
The 4th Windsor Summer School on Condensed Matter Theory 
Quantum Transport and Dynamics in Nanostructures

Great Park, Windsor, UK, August 6 - 18, 2007

From single-particle to many-body 
localisation in disordered systems.

Boris Altshuler
Physics Department, Columbia University 

and  NEC Laboratories America



Lectures 1,2Lectures 1,2

OneOne--particle particle 
LocalizationLocalization



50 years of Anderson Localization

e



I was cited for work both. in the field of magnetism and in that of 
disordered systems, and I would like to describe here one development 
in each held which was specifically mentioned in that citation. The two 
theories I will discuss differed sharply in some ways. The theory of local 
moments in metals was, in a sense, easy: it was the condensation into a 
simple mathematical model of ideas which. were very much in the air at 
the time, and it had rapid and permanent acceptance because of its 
timeliness and its relative simplicity. What mathematical difficulty it 
contained has been almost fully- cleared up within the past few years.

Localization was a different matter: very few believed it at the time, and 
even fewer saw its importance; among those who failed to fully 
understand it at first was certainly its author. It has yet to receive 
adequate mathematical treatment, and one has to resort to the indignity 
of numerical simulations to settle even the simplest questions about it . 
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Density of statesConductivity

Einstein Relation (1905)

Diffusion Constant

No diffusion – no conductivity

Metal – insulator transition

Localized states – insulator
Extended states - metal



Anderson Insulator Anderson Metal 

f = 3.04 GHz f = 7.33 GHz



Fermi Pasta Ulam 1955

Q:Will a nonlinear system (system 
of interacting particles) 
completely isolated from the 
outside world evolve to a 
microcanonical distribution 
(reach equipartition).

?

Anderson 1958

Q:Will a density fluctuation (a wave 
packet) in a system of quantum 
particles in the presence of disorder 
dissolve in the diffusive way.

?



Localization of single-electron wave-functions:

extended

localized

Disorder

I
V

Conductance
extended

localized



e
Scattering centers, 
e.g., impurities

Models of disorder:Models of disorder:
Randomly located impuritiesRandomly located impurities
White noise potentialWhite noise potential
Lattice modelsLattice models

Anderson modelAnderson model
Lifshits modelLifshits model



Anderson  
Model

• Lattice - tight binding model

• Onsite energies  εi - random

• Hopping matrix elements Iijj i
Iij

Iij =-W < εi <W
uniformly distributed

I < Ic I > Ic
Insulator 

All eigenstates are localized
Localization length ξ

Metal
There appear states extended

all over the whole system

Anderson  TransitionAnderson  Transition

I   i and j are nearest 
neighbors

0 otherwise



Why arbitrary 
weak hopping I is 
not sufficient for 
the existence of 
the diffusion

Einstein (1905): Marcovian (no memory) 
process diffusion

j i
Iij

Quantum mechanics is not marcovian
There is memory in quantum propagation!
Why?
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von Neumann & Wigner “noncrossing rule”
Level repulsion

What about the eigenfunctions ?



⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

1ˆ
ε

ε
I

I
H ( )

II
I

IEE
<<−
>>−−

≈+−=−
12

121222
1212 εε

εεεε
εε

What about the eigenfunctions ?

22112211 ,;,; EE ψψεϕεϕ ⇐

1,2
12

2,12,1

12

ϕ
εε

ϕψ

εε

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+=

>>−

IO

I

1,22,12,1

12

ϕϕψ

εε

±≈

<<− I

Off-resonance
Eigenfunctions are 

close to the original on-
site wave functions

Resonance
In both eigenstates the 
probability is equally 

shared between the sites



Anderson insulator
Few isolated resonances

Anderson metal
There are many resonances 

and they overlap



Simplest example: Anderson ModelAnderson Model Cayley treeCayley tree:



Simplest example: Anderson ModelAnderson Model Cayley treeCayley tree:
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Parameters: I, W and branching number K (here K=2 )

The probability 
amplitude to find the 
particle at a distance 
n is proportional to
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Crucial simplification: no loops



The probability 
amplitude to find the 
particle at a distance 
n is proportional to
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At each step among K site we can 
choose the one, which energy is 
the closest to ε , i.e.,                                 KWj ≈−εε

K>1: Competition between exponentially small amplitude of 
each path and exponentially large number of paths.

