Photon localisation in cold atomic gases

Cord Müller

- I. Cold atoms as light scatterers
- II. Coherent photon transport theory
- III. Experimental signatures

• Cavity with quality factor $Q = \frac{\omega}{\Gamma} \gg 1$

- Cavity with quality factor $Q = \frac{\omega}{\Gamma} \gg 1$
- ω Γ
- Photonic band gap: periodic dielectric $\epsilon(\omega, \mathbf{r})$ such that d.o.s. $\rho(\omega) \rightarrow 0$ or other metamaterials [poster S. Guenneau]

- Cavity with quality factor $Q = \frac{\omega}{\Gamma} \gg 1$
- Photonic band gap: periodic dielectric $\epsilon(\omega, \mathbf{r})$ such that d.o.s. $\rho(\omega) \rightarrow 0$ or other metamaterials [poster S. Guenneau]
- Electromagnetically induced transparency: pump $n_r(\omega) = \sqrt{\epsilon(\omega)}$ such that probe group velocity $v_{\rm gr} \propto 1/n'_r(\omega) \rightarrow 0$ [Exp. with BEC by L. Hau, Nature (1999)]

FIT

 $\bar{v}_{\sf gr}^{--}$

 ω

С

- Cavity with quality factor $Q = \frac{\omega}{\Gamma} \gg 1$
- Photonic band gap: periodic dielectric $\epsilon(\omega, \mathbf{r})$ such that d.o.s. $\rho(\omega) \rightarrow 0$ or other metamaterials [poster S. Guenneau]
- Electromagnetically induced transparency: pump $n_r(\omega) = \sqrt{\epsilon(\omega)}$ such that probe group velocity $v_{\rm gr} \propto 1/n'_r(\omega) \rightarrow 0$ [Exp. with BEC by L. Hau, Nature (1999)]
- dⁱso^rder -induced localisation of microwaves by aluminium spheres [Chabanov & Gennack, Nature 2000, PRL 2001]

FIT

 $v_{\sf gr}^{--}$

 ω

 \mathcal{C}

- Cavity with quality factor $Q = \frac{\omega}{\Gamma} \gg 1$
- Photonic band gap: periodic dielectric $\epsilon(\omega, \mathbf{r})$ such that d.o.s. $\rho(\omega) \rightarrow 0$ or other metamaterials [poster S. Guenneau]
- Electromagnetically induced transparency: pump $n_{\rm r}(\omega) = \sqrt{\epsilon(\omega)}$ such that probe group velocity $v_{\rm gr} \propto 1/n'_{\rm r}(\omega) \rightarrow 0$ [Exp. with BEC by L. Hau, Nature (1999)]
- dⁱso^rder -induced localisation of microwave spheres [Chabanov & Gennack, Nature 2000, PRI]
- Optics with colloidal suspensions
 [P.W. Anderson: "theory of white paint", 1985] or semiconductor powder

[D. Wiersma et al., Nature (1997)]

Why light and cold atoms?

Propaganda response:

- Light scattering by cold atoms:
 - excellent laser coherence & polarisation control
 - atoms are identical resonant point scatterers
 - photons (almost) don't interact

Coherent backscattering (CBS) by Sr [Bidel et al., PRL **88**, 203902 (2002)]

Why light and cold atoms?

Propaganda response:

- Light scattering by cold atoms:
 - excellent laser coherence & polarisation control
 - atoms are identical resonant point scatterers
 - photons (almost) don't interact

Coherent backscattering (CBS) by Sr [Bidel et al., PRL **88**, 203902 (2002)]

- Matter waves in a light potential:
 - tunable potential
 - controlled interaction
 - direct observation

Mott-Hubbard transition with Rb BEC [Greiner et al., Nature **415**, 39 (2002)]

I. Cold atoms as light scatterers

QCCM Windsor Aug 2004 - p. 4/25

 $h_{\lambda\mu}$

 $h_{\lambda\mu}$

QCCM Windsor Aug 2004 - p. 5/25

• Identical point scatterers with huge crosssection: $a_0 \ll \sqrt{\sigma_{\rm tot}} \sim \lambda$

- Identical point scatterers with huge crosssection: $a_0 \ll \sqrt{\sigma_{\rm tot}} \sim \lambda$
- Monodisperse with razor-sharp resonance

- Identical point scatterers with huge crosssection: $a_0 \ll \sqrt{\sigma_{\rm tot}} \sim \lambda$
- Monodisperse with razor-sharp resonance

