Two lectures and a seminar

- Laplacian Growth
- Stochastic Loewner evolution and critical phenomena in 2D (CFT=Conformal Field Theory)
- Aspects of "Bosonization"

P. Wiegmann University of Chicago and Landau Institute for Theoretical Physics

Laplacian Growth

Laplacian Growth

Singular patterns in nonequlibrium regime

Other names:

- Hele-Shaw problem;
- Saffman-Taylor problem;
- Fingering instability;
- Growth in the diffusion limit;
-(few more, like secondary oil recovery,

An interplay between:

• Deterministic Growth

• Stochastic Growth

Hele-Shaw cell

Oil (exterior)-incompressible liquid with high viscosity

Water (interior) - incompressible liquid with low viscosity

Laplacian growth;

diffusion driven patterns.

 $v_n = -
abla_n P$ on the interface

$$\Delta P = 0$$
 in oil,

 $P = \sigma imes$ curvature in water

σ -surface tension

Velocity= gradient of a harmonic function

Fingering Instability

Large flux, small surface tension_ Small Flux, large surface tension_

An arbitrary small bump gives rise to a cascade of fingers

Fingering instability is typical if convection is suppressed, diffusion drives the game

Flame with no convection

after Sharon, Moore, McCormick, and Swinney, University of Texas at Austin

Finite time singularities

Hypotrochoid grows until it reaches a critical point.

- Fingering Instability
- Finite time cusp-like singularities
- Necessity of a regularization of short distances

Interpretation:

pressure - solution of the Dirichlet problem

$$p = \log w(z)$$
 - conformal map
velocity -

$$v_n = \nabla p = |w'(z)|$$
 - Conformal measure

A probability of a Brownian mover to arrive and join the aggregate

the probability happens to be a conformal measure

While joining the aggregate a mover becomes a *fermion*.

can not sit on top of each other

Hadamard formula

$$\frac{\delta w(z)}{w(z)} = \frac{w(z) + e^{i\theta}}{w(z) - e^{i\theta}} \cdot |w'(\zeta)|^2 d(\text{Area})$$

$$\frac{d}{dt}\log w(z) = \frac{w(z) + e^{i\theta}}{w(z) - e^{i\theta}} \cdot |w'(\zeta)|^2$$

Diffusion limited aggregation

Fluid dynamics

turbulent regime collection of singularities Continuos (hydrodynamics problem is ill-defined especially in the at the turbulent regime -many singularities);

Turbulent (singular) regime occurs inevitably;

Cut-off singularities at a small scale is necessary;

DLA - Diffusion limited aggregation provides a regularization: Arriving particles have a finite size;

Noise - a mechanism of stabilization;

Recent developments:

- Link to Random (non-Hermitian) Matrix Ensembles particles are eigenvalues of a random matrix;
- Link to QHE and Correlation functions in quantum wires: water domain= Quantum droplet on the LLL, or a Fermi surface in the phase space;
- Link to a Boundary Conformal Field Theory;
- Link to Integrable system Toda lattice hierarchy (singular limit of dispersive waves)
- Link to problems of 2D Quantum gravity.

Random Matrices

$$M_{ij} = -N \times N - \text{matrix with random elements}$$

 $dP(M_{ij}) = e^{-\frac{1}{\hbar} \operatorname{Tr} V(M)} dM_{ij}$ Probability distribution

$V(M) = M^2 -$ Gaussian Potential

Non Gaussian potential

Goal: having a distribution of matrix elements, determine a distribution of eigenvalues

In the limit $\hbar \to 0, \to \infty$ $N\hbar = t = \text{fixed}$

$$M = U^{-1} \operatorname{diag}(x_1, \dots, x_n) U$$

Integration over U gives the distribution of x's

Hermitian matrices:

$$dP(x) = \prod_{i>j} (x_i - x_j)^2 e^{-\frac{1}{\hbar}\sum_i V(x_i)} dx = |\Psi(x_1, \dots, x_N)|^2$$

Wave function of free fermions in a parabolic potent Slatter determinant

$$\Psi(x_1,\ldots,x_N) = \det_{i,n} ||\psi_n(x_i)|| = \Delta(x) e^{-\frac{1}{\hbar}\sum_i x_i^2}$$

$$\Delta(x) = \prod_{i>j} (x_i - x_j) - \text{VanderMonde determinant}$$

Hermitian matrix ensemble:

eigenvalues are real, distributed in an interval of the real axis

Figure 2.2: Typical spectrum of a matrix. In the large N limit, the spectrum is well approximated by a continuous density of levels $\rho(\lambda)$.

Bulk properties are universal (do not depend on potential V(M))

Edge properties are also universal but do depend on potential

2.6: The density of eigenvalues has square-root singularities at the edges. An gement of the edge's vicinity shows a universal tail related to the Airy function.