Conclusion: for                , where                        the system is an 
insulator, because                                In the opposite case – metal

More precisely

cII < KWIc ≈
( ) 0→∞→nA

( )KKWIc log≈



Conclusion: for                , where                        the system is an 
insulator, because                                In the opposite case – metal

More precisely

cII < KWIc ≈
( ) 0→∞→nA
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KWI > Typically there is a resonance at every step

( ) KWIKKW <<log
The particle can travel 
infinitely far through the 
resonances of sites, which 
are not nearest neighbors

WI > Typically each pair of nearest neighbors is at  resonance



Part 2. Part 2. 

Localization and Localization and 
spectral statisticsspectral statistics



Noncrossing rule (theorem)
Suggested by Hund (Hund F. 1927 Phys. v.40, p.742)

Justified by von Neumann & Wigner (v. Neumann J. & Wigner E.
1929 Phys. Zeit. v.30, p.467)                                     . . . .

Usually textbooks present a simplified version of the justification 
due to Teller (Teller E., 1937 J. Phys. Chem 41 109).

Arnold V. I., 1972 Funct. Anal. Appl.v. 6, p.94

Mathematical Methods of Classical Mechanics 
(Springer-Verlag: New York), Appendix 10, 1989



In general, a multiple spectrum in 
typical families of quadratic forms 
is observed only for two or more 
parameters, while in one-
parameter families of general 
form the spectrum is simple for 
all values of the parameter. Under 
a change of parameter in the 
typical one-parameter family the 
eigenvalues can approach 
closely, but when they are 
sufficiently close, it is as if they 
begin to repel one another. The 
eigenvalues again diverge, 
disappointing the person who 
hoped, by changing the 
parameter to achieve a multiple 
spectrum.

Arnold V.I., Mathematical Methods of Classical Mechanics 
(Springer-Verlag: New York), Appendix 10, 1989
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Eα - spectrum (set of eigenvalues)

- mean level spacing

- ensemble averaging

- spacing between nearest 
neighbors

- distribution function of nearest 
neighbors spacing between

Spectral Rigidity

Level repulsion
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RANDOM MATRIX THEORY

N × N N → ∞ensemble of Hermitian matrices 
with random matrix element

Spectral 
statistics



Orthogonal 
β=1

Poisson – completely 
uncorrelated 
levels

Wigner-Dyson; GOE
Poisson

Gaussian
Orthogonal
Ensemble

Unitary
β=2

Simplectic
β=4



RANDOM MATRICES

N × N matrices with random matrix elements. N → ∞

Ensemble
orthogonal
unitary

simplectic

Dyson Ensembles

    β
    1

    2
    

4

realization
T-inv potential
broken T-invariance 
(e.g., by magnetic 
field)
T-inv, but with spin-
orbital coupling

Matrix elements
real
complex

2 × 2 matrices



1. The assumption is that the matrix elements are statistically 
independent. Therefore probability of two levels to be 
degenerate vanishes.

2. If H12 is real (orthogonal ensemble), then for s to be small 
two statistically independent variables ((H22- H11) and H12) 
should be small and thus

( ) 0P s → 0 :s →Reason for                           when
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1. The assumption is that the matrix elements are statistically 
independent. Therefore probability of two levels to be 
degenerate vanishes.

2. If H12 is real (orthogonal ensemble), then for s to be small 
two statistically independent variables ((H22- H11) and H12) 
should be small and thus

3. Complex H12 (unitary ensemble)        both Re(H12) and 
Im(H12) are statistically independent      three independent 
random variables should be small

( ) 0P s → 0 :s →Reason for                           when
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Anderson  
Model

• Lattice - tight binding model

• Onsite energies  εi - random

• Hopping matrix elements Iijj i
Iij

-W < εi <W
uniformly distributed

Q: What are the spectral statistics 
of a finite size Anderson model ?

Is there much in common between Random Matrices 
and Hamiltonians with random potential ?



