Electron-electron interactions in metallic diffusive wires

Quantronics Group CEA Saclay, France

A. Anthore

D. Esteve

H. Pothier

Outline

- phase coherence and electrical transport
- phase coherence in wires and interactions
- interactions and energy exchange
- effect of magnetic impurities

Electrical transport and coherence

(D. Mailly)

Fully coherent conductors *1. Quantum point contacts*

van Wees; Wharam (1988)

 $\tau_i = 1$ for all open channels $0 < \tau_N < 1$ for the last channel Landauer (1957) $G = \frac{2e^2}{h} \sum \tau_i = \frac{2e^2}{h} (N - 1 + \tau_N)$

Fully coherent conductors 2. Atomic contacts

Fully coherent conductors 2. Atomic contacts

Scheer et al. (Nature, 1998)

Fully coherent conductors 2. Atomic contacts

Transport in metallic thin films

Typically, $\lambda_F \Box I_e \Box L_{\phi} \leq L$

- Aharonov-Bohm effect
- Weak localization

- Aharonov-Bohm effect
- Weak localization

- Aharonov-Bohm effect
- Weak localization
- Conductance Fluctuations
- Persistent currents
- Superconducting proximity effect

Size of the effects depends on $L_{\phi} = \sqrt{D\tau_{\phi}}$

- phase coherence and electrical transport
- phase coherence in wires and interactions
- interactions and energy exchange
- effect of residual impurities

Extension of τ_{ϕ}

determined by the dominant inelastic process e-ph e-e

Predictions for τ_{ϕ} at low T

(Altshuler, Aronov, 1979)

« wires » (1d regime) : $L_{\phi} = \sqrt{D\tau_{\phi}} > \text{transverse dimensions}$

($E \sim \hbar / \tau_{\phi}$ rule the game)

$\tau_{\phi}(T)$ in wires

(Altshuler, Aronov, Khmelnitskii, 1982)

$\tau_{\phi}(T)$ measurements at low T

(Mohanty, Jariwala and Webb, PRL 78, 3366 (1997))

"Saturation" of τ_{ϕ} :

e-e interaction badly understood ? another process dominates ?

Measuring $\tau_{\phi}(T)$: raw data

$\tau_{\phi}(T)$ in Ag, Au & Cu wires

5N = 99.999 % source material purity 6N = 99.9999 % " " "

Low T behavior vs. Purity:

Ag 6N, Au 6N
 → agreement with AAK theory

• Ag 5N, Cu 6N \rightarrow saturation of $\tau_{\phi}(T)$

F. Pierre *et al.,* PRB **68**, 0854213 (2003)

Saturation of τ_{ϕ} is sample dependent

Quantitative comparison with theory for clean samples

$$\tau_{\phi} = (A T^{2/3} + B T^3)^{-1}$$

	Sample	A_{thy} (ns ⁻¹ K ^{-2/3})	$A (ns^{-1} K^{-2/3})$
	Ag(6N)a	0.55	0.73
▼.	Ag(6N)b	0.51	0.59
•	Ag(6N)c	0.31	0.37
	Ag(6N)d	0.47	0.56
	Au(6N)	0.40	0.67

F. Pierre *et al.,* PRB **68**, 0854213 (2003)

$$\boldsymbol{A}_{thy} = \frac{1}{\hbar} \left(\frac{\pi k_B^2}{4 \nu_F L w t} \frac{R}{R_K} \right)^{1/3}$$

Orders of magnitude in diffusive wires 1. intrinsic parameters

D=185 cm²/s V_F=1.39 10⁶ m/s (Ag) v_F=1.03 10⁴⁷ J⁻¹m⁻³

Orders of magnitude in diffusive wires 2. at T=1 K

$$L = \sqrt{\frac{\pi D}{k_B T}}, \ L_{\phi} \propto T^{-1/3}, \ L_{ph} \propto T^{-3/2}$$

$$D=185 \text{ cm}^{2/5}$$

$$V_{F}=1.39 \text{ 10}^{6} \text{ m/s (Ag)}$$

$$v_{F}=1.03 \text{ 10}^{47} \text{ J}^{-1} \text{m}^{-3}$$

Orders of magnitude in diffusive wires 3. at T=40 mK

 L_{ph} \Box 3.5 mm out of this scale

D=185 cm²/s V_F=1.39 10⁶ m/s (Ag) v_F=1.03 10⁴⁷ J⁻¹m⁻³

- phase coherence and electrical transport
- phase coherence in wires and interactions
- interactions and energy exchange
- effect of residual impurities

Investigation of inelastic processes

2nd method : measure energy exchange rates

Distribution f(E) reflects the exchange rates Distribution function and energy exchange rates

Experimental setup

 $\frac{dI}{dV}(V) \xrightarrow{numerical} f(E)$

f(E) measurement

Problems raised by f(E) measurements

- slope $\propto 1/U$ (scaling)

H. Pothier *et al.*, PRL **79**, 3490 (1997)

Stronger interactions ?!