 $\omega_{\rm e}/\Gamma \sim 10^8$

• Internal degeneracy J > 0

- Identical point scatterers with huge crosssection: $a_0 \ll \sqrt{\sigma_{\rm tot}} \sim \lambda$
- Monodisperse with razor-sharp resonance

- Internal degeneracy J > 0
- Dipole transition saturates: inelastic multiphoton processes dephase Cooperon
 [2-photon scattering: T. Wellens et al., quant-ph/0403068]
 [Master eq. approach: V. Shatokhin, CAM, A. Buchleitner]

- Identical point scatterers with huge crosssection: $a_0 \ll \sqrt{\sigma_{\rm tot}} \sim \lambda$
- Monodisperse with razor-sharp resonance

- Internal degeneracy J > 0
- Dipole transition saturates: inelastic multiphoton processes dephase Cooperon
 [2-photon scattering: T. Wellens et al., quant-ph/0403068]
 [Master eq. approach: V. Shatokhin, CAM, A. Buchleitner]
- 'Giant' magnetoactivity $B_{\Gamma} \sim 10^{-4} \,\mathrm{T}$ [PhD by O. Sigwarth, poster 2.24]

- Identical point scatterers with huge crosssection: $a_0 \ll \sqrt{\sigma_{\rm tot}} \sim \lambda$
- Monodisperse with razor-sharp resonance

- Internal degeneracy J > 0
- Dipole transition saturates: inelastic multiphoton processes dephase Cooperon
 [2-photon scattering: T. Wellens et al., quant-ph/0403068]
 [Master eq. approach: V. Shatokhin, CAM, A. Buchleitner]

- Identical point scatterers with huge crosssection: $a_0 \ll \sqrt{\sigma_{\rm tot}} \sim \lambda$
- Monodisperse with razor-sharp resonance

- \rightarrow affects transport time scale $\tau_{\rm tr}$
- Internal degeneracy J > 0
 - \rightarrow couples to photon polarisation $\boldsymbol{\varepsilon}$

II. Coherent photon transport theory

Theory of everything?

QCCM Windsor Aug 2004 - p. 8/25

$$H_{\mathsf{phot}} = \sum_{\boldsymbol{k}, \boldsymbol{\varepsilon} \perp \boldsymbol{k}} k \ a_{\boldsymbol{k}\boldsymbol{\varepsilon}}^{\dagger} a_{\boldsymbol{k}\boldsymbol{\varepsilon}}, \qquad \qquad \boldsymbol{\varepsilon} \cdot \boldsymbol{k} = 0 \quad \text{transverse}$$

$$h_{\lambda\mu}$$

$$\begin{split} H_{\mathsf{phot}} &= \sum_{\mathbf{k}, \mathbf{\epsilon} \perp \mathbf{k}} k \; a_{\mathbf{k}\mathbf{\epsilon}}^{\dagger} a_{\mathbf{k}\mathbf{\epsilon}}, \qquad \mathbf{\epsilon} \cdot \mathbf{k} = 0 \quad \text{transverse} \\ H_{\mathsf{at}} &= \sum_{i=1}^{N} \left\{ \frac{\mathbf{p}_{i}^{2}}{2M} + \omega_{\mathsf{e}} \hat{P}_{\mathsf{e}}^{(i)} \right\}, \qquad \hat{P}_{\mathsf{e}} = \sum_{m_{\mathsf{e}}} |J_{\mathsf{e}} m_{\mathsf{e}} \rangle \langle J_{\mathsf{e}} m_{\mathsf{e}}| \end{split}$$