I < Ic I > Ic
Insulator 

All eigenstates are localized
Localization length ξ

Metal
There appear states extended

all over the whole system

Anderson  TransitionAnderson  Transition

The eigenstates, which  are 
localized at different places 

will not repel each other

Any two extended 
eigenstates repel each other

Poisson spectral statistics Wigner – Dyson spectral statistics

Strong disorder Weak disorder



Disorder W

Zharekeschev & Kramer.
Exact diagonalization of the Anderson model



1.1. Mean level spacingMean level spacing δ1  = 1/ν× Ld

2.2. Thouless energyThouless energy ET = hD/L2 D is the diffusion const

. 
ET has a meaning of the inverse diffusion time of the traveling 
through the system or  the escape rate (for open systems)

dimensionless
Thouless

conductance
g = Gh/e2

δ1

en
e r

gy L is the system size;

d is the number of
dimensions

L

g = ET / δ1

Energy scales in the localization problem.
((Thouless, 1972))

This scale exists in the Random Matrix theory



g10

Localized states 
Insulator

Extended states 
Metal

Poisson spectral
statistics

Wigner-Dyson
spectral statistics

Thouless Conductance and
One-particle Spectral Statistics

Transition at g~1.
Is it sharp?



Conductance g

The bigger the system the sharper the transition



Anderson transition in terms of 
pure level statistics

P(s)



The same statistics of the 
random spectra and one-
particle wave functions 

(eigenvectors)

g10

Localized states 
Insulator

Extended states 
Metal

Poisson spectral
statistics

Wigner-Dyson
spectral statistics

Ν  × Ν
Random Matrices

Quantum Dots 
with Thouless 

conductance g

Ν→ ∞ g→ ∞

Thouless Conductance and
One-particle Spectral Statistics



Part 3. Part 3. 

Quantum Chaos Quantum Chaos 
and Localizationand Localization



Finite size quantum physical systems

Atoms
Nuclei
Molecules
.
.
.

Quantum 
Dots



ATOMS

NUCLEI

Main goal is to classify the eigenstates in 
terms of the quantum numbers

For the nuclear excitations this program does 
not work

E.P. Wigner: Study spectral statistics of a particular
quantum system – a given nucleus



ATOMS

NUCLEI

Main goal is to classify the eigenstates in 
terms of the quantum numbers

For the nuclear excitations this program does 
not work

E.P. Wigner: Study spectral statistics of a particular
quantum system – a given nucleus

•Spectral averaging (over α)
•Particular quantum system

• Ensemble

• Ensemble averaging

Atomic NucleiRandom Matrices

Nevertheless Statistics of the nuclear spectra 
are almost exactly the same as the 
Random Matrix Statistics

Spectra: {Eα}



sP(s)

Particular 
nucleus

166Er

Spectra of 
several 
nuclei 
combined 
(after 
spacing)
rescaling 
by the 
mean level

P(s)

N. Bohr, Nature 
137 (1936) 344.



Q: Why the random matrix 
theory (RMT) works so well 
for nuclear spectra

Original 
answer:

These are systems with a large 
number of degrees of freedom, and 
therefore the  “complexity” is high

Later it
became
clear that

there exist very “simple” systems 
with as many as 2 degrees of 
freedom (d=2), which demonstrate  
RMT - like spectral statistics



Integrable 
Systems

Classical (h =0) Dynamical Systems with d degrees of freedom
The variables can be 
separated and the problem 
reduces to d one-
dimensional problems

d integrals 
of motion

ExamplesExamples
1. A ball inside rectangular billiard; d=2
• Vertical motion can be 

separated from the  
horizontal one

• Vertical and horizontal
components of the 

momentum, are both 
integrals of motion

2. Circular billiard; d=2
• Radial motion can be 

separated from the  
angular one

• Angular momentum 
and energy are the 
integrals of motion



Integrable 
Systems

Classical Dynamical Systems with d degrees of freedom

Rectangular and circular billiard, Kepler problem, . . . , 
1d Hubbard model and other exactly solvable models, . .  

The variables can be separated d one-dimensional 
problems d integrals of motion



Integrable 
Systems

Classical Dynamical Systems with d degrees of freedom

Rectangular and circular billiard, Kepler problem, . . . , 
1d Hubbard model and other exactly solvable models, . .  

