Quantum optics in mesoscopic systems

Lecture I

A. Imamoglu Quantum Photonics Group, Department of Physics ETH-Zürich

Outline

Brief overview of quantum dots – a.k.a. artificial atoms
 Photon correlation measurements and single-photon sources
 Cavity-QED with a single quantum dot

Optically active quantum dots (QD): Discrete anharmonic spectrum for optical excitations

Goal: Confine both lowest energy electrons in conduction band and

holes in valence band simultaneously.

InAs/GaAs Self-Assembled Quantum Dots

Self-assembled quantum dots confine <u>both</u> lowest energy electrons in conduction band and holes in valence band simultaneously.

- QDs are formed during the heteroepitaxy of lattice mismatched crystal layers
- Coherent mechanism of elastic relaxation

X-STM

- Self-assembled QDs have discrete states for electrons & holes.
- QD location is fixed by growth.

• ~10⁵ atoms (= nuclear spins) in each QD.

Photoluminescence (PL) from a single quantum dot

 \Rightarrow QDs typically exhibit several sharp emission lines – in part due to defects in the neighborhood that could charge/decharge during the excitation.

 \Rightarrow At low pump power, a single (exciton) line dominates the spectrum; the width of this line is resolution limited at ~ 8 GHz << kT ~ 80 GHz.

How narrow are quantum dot exciton lines?

• Resonant absorption measurements reveal QD linewidths under minimal excitation/disturbance:

Photon correlation measurements

• Intensity (photon) correlation function:

 \rightarrow gives the likelihood of a second photon detection event at time t+ τ , given an initial one at time t (τ =0).

$$g^{(2)}(\tau) = \frac{\left\langle I(t)I(t+\tau) \right\rangle}{\left\langle I(t) \right\rangle^2}$$

Photon correlation measurements

• Intensity (photon) correlation function:

 \rightarrow gives the likelihood of a second photon detection event at time t+ τ , given an initial one at time t (τ =0).

$$g^{(2)}(\tau) = \frac{\left\langle I(t)I(t+\tau) \right\rangle}{\left\langle I(t) \right\rangle^2}$$

• Experimental set-up for photon correlation $[g^{(2)}(\tau)]$ measurement:

Photon antibunching

• Intensity correlation $(g^{(2)}(\tau))$ of light generated by a single two-level (anharmonic) emitter.

• Assume that at τ =0 a photon is detected:

 \rightarrow We know that the system is necessarily in the ground state |g>

→ Emission of another photon at τ =0+ ϵ is impossible.

 \Rightarrow Photon antibunching: $g^{(2)}(0) = 0$.

• $g^{(2)}(\tau)$ recovers its steady-state value in a timescale given by the spontaneous emission time.

nonclassical light

Proof of anharmonic nature of optical excitations

• If there are two or more 2-level emitters, detection of a photon at $\tau=0$ can not ensure that the system is in the ground state (g⁽²⁾(0) > 0.5).

Signature of photon antibunching

• Intensity (photon) correlation function:

$$g^{(2)}(\tau) = \frac{\left\langle I(t)I(t+\tau) \right\rangle}{\left\langle I(t) \right\rangle^2}$$

• Single quantum emitter (i.e. an atom) driven by a cw laser field exhibits photon antibunching.

Photon antibunching from a Single Quantum Dot

Higher-order optical excitations in a quantum dot

Exciton/biexciton (X1/XX) cross-correlation

 \Rightarrow At low excitation regime (average number of excitons < 1):

When a biexciton is observed, the QD projected is onto X1 state; as a result observation of an X1 photon becomes more likely than it is on average \Rightarrow *bunching*

⇒Photons emitted in a biexciton cascade are polarization-entangled

Signature of a single-photon source

Intensity (photon) correlation function:

 \rightarrow gives the likelihood of a second photon detection event at time t+ τ , given an initial one at time t (τ =0).

$$g^{(2)}(\tau) = \frac{\left\langle I(t)I(t+\tau) \right\rangle}{\left\langle I(t) \right\rangle^2}$$

• <u>Triggered single photon source</u>: absence of a peak at τ =0 indicates that none of the pulses contain more than 1 photon.

Single QD driven by a pulsed laser

→ all peaks in $G^{(2)}(\tau)$ have the same intensity, including the one at $\tau=0$

➔ pulsed coherent light

Photon correlation of a single-photon source

→ all peaks in G⁽²⁾(τ) have the same intensity, including the one at τ=0
 → pulsed coherent light

- \rightarrow the peak at τ =0 disappears.
- single photon turnstile device with at most one photon per pulse

Single-photon sources: state-of-the-art (I. Robert-Phillip and co-workers, LPN Paris)

collimated output: efficiency $\sim 10\%$

Why is it interesting to couple QDs to cavities?

- Near-unity collection efficiency of single photon sources
- Strong interactions between single photons mediated by a QD
- Cavity-mediated coupling between distant spins

Cavity Quantum Electrodynamics (cavity-QED)

• Single two-level (anharmonic) emitter coupled to a single cavity mode is described by the Jaynes-Cummings (JC) Hamiltonian

$$H_{JC} = \hbar \omega_{eg} \sigma_{ee} + \hbar \omega_{c} a_{c}^{\dagger} a_{c} + \hbar g_{c} (\sigma_{eg} a_{c} + a_{c}^{\dagger} \sigma_{ge}) \qquad \text{An exactly} \\ \text{solvable model}$$

• ω_{eg} : emitter frequencyIn all optical realizations:• ω_{c} : cavity frequency $g_{c} \ll \omega_{c} \approx \omega_{eg}$ • g_{c} : cavity-emitter coupling strength 10^{10}