$$h_{\lambda\mu}$$

$$\begin{split} H_{\mathsf{phot}} &= \sum_{\boldsymbol{k}, \boldsymbol{\varepsilon} \perp \boldsymbol{k}} k \; a_{\boldsymbol{k}\boldsymbol{\varepsilon}}^{\dagger} a_{\boldsymbol{k}\boldsymbol{\varepsilon}}, \qquad \boldsymbol{\varepsilon} \cdot \boldsymbol{k} = 0 \quad \text{transverse} \\ H_{\mathsf{at}} &= \sum_{i=1}^{N} \left\{ \frac{\boldsymbol{p}_{i}^{2}}{2M} + \omega_{\mathsf{e}} \hat{P}_{\mathsf{e}}^{(i)} \right\}, \qquad \hat{P}_{\mathsf{e}} = \sum_{m_{\mathsf{e}}} |J_{\mathsf{e}} m_{\mathsf{e}}\rangle \langle J_{\mathsf{e}} m_{\mathsf{e}}| \\ V &= \sum_{i=1}^{N} \boldsymbol{E}(\boldsymbol{r}_{i}) \cdot \boldsymbol{D}_{i}, \qquad \boldsymbol{E}(\boldsymbol{r}) = \sum_{\boldsymbol{k}, \boldsymbol{\varepsilon} \perp \boldsymbol{k}} \mathrm{i} \mathcal{E}_{\boldsymbol{k}} a_{\boldsymbol{k}\boldsymbol{\varepsilon}} \mathrm{e}^{\mathrm{i}\boldsymbol{k} \cdot \boldsymbol{r}} \boldsymbol{\varepsilon} + H.c. \end{split}$$

• Matter-light Hamiltonian with dipole interaction ($\hbar = c = 1$):

$$\begin{split} H_{\mathsf{phot}} &= \sum_{\mathbf{k}, \boldsymbol{\varepsilon} \perp \mathbf{k}} k \; a_{\mathbf{k}\boldsymbol{\varepsilon}}^{\dagger} a_{\mathbf{k}\boldsymbol{\varepsilon}}, \qquad \boldsymbol{\varepsilon} \cdot \mathbf{k} = 0 \quad \text{transverse} \\ H_{\mathsf{at}} &= \sum_{i=1}^{N} \left\{ \frac{\mathbf{p}_{i}^{2}}{2M} + \omega_{\mathsf{e}} \hat{P}_{\mathsf{e}}^{(i)} \right\}, \qquad \hat{P}_{\mathsf{e}} = \sum_{m_{\mathsf{e}}} |J_{\mathsf{e}} m_{\mathsf{e}}\rangle \langle J_{\mathsf{e}} m_{\mathsf{e}}| \\ V &= \sum_{i=1}^{N} \mathbf{E}(\mathbf{r}_{i}) \cdot \mathbf{D}_{i}, \qquad \mathbf{E}(\mathbf{r}) = \sum_{\mathbf{k}, \boldsymbol{\varepsilon} \perp \mathbf{k}} \mathrm{i} \mathcal{E}_{k} a_{\mathbf{k}\boldsymbol{\varepsilon}} \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{r}} \boldsymbol{\varepsilon} + H.c. \end{split}$$

• Ensemble average $\langle \dots \rangle = \text{Tr}\{\rho_{at}(\dots)\} \rightarrow \text{effective photon}$ transport theory w/ translational and rotational symmetry

$$\begin{split} H_{\mathsf{phot}} &= \sum_{\mathbf{k}, \mathbf{\varepsilon} \perp \mathbf{k}} k \; a_{\mathbf{k}\mathbf{\varepsilon}}^{\dagger} a_{\mathbf{k}\mathbf{\varepsilon}}, \qquad \mathbf{\varepsilon} \cdot \mathbf{k} = 0 \quad \text{transverse} \\ H_{\mathsf{at}} &= \sum_{i=1}^{N} \left\{ \frac{\mathbf{p}_{i}^{2}}{2M} + \omega_{\mathsf{e}} \hat{P}_{\mathsf{e}}^{(i)} \right\}, \qquad \hat{P}_{\mathsf{e}} = \sum_{m_{\mathsf{e}}} |J_{\mathsf{e}}m_{\mathsf{e}}\rangle \langle J_{\mathsf{e}}m_{\mathsf{e}}| \\ V &= \sum_{i=1}^{N} \mathbf{E}(\mathbf{r}_{i}) \cdot \mathbf{D}_{i}, \qquad \mathbf{E}(\mathbf{r}) = \sum_{\mathbf{k}, \mathbf{\varepsilon} \perp \mathbf{k}} \mathrm{i} \mathcal{E}_{k} a_{\mathbf{k}\mathbf{\varepsilon}} \mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{r}} \mathbf{\varepsilon} + H.c. \end{split}$$

- Ensemble average $\langle \dots \rangle = \text{Tr}\{\rho_{at}(\dots)\} \rightarrow \text{effective photon}$ transport theory w/ translational and rotational symmetry
- Fixed classical scatterers: focus onto internal quantum degrees of freedom

• Diagrammatic single-particle transport theory: [Vollhardt & Wölfle, PRB (1980), v. Rossum & Nieuwenhuizen, RMP (1999)]

Calculate $\langle G^{\mathsf{R}} \rangle$, $\langle G^{\mathsf{A}} G^{\mathsf{R}} \rangle$, ... for dilute medium $n\lambda^3 \ll 1$.