The variables can be separated d one-dimensional 
problems d integrals of motion

Chaotic 
Systems

The variables can not be separated there is only one 
integral of motion - energy

ExamplesExamples

Sinai billiard

Kepler problem 
in magnetic field 

B

Stadium



Classical Chaos 
h =0

•Nonlinearities
•Exponential dependence on 
the original conditions (Lyapunov 

exponents)

•Ergodicity

Q: What does it mean Quantum Chaos ?

Quantum description of any System Quantum description of any System 
with a finite number of the degrees with a finite number of the degrees 
of freedom is a linear problem of freedom is a linear problem ––
Shrodinger equation Shrodinger equation 



Bohigas – Giannoni – Schmit conjecture

Chaotic 
classical analog

Wigner- Dyson 
spectral statistics

0≠h

No quantum 
numbers except 

energy



Chaotic
classical 
analog

Two possible definitions

Wigner -
Dyson-like 
spectrum

Q: What does it mean Quantum Chaos ?



Wigner-
Dyson

?
Classical

Poisson

Quantum

?
Chaotic

Integrable



Square
billiard

Sinai
billiard

Disordered 
localized

Disordered 
extended

Integrable Chaotic
All chaotic 
systems 
resemble 
each other.

All integrable 
systems are 
integrable in 
their own way



Disordered 
Systems:

Is it a generic scenario for the  
Wigner-Dyson to Poisson crossoverQ: ?

Speculations

Anderson metal; 
Wigner-Dyson spectral statistics

Anderson insulator; 
Poisson spectral statistics

Consider an integrable system. Each state is characterized by a set of 
quantum  numbers.

It can be viewed as a point in the space of quantum numbers. The 
whole set of the states forms a lattice in this space.

A perturbation that violates the integrability provides matrix elements 
of the hopping between different sites (Anderson model !?)



Consider an integrable system. Each state is 
characterized by a set of quantum  numbers.

It can be viewed as a point in the space of quantum 
numbers. The whole set of the states forms a lattice in 
this space.

A perturbation that violates the integrability provides 
matrix elements of the hopping between different sites 
(Anderson model !?)

Weak enough hopping - Localization - Poisson
Strong hopping - transition to Wigner-Dyson

Does Anderson localization provide  
a generic scenario for the  Wigner-
Dyson to Poisson crossover

Q: ?



The very definition of the localization is 
not invariant – one should specify in which 
space the eigenstates are localized.

Level statistics is invariant:

Poissonian 
statistics

basis where the 
eigenfunctions are localized∃

Wigner -Dyson 
statistics ∀basis the eigenfunctions 

are extended



Ly

e

Example 1 Doped semiconductor
Low concentration 
of donors

Electrons are localized on 
donors Poisson

Higher donor
concentration

Electronic states are 
extended Wigner-Dyson

Example 2
Rectangular billiard

Lx

Two 
integrals 
of motion y

y
x

x L
mp

L
np ππ

== ;

Lattice in the 
momentum space
py

px

Line (surface) 
of constant 
energy Ideal billiard   – localization in the 

momentum space
Poisson

Deformation or 
smooth random 
potential

– delocalization in the 
momentum space 

Wigner-Dyson



Localization 
and diffusion 
in the angular 
momentum 
space

R
a

≡ε 0>ε

0→ε

Chaotic
stadium

Integrable circular billiard

1;0 <<= εh

Diffusion in the 
angular momentum 
space 25ε∝D

Angular momentum is 
the integral of motion

ε=0.01
g=0.012

ε=0.1
g=4

Poisson

Wigner-Dyson



1D Hubbard Model on a periodic chain
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Onsite 
interaction

n. neighbors 
interaction

Hubbard 
model integrable0=V

extended 
Hubbard 

model
nonintegrable0≠V

12 sites
3 particles
Zero total spin
Total momentum π/6

U=4  V=0 U=4  V=4

D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993



J=t J=2t J=5t

N=16; one hole

D.Poilblanc, T.Ziman, J.Bellisard, F.Mila & G.Montambaux
Europhysics Letters, v.22, p.537, 1993

1D t-J model on 
a periodic chain

t

J

forbidden

exchange

hopping

1d t-J
model



Q: Why the random matrix 
theory (RMT) works so well 
for nuclear spectra

Many-Body excitations are delocalized !

Wigner-Dyson random matrix statistics
follows from the delocalization.

What does it mean ?