For electric-dipole coupling:

$$\hbar g_{c} = \left(\frac{\hbar \omega}{2\varepsilon_{0}\varepsilon V}\right)^{1/2} \quad e < e | \varepsilon.r |g>$$

Eigenstates of the JC Hamiltonian

$$\int 2\sqrt{2} g_c \qquad |-;2> = |g; n_c=2> - |e; n_c=1>$$

$$|-;2> = |g; n_c=2> + |e; n_c=1>$$

$$\begin{array}{c} & |-;1> = |g; n_c=1> - |e; n_c=0> \\ & |+;1> = |g; n_c=1> + |e; n_c=0> \\ & \omega_c = \omega_{eg} \end{array} \\ & |0> = |g; n_c=0> \end{array}$$

- The eigenstates of the coupled system are entangled emitter-cavity states
- The spectrum is anharmonic: the nonlinearity of the two-level emitter ensures that the coupled system is also anharmonic.

Eigenstates of the JC Hamiltonian

- The eigenstates of the coupled system are entangled emitter-cavity states
- The spectrum is anharmonic: the nonlinearity of the two-level emitter ensures that the coupled system is also anharmonic.
- Ex: A laser (ω_L) that is resonant with the |0>-|+;1> transition will be offresonant with all other transitions; the emitter-cavity molecule may act as a two-level system.
- \Rightarrow Single photon blockade!

Dissipative cavity-emitter coupling: an open quantum system

• Single two-level (anharmonic) emitter coupled to a single cavity mode is described by the non-Hermitian JC Hamiltonian

$$\begin{split} H_{JC} &= \hbar \omega_{eg} \sigma_{ee} + \hbar \omega_c a_c^+ a_c + \hbar g_c (\sigma_{eg} a_c + a_c^+ \sigma_{ge}) \\ &- i \frac{\hbar}{2} \Gamma_{sp} \sigma_{ee} - i \frac{\hbar}{2} \kappa_c a_c^+ a_c \end{split}$$

+ noise terms describing quantum jumps associated with spontaneous emission and cavity decay processes.

Quantum dots as two-level emitters in cavity-QED

- Quantum dots do not have random thermal motion and they can easily be integrated in nano-scale cavities.
- Just like atoms, quantum dots have nearly spontaneous emission broadened emission lines.
- Exciton transition oscillator (dipole) strength ranges from 10 to 100 (depending on the QD type) due to a collective enhancement effect.
- QDs nucleate in random locations during molecular beam epitaxy growth;
- The size and hence the emission energy of each QD is different; the standard deviation in emission energy is ~50 meV.
- ⇒ Obtaining spatial and spectral overlap between the QD and the cavity electric field is a major challenge.

Light confinement in photonic crystals

- A photonic crystal (PC) has a periodic modulation in dielectric constant and modifies the dispersion relation of electromagnetic fields to yield allowed energy bands for light propagation. For certain crystal structures there are band-gaps: light with frequency falling within these band-gaps cannot propagate in PCs.
- A defect that disrupts the periodicity in a PC confines light fields (at certain frequencies) around that defect, allowing for optical confinement on length scales ~ wavelength.
- A two dimensional (2D) PC membrane/slab defect can confine light in all three dimensions: the confinement in the third dimension is achieved thanks to total internal reflection between the high index membrane and the surrounding low-index (air) region.

<u>Note</u>: Total internal reflection and mirrors based on periodic modulation of index-of-refraction are key ingredients in all solid-state nano-cavities.

Photonic crystal fabrication

L3 defect cavity

 $Q \approx 2 \times 10^4$, $V_{eff} \approx 0.7 \ (\lambda/n)^3$

Best Q ~ Finesse value = 1,200,000 with $V_{eff} \approx (\lambda/n)^3$ (Noda)

A single quantum dot in an L3 cavity

<u>Strategy</u>: first identify the QD location and emission energy; then fabricate the cavity

• We observe emission at cavity resonance (following QD excitation) even when the cavity is detuned by 4 nm (1.5 THz) !

• Control experiments with cavities containing no QDs (confirmed by AFM) or a QD positioned at the intra-cavity field-node yield no cavity emission.

Nonresonant coupling of the nano-cavity mode to the QD

Strong photon antibunching in cross-correlation proves that the QD and cavity emission are quantum correlated.

Photon (auto)correlation of (detuned) cavity emission

 \Rightarrow Essentially Poissonian photon statistics despite the fact that crosscorrelation with the exciton emission shows strong photon antibunching!

Observation of deterministic strong-coupling

• <u>Cavity tuning by waiting</u>: the spectrum depicted above is aquired in ~30 hours, allowing us to carry out photon correlation and lifetime measurements at any given detuning.

• The center-peak on resonance is induced by cavity emission occuring when the QD is detuned due to defect-charging (and is emitting at the B-resonance).

Quantum correlations in the strong coupling regime

Photon correlation from a single cavity-polariton peak (data from another device exhibiting 25 GHz vacuum Rabi coupling)

 \Rightarrow Proof of the quantum nature of strongly coupled system

 \Rightarrow First step towards photon blockade

Comments/open questions

- It is possible to couple nano-cavities via waveguides defined as 1D defects in the PC (Vuckovic)
- High cavity collection efficiency to a high NA objective can be attained using proper cavity design or by using tapered-fiber coupling.
- It is possible to fine-tune cavity resonance using nano-technology (AFM oxidation, digital etching, N or Xe condensation).
- How does the cavity mode, detuned from the QD resonances by as much as 15 nm, fluoresce upon QD excitation?
- Why does the detuned cavity emission have Poissonian statistics while exhibiting strong quantum correlations with the exciton emission?