- Diagrammatic single-particle transport theory: [Vollhardt & Wölfle, PRB (1980), v. Rossum & Nieuwenhuizen, RMP (1999)]
 Calculate ⟨G^R⟩, ⟨G^AG^R⟩, ... for dilute medium nλ³ ≪ 1.

- Diagrammatic single-particle transport theory: [Vollhardt & Wölfle, PRB (1980), v. Rossum & Nieuwenhuizen, RMP (1999)]
 Calculate ⟨G^R⟩, ⟨G^AG^R⟩, ... for dilute medium nλ³ ≪ 1.
- - Resonant scalar *t*-matrix of each atom

$$\otimes = \times \underbrace{\frac{g^2}{\mathbf{e}}}_{\mathbf{e}} \times = \frac{g^2}{\omega - \omega_{\mathbf{e}} + \mathrm{i}\Gamma/2} \delta_{ij}$$

- Diagrammatic single-particle transport theory: [Vollhardt & Wölfle, PRB (1980), v. Rossum & Nieuwenhuizen, RMP (1999)]
 Calculate ⟨G^R⟩, ⟨G^AG^R⟩, ... for dilute medium nλ³ ≪ 1.
- - Resonant scalar *t*-matrix of each atom

$$\otimes = \times \underbrace{\frac{g^2}{\mathbf{e}}}_{\mathbf{e}} \times = \frac{g^2}{\omega - \omega_{\mathbf{e}} + \mathrm{i}\Gamma/2} \delta_{ij}$$

• Continuity equation for density $\Phi(q, \Omega) = \sum_{kk'} \left\langle G^{\mathsf{A}} G^{\mathsf{R}} \right\rangle$

$$-i\tau_{tr}\Omega\Phi + i\ell \boldsymbol{q}\cdot\boldsymbol{J} = 2\pi\ell\rho(\omega)$$

defines transport time $\tau_{\rm tr} = \ell/c + 1/\Gamma$

- Diagrammatic single-particle transport theory: [Vollhardt & Wölfle, PRB (1980), v. Rossum & Nieuwenhuizen, RMP (1999)]
 Calculate ⟨G^R⟩, ⟨G^AG^R⟩, ... for dilute medium nλ³ ≪ 1.
- - Resonant scalar *t*-matrix of each atom

$$\otimes = \times \frac{g^2}{\mathbf{e}} \times = \frac{g^2}{\omega - \omega_{\mathbf{e}} + \mathrm{i}\Gamma/2} \delta_{ij}$$

• Continuity equation for density $\Phi(q, \Omega) = \sum_{kk'} \left\langle G^{\mathsf{A}} G^{\mathsf{R}} \right\rangle$

$$-i\boldsymbol{\tau}_{\mathsf{tr}}\boldsymbol{\Omega}\boldsymbol{\Phi} + i\boldsymbol{\ell}\boldsymbol{q}\cdot\boldsymbol{J} = 2\pi\boldsymbol{\ell}\boldsymbol{\rho}(\boldsymbol{\omega})$$

defines transport time $\tau_{tr} = \ell/c + 1/\Gamma = \ell/v_{gr} + \tau_{Wigner}(\omega)$?

Ward identi-ology

• Resonance correction to transport time is $O(\Omega)$ -residue in Ward identity [v. Rossum & Nieuwenhuizen, RMP (1999)]

Ward identi-ology

- Resonance correction to transport time is $O(\Omega)$ -residue in Ward identity [v. Rossum & Nieuwenhuizen, RMP (1999)]
- Propagator compensation works as usually:

$$h_{\lambda\mu}$$

Ward identi-ology

- Resonance correction to transport time is $O(\Omega)$ -residue in Ward identity [v. Rossum & Nieuwenhuizen, RMP (1999)]
- Propagator compensation works as usually:

• Resonance generates additional vertices:

$$U^{(2,|\mathsf{I}|)} = \bigotimes^{(2,|\mathsf{I}|)} \otimes \cdots \otimes (\mathbf{1} + \mathbf{1} + \mathbf{1$$

Ward identi-ology

- Resonance correction to transport time is $O(\Omega)$ -residue in Ward identity [v. Rossum & Nieuwenhuizen, RMP (1999)]
- Propagator compensation works as usually:

• Resonance generates additional vertices:

• "Optical theorem": $\operatorname{Im} \Sigma^{(1)} = \operatorname{Im} \otimes \longrightarrow U^{(1)} =$

III. Experimental signatures

Part 1: resonant radiation trapping

• Resonance-dominated transport: $\tau_{tr} \approx \tau_{nat} = \Gamma^{-1} \gg \ell/c$ typical values: $\ell \approx 10^{-4}$ m, $\tau_{nat} \approx 30$ ns

• Resonance-dominated transport: $\tau_{tr} \approx \tau_{nat} = \Gamma^{-1} \gg \ell/c$ typical values: $\ell \approx 10^{-4} \mathrm{m}$, $\tau_{\mathrm{nat}} \approx 30 \, \mathrm{ns}$

• Resonance-dominated transport: $\tau_{tr} \approx \tau_{nat} = \Gamma^{-1} \gg \ell/c$ typical values: $\ell \approx 10^{-4}$ m, $\tau_{nat} \approx 30$ ns

• Resonance-dominated transport: $\tau_{tr} \approx \tau_{nat} = \Gamma^{-1} \gg \ell/c$ typical values: $\ell \approx 10^{-4}$ m, $\tau_{nat} \approx 30$ ns

• Resonance-dominated transport: $\tau_{tr} \approx \tau_{nat} = \Gamma^{-1} \gg \ell/c$ typical values: $\ell \approx 10^{-4}$ m, $\tau_{nat} \approx 30 \text{ ns}$

• Time scale is set. What about interference?

Weak localisation: strategy of calculation

• Interpretation of diagrams:

- 1. sum geometrical series for L
 - 2. use reciprocity trick to obtain C:

 A degenerate dipole transition (J > 0) has an internal spin degree of freedom coupling to the photon polarisation €.

 A degenerate dipole transition (J > 0) has an internal spin degree of freedom coupling to the photon polarisation €.

• Photon scattering vertex acquires topology of a ribbon:

$$u_0(\omega) = \bigotimes_{\bigotimes}^{\bigotimes} \quad \xrightarrow{J>0} \quad U_{ijkl} = u_0(\omega) i \prod_{l = k}^{j} k$$

• A *degenerate* dipole transition (J > 0) has an internal *spin* degree of freedom coupling to the photon polarisation ε .

• Photon scattering vertex acquires topology of a ribbon:

$$u_0(\omega) = \bigotimes_{\bigotimes}^{\bigotimes} \quad \xrightarrow{J>0} \quad U_{ijkl} = u_0(\omega) i \prod_{l = -k}^{j} j$$

• Equivalence between crossed and ladder diagrams lost:

• A *degenerate* dipole transition (J > 0) has an internal *spin* degree of freedom coupling to the photon polarisation ε .

• Photon scattering vertex acquires topology of a ribbon:

$$u_0(\omega) = \bigotimes_{\bigotimes}^{\bigotimes} \quad \xrightarrow{J>0} \quad U_{ijkl} = u_0(\omega) i \prod_{l = -k}^{j} j$$

• Equivalence between crossed and ladder diagrams lost:

• Absence of time-reversal symmetry:

[Jonckheere et al., PRL (2000)]

Vertex eigenvalues

• Diagonalisation into irreducible components K = 0, 1, 2: [CAM & C. Miniatura, J.Phys.A (2002)]

$$= \sum_{K} \lambda_{K} \mathsf{T}_{K}, \qquad \qquad = \sum_{K} \chi_{K} \mathsf{T}_{K}$$
$$\lambda_{K} = 3(2J_{e} + 1) \left\{ \begin{array}{cc} 1 & 1 & K \\ J_{e} & J_{e} & J \end{array} \right\}^{2}, \chi_{K} = 3(2J_{e} + 1) \left\{ \begin{array}{cc} 1 & J_{e} & J \\ 1 & J & J_{e} \\ K & 1 & 1 \end{array} \right\}$$

Vertex eigenvalues

• Diagonalisation into irreducible components K = 0, 1, 2: [CAM & C. Miniatura, J.Phys.A (2002)]

$$= \sum_{K} \lambda_{K} \mathsf{T}_{K}, \qquad \qquad = \sum_{K} \chi_{K} \mathsf{T}_{K}$$

$$\lambda_{K} = 3(2J_{e} + 1) \left\{ \begin{array}{ccc} 1 & 1 & K \\ J_{e} & J_{e} & J \end{array} \right\}^{2}, \\ \chi_{K} = 3(2J_{e} + 1) \left\{ \begin{array}{ccc} 1 & J_{e} & J \\ 1 & J & J_{e} \\ K & 1 & 1 \end{array} \right\}$$

• Selection rules: (i) $\lambda_0 = 1$ for all J, J_e (energy conservation) (ii) $\chi_K = \lambda_K = 1$ for J = 0 (isotropic dipole).