Figure 2.7: At a critical point, the density of eigenvalues has power law singularities at the edges. An enlargement of the edge's vicinity shows a universal tail related to some integrable hierarchy of differential equations.

Edge singularities are characterized by p, q

Normal Matrix ensemble: [M,M*]=0;

Eigenvalues are complex: Z_1, \dots, Z_N

They densely occupies a domain in a complex plane

$$dP = |\Delta(z)|^2 e^{-\frac{1}{\hbar}\sum_i (|z_i|^2 - V(z_i) - V(z_i))} = |\Psi(z_1, \dots, z_N)|^2$$

$$\Psi(z_1, z_2, ..., z_N) = \prod_{m < n} (z_n - z_m) e^{-\sum_n \frac{|z_n|}{2\ell^2}}$$

Two interpretations:

1) 1D fermions in coherent state representation z=x+ip
 2) 2D Fermions on the LLL

Particles on LLL in a uniform magnetic field form a circular droplet

Every particle occupies a box of in the phase space 2π \hbar=(magnetic length)²

The area of the droplet is 2π \hbar·N droplet is incompressible

$$\Psi(z_1, z_2, ..., z_N) = \prod_{m < n} (z_n - z_m) e^{-\sum_n \frac{|z_n|^2}{2\ell^2}}$$

If $N \Rightarrow N+1$ grows, the area also grows, the circle remains to be a circle

Aharonov-Bohm Effect on LLL

The are of the droplet is controled by the number of particles, but who controls the shape?

$$\Psi = \Delta(z)e^{-\frac{1}{\hbar}\sum_{i}(|z_i|^2 - V(z_i) - \overline{V(z_i)})}$$

Magnetic field = $B = -\partial_z \partial_{\bar{z}} (|z|^2 - V(z) - V(z))$

The circular shape is unstable under gradients of magnetic field

Semiclassical limit of the Growth: N→ N+1 provides the same hydrodynamics as Laplacian growth.

Quantum limit provides stochastic (dispersive) regularization

If a potential of a nonuniform part of magnetic field is

$$V(z) = Re \sum_{k \ge 1} t_k z^k.$$

Then the droplet's harmonic moments are exactly t_k, the area is determined by the homogeneous part of the magnetic field

- the area of the domain is $\pi N\ell^2$;
- the harmonic moments of the exterior of the domain

$$t_k = -\frac{1}{\pi k} \int z^{-k} d^2 z, \quad k = 1, 2, \dots$$

$$\Psi(z_1, \cdots, z_N) = \frac{1}{\sqrt{N!\tau_N}} \Delta(z) e^{-(\sum_n \frac{1}{2\ell^2} |z_n|^2 - V(z_n))}.$$

The saddle point equation (4) is transformed accordingly

$$\sum_{m \neq n}^{N} \frac{2\ell^2}{z_n - z_m} = \bar{z}_n - 2\ell^2 \frac{\partial}{\partial z} V(z).$$

Semiclassical approximation

Interpretation: $\psi_{N+1}(z) = \int \Psi(z,\xi_1,\ldots,\xi_N) \overline{\Psi(\xi_1,\ldots,\xi_N)} \prod_{n \le N} d^2 \xi_n.$

 $|\psi_N|^2$ - probability for a new particle to arrive to a point *z*-an overlap between N and N+l sates

In semiclassical regime - it is proportional to a conformal measure

$$|\psi_N|^2 \simeq \frac{1}{2\pi} |w'(z)|\delta(z),$$

Quantization can be seen as a noise

Noise is negligible in the semiclassical regime (a smooth droplet)

Important in the turbulent (singular) regime, where semiclassics fails.

Singular semiclassical expansion at the cusps

- Laplacian growth=Witham hierarchy of soliton equations
- Dispersive regularization of nonlinear waves

- Witham hierarchy = a semiclassical limit of soliton equations
- Example KdV:

 $|\mathbf{u}_t - \boldsymbol{u} \cdot \boldsymbol{u}_x + \boldsymbol{h} \cdot \boldsymbol{u}_{xxx} = 0$

• Periodic (soliton-like) solution: waves in shallow water;

• Non-periodic solutions;

Overhang - a result of ill- approximation Oscillations is a dispersive regularization

$$u_t - u \cdot u_x + \hbar \cdot u_{xxx} = 0 \quad \Rightarrow \quad u_t - u \cdot u_x = 0$$

Fine structure of a cusp

Painleve I equation

$$\hbar \cdot u_{tt} - u^2 = t - t_c$$

u(t) - a coordinate of a tip

Universal character of the fine structure of singularities

u(x,t)

Universal character of of singularities Asymmetries and tip splitting Higher order singularities - higher order Painleve like equations

classified by two integers (p,q) according to Kac table of CFT

Set of exponents - gravitational descendants

$$\Delta_{p,q}^{m} = \frac{q - p + m}{p + q - 1}, \quad m = 1, \dots, q < p$$

Are fractal exponents of DLA among this set?