Ag_{6N} (99.9999%)

- small rates
- similar slopes at $\neq U$'s

F. Pierre *et al.,* J. Low Temp Phys. 118, 437 (2000)
Calculation of f(x,E)

Boltzmann equation in the diffusive regime (Nagaev, Phys. Lett. A, 1992):

Boundary conditions :

 $f_{x=0}(E) = f_{x=L}(E) = Fermi function$

Calculation of f(x,E)

Boltzmann equation in the diffusive regime (Nagaev, Phys. Lett. A, 1992):

$$\mathsf{D}\frac{\partial^2 f(\mathsf{E})}{\partial x^2} = \mathsf{I}_{in}\left(\mathsf{x},\mathsf{E},\{\mathsf{f}\}\right) - \mathsf{I}_{out}\left(\mathsf{x},\mathsf{E},\{\mathsf{f}\}\right)$$

Theory of screened Coulomb interaction in the diffusive regime

(Altshuler, Aronov, Khmelnitskii, 1982)

ingredients:

polarisability ↘ overlap ↗

Prediction for 1D wire :

$$K(\varepsilon) = rac{\kappa}{\varepsilon^{3/2}}$$

$$\left(\propto \int \frac{\mathrm{d}q}{D^2 q^4 + \omega^2} \right)$$

$$\kappa = \left(\sqrt{2D} \ \pi \ \hbar^{3/2} \ \nu_F \ \mathbf{S}_e\right)^{-1}$$

f(E) in clean samples: Coulomb interaction only

Fitting f(E) with Coulomb interactions: other examples

f(E) in clean samples: Coulomb interaction intensity

Good fits, but « wrong » intensities !

Comparison of the results of the two methods

- phase coherence and electrical transport
- phase coherence in wires and interactions
- interactions and energy exchange
- effect of residual impurities

The two puzzles

$\tau_{\phi}(T)$ measurements

f(E) measurements

Ag_{5N} - Cu_{5N,4N} - Au_{4N}

Anomalous interactions in the less pure samples

Spin-flip scattering on a *magnetic* impurity

Kondo effect

Nagaoka-Suhl expression of the spin-flip scattering rate near T_{K}

From τ_{sf} to τ_{ϕ}

 $\begin{array}{ll} \text{If } \tau_{\text{K}} > \tau_{\text{sf}} & \quad \text{The spin states of the mag. imp. seen by time-reversed} \\ & \quad \text{electrons are correlated} \\ & \quad \frac{1}{\tau_{\phi}} = \frac{1}{\tau_{ee}} + \frac{1}{\tau_{e-ph}} + \frac{2}{\tau_{\text{sf}}} \end{array} \end{array}$

Comparison of τ_{sf} and τ_{K}

for Au, Ag, Cu, ... \rightarrow T > 40 mK × c_{imp} (ppm)

Effect of magnetic impurities on τ_{ϕ}

 $\tau_{\text{e-ph}}$ τ_{ee}

Effect of magnetic impurities on τ_{ϕ}

Above T_{K} : partial compensation of e-e and s-f

What about energy exchange ?

Interaction between electrons mediated by a magnetic impurity

Reinforced by Kondo effect

Kaminski and Glazman, PRL 86, 2400 (2001)

Interaction mediated by a magnetic impurity : effect of a small magnetic field

Reduced rate

Spin-flip scattering on a magnetic impurity : effect of a *small* magnetic field

Spin-flip scattering on a magnetic impurity : effect of a *strong* magnetic field

Freezing of impurities

Effect of 1 ppm Mn on interactions ?

Measurement of f(E) in presence of a mag. field

Dynamical Coulomb blockade (ZBA)

Conductance of an N-N junction effect of an external impedance

Conductance of an N-N junction perturbative calculation of $P(\varepsilon)$

For one electron tunneling : $I(t) = e \ \delta(t)$

Energy dissipated in the impedance :

 $E = \int dt V(t) I(t)$ = eV(t = 0) $= e \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} v(\omega)$ $= e \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} Z(\omega) i(\omega)$ $=\frac{e^2}{2}\int_0^\infty d\omega \operatorname{Re}(Z(\omega))$

Conductance of an N-N junction perturbative calculation of $P(\varepsilon)$

For one electron tunneling : $I(t) = e \ \delta(t)$

Energy dissipated in the impedance :

$$\mathbf{E} = \frac{\mathbf{e}^2}{\pi} \int_0^\infty \mathbf{d}\omega \, \mathbf{Re} \big(\mathbf{Z}(\omega) \big)$$

$$=\int_0^\infty d\epsilon \ \epsilon \ P(\epsilon)$$

Conductance of an N-N junction Perturbative result

Non-perturbative, finite T: see Devoret *et al.*, PRL **64**, 1824 (1990) Joyez & Esteve, PRB **68**, 1828 (1997)

Measurement of f(E)

Experimental data at weak B

Experimental data at weak and at strong B

Coherence time measurements on the same 2 samples

Full U,B dependence

2.1 T 1.8 T 1.5 T 1.2 T 0.9 T 0.6 T 0.3 T

2.1 T 1.8 T 1.5 T 1.2 T 0.9 T 0.6 T 0.3 T

Conclusions

Two methods to investigate interactions in wires

<u>Metal purity matters</u> : impurities with low $T_{\rm K}$ at ppm concentrations rule the game