Vertex eigenvalues

 Diagonalisation into irreducible components K = 0, 1, 2: [CAM & C. Miniatura, J.Phys.A (2002)]

$$= \sum_{K} \lambda_{K} \mathsf{T}_{K}, \qquad \qquad \sum_{K} = \sum_{K} \chi_{K} \mathsf{T}_{K}$$

$$\lambda_{K} = 3(2J_{e}+1) \left\{ \begin{array}{ccc} 1 & 1 & K \\ J_{e} & J_{e} & J \end{array} \right\}^{2}, \\ \chi_{K} = 3(2J_{e}+1) \left\{ \begin{array}{ccc} 1 & J_{e} & J \\ 1 & J & J_{e} \\ K & 1 & 1 \end{array} \right\}$$

• Selection rules:

(*i*) $\lambda_0 = 1$ for all J, J_e (energy conservation) (*ii*) $\chi_K = \lambda_K = 1$ for J = 0 (isotropic dipole).

 Natural generalization to arbitrary spin and interaction [with G. Montambaux]

• Exact diagonalisation of transverse propagator $\forall \Omega, q$: eigenvalues $b_0 = 1$, $b_1 = \frac{1}{2}$, $b_2 = \frac{7}{10}$ at $q \to 0$.

- field transversality $b_{1,2} < 1$: "spin-orbit"

• Exact diagonalisation of transverse propagator $\forall \Omega, q$: eigenvalues $b_0 = 1$, $b_1 = \frac{1}{2}$, $b_2 = \frac{7}{10}$ at $q \to 0$.

- field transversality $b_{1,2} < 1$: "spin-orbit"
- atomic degeneracy $\lambda_{1,2} \leq 1$ "spin-flip"

 Exact diagonalisation of transverse propagator ∀Ω, q: eigenvalues b₀ = 1, b₁ = ¹/₂, b₂ = ⁷/₁₀ at q → 0.

- field transversality $b_{1,2} < 1$: "spin-orbit"
- atomic degeneracy $\lambda_{1,2} \leq 1$ "spin-flip"
- Diffusion approximation: $L(q) \approx \sum_{K} \frac{l_{K}}{Dq^{2} + 1/\tau_{d}(K)}$

 Exact diagonalisation of transverse propagator ∀Ω, q: eigenvalues b₀ = 1, b₁ = ¹/₂, b₂ = ⁷/₁₀ at q → 0.

- field transversality $b_{1,2} < 1$: "spin-orbit"
- atomic degeneracy $\lambda_{1,2} \leq 1$ "spin-flip"
- Diffusion approximation: $L(q) \approx \sum_{K} \frac{l_{K}}{Dq^{2} + 1/\tau_{d}(K)}$
- Polarization relaxation times $\tau_d(K) = \frac{\tau_{tr}}{1/(b_K \lambda_K) 1}$

 Exact diagonalisation of transverse propagator ∀Ω, q: eigenvalues b₀ = 1, b₁ = ¹/₂, b₂ = ⁷/₁₀ at q → 0.

- field transversality $b_{1,2} < 1$: "spin-orbit"
- atomic degeneracy $\lambda_{1,2} \leq 1$ "spin-flip"
- Diffusion approximation: $L(q) \approx \sum_{K} \frac{l_{K}}{Dq^{2} + 1/\tau_{d}(K)}$

• Polarization relaxation times $\tau_d(K) = \frac{\tau_{tr}}{1/(b_K \lambda_K) - 1}$

• Conserved intensity: diffusive mode with $1/\tau_d(0) = 0$.

