particle-hole asymmetry due to the spectrum curvature
\longrightarrow non-monotonic T-dependence.