Cooperon: Dephasing of weak localization

• Weak localization contribution:

$$C(q) \approx \sum_{K} \frac{c_K}{Dq^2 + 1/\tau_c(K)}$$

$$h_{\lambda\mu}$$

Cooperon: Dephasing of weak localization

Weak localization contribution:

$$C(q) \approx \sum_{K} \frac{c_K}{Dq^2 + 1/\tau_c(K)}$$

• Dephasing times: $\tau_c = \frac{\tau_{\rm tr}}{1/(b_K \chi_K) - 1} \sim \tau_{\rm tr}$

[Akkermans, Miniatura, & Müller, cond-mat/0206298]

Cooperon: Dephasing of weak localization

Weak localization contribution:

$$C(q) \approx \sum_{K} \frac{c_K}{Dq^2 + 1/\tau_c(K)}$$

• Dephasing times: $\tau_c = \frac{\tau_{tr}}{1/(b_K \chi_K) - 1} \sim \tau_{tr}$

[Akkermans, Miniatura, & Müller, cond-mat/0206298]

• Anomalous (non-thermal) photon dephasing due to partial trace over large ground-state degeneracy $(2J+1)^N$ of the atomic medium.

"uncompensated magnetic impurities at zero magnetic field"

 $[{\sf Y}. \ {\sf Imry, \ cond-mat}/0202044 \ + \ {\sf refs}]$

III. Experimental signaturesPart 2: Coherent Backscatteriing

Coherent Backscattering (CBS)

• Scattering by random sample:

$$\langle I \rangle = \sum_{p} |a_p|^2$$

Coherent Backscattering (CBS)

• Scattering by random sample:

$$\langle I \rangle = \sum_{p} |a_{p} + a_{\tilde{p}}|^{2}$$

Counterpropagating amplitudes!

 $\phi(\theta) = (\boldsymbol{k} + \boldsymbol{k}') \cdot \boldsymbol{r} \approx k\ell\theta$

Coherent Backscattering (CBS)

• Scattering by random sample:

$$\langle I \rangle = \sum_{p} |a_{p} + a_{\tilde{p}}|^{2}$$

Counterpropagating amplitudes!

 $\phi(\boldsymbol{\theta}) = (\boldsymbol{k} + \boldsymbol{k}') \cdot \boldsymbol{r} \approx k\ell\boldsymbol{\theta}$

CBS: Pairwise constructive interference survives the ensemble average for

 $|\theta| < 1/k\ell$

"random collection of Young slits"

Experimental signature

• CBS by atoms without and with internal degeneracy:

[Bidel et al., PRL 88, 203902 (2002)] [Labeyrie et al., EPL 61, 327 (2003)]

• Theory: analytic internal degeneracy

[Müller & Miniatura, J. Phys. A (2002)]

+ MC simulation of photon trajectories

[Labeyrie, Delande et al., PRA (2003)]

Summary

• "Photons do it like electrons, but all at once and resonantly"

 $\tau_d \sim \tau_c \sim \tau_{\rm tr}$

Summary

• "Photons do it like electrons, but all at once and resonantly"

 $au_d \sim au_c \sim au_{
m tr}$

• Atoms: exact microscopic theory for τ_d , τ_c as function of experimental parameters J, J_e .

• Towards strong localisation of photons in a gas of 'immobile' atoms: Self-consistent perturbation (Ward identities, etc.) in strongly disordered limit $n\lambda^3 \rightarrow 1$

- Towards strong localisation of photons in a gas of 'immobile' atoms: Self-consistent perturbation (Ward identities, etc.) in strongly disordered limit $n\lambda^3 \rightarrow 1$
- What about external degrees of freedom (Recoil, Doppler, quantum statistics, ...)?

- Towards strong localisation of photons in a gas of 'immobile' atoms: Self-consistent perturbation (Ward identities, etc.) in strongly disordered limit $n\lambda^3 \rightarrow 1$
- What about external degrees of freedom (Recoil, Doppler, quantum statistics, ...)?
- Saturation becomes unavoidable at high density: fundamental limit to Anderson-localisability?

- Towards strong localisation of photons in a gas of 'immobile' atoms: Self-consistent perturbation (Ward identities, etc.) in strongly disordered limit $n\lambda^3 \rightarrow 1$
- What about external degrees of freedom (Recoil, Doppler, quantum statistics, ...)?
- Saturation becomes unavoidable at high density: fundamental limit to Anderson-localisability?
- ... ask me again at Windsor 2007 ...

Thanks to colleagues

Thanks to colleagues

QCCM 2004's motto:

"If you wanted to draw this as a diagram, how would it look like?"

QCCM Windsor Aug 2004 - p. 24/25
Thanks to colleagues

 $h_{\lambda\mu}$