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Quasiparticles with “non-abelian
statistics”:

Moore and Read in 1991, proposed a new kind of
trial wave function, involving a Pfaffian, to explaion
the recently discovered fractional quantized Hall state
at filling fraction ν = 5/2, which would have
quasiparticles with non-abelian statistics. Not yet
confirmed by experiments.

Recent advances in materials should make
experiments possible--for the 5/2 state--at least show
whether the state is indeed of the Moore-Read type,
and hopefully confirm the existence of non-abelian
quasiparticles.



Outline

What do we mean by Non-Abelian statistics? How do they
work in the Moore-Read “Pfaffian” state?  Evidence for the
Pfaffian state at ν=5/2 .

Description  of the Pfaffian state as a p-wave BCS
superconductor of “composite fermions”.  Δ~(px+ipy)

Some consequences of the non-abelian statististics.



Existence of a quantized Hall state at
ν=5/2



Non-abelian statistics for Moore-Read
5/2 state

Consider a system containing 2N localized quasiparticles, far
from each other and far from boundaries. Then there exist M=2N-1

orthogonal degenerate ground states, which cannot be
distinguished from each other by any local measurement.

Moving various quasiparticles around each other and returning
them to their original positions, or interchanging quasiparticles,
can lead to a nontrivial unitary transformation of the ground
states, which depends on the order in which the winding is
performed. ( Unitary matrix depends on the topology of the
braiding of the world lines of the quasiparticles. Matrices form a
representation of the braid group).

If two quasiparticles come close together, degeneracy is broken;
but energy splittings fall off exponentially with separation.



Non-abelian quasiparticles may be useful for “topological
quantum computation”.

[ Kitaev, quant-ph/9707021; Freedman, Larson, Wang,
Commun. Math Phys (2002); Bonesteel, et al PRL (2005). ]

Manipulation of qubits would be carried out by moving
quasiparticles around each other, not bringing them close
together. Advantage:  exponentially long decoherence times.

Caveat: Moore-Read state is not rich enough for general
topological quantum computation).

More complicated non-abelian states have been proposed,
which would allow universal quantum computation.  (E.g.,
Read-Rezayi k=3 state; may be realized at ν = 12/5.)

Topological quantum computation



What is the evidence that the ν =5/2
Quantized Hall State is indeed of the

Moore-Read type ?
Evidence comes primarily from numerical calculations on finite
systems.(Morf & collaborators, 2002, 2003; Das Sarma et al.
2004).

Using electron-electron interactions appropriate for electrons in the
second Landau level, with parameters appropriate to GaAs
samples, find a spin-polarized ground state, which seems to have an
energy gap, and which has good overlap with Pfaffian wave
function.  Relatively small changes in parameters can lead to other
ground states, which are not quantized Hall states. (As is found
experimentally for samples in large in-plane magnetic field.)



Proposed experiments
Moving one quasiparticle around another can be done in
principle by means of gates which couple electrostatically to the
charge of the quasiparticles; but we are far from being able to
accomplish this technologically.

We seek other experiments to examine the ν=5/2 state to see if
it is of the Moore-Read type.

*Measurements of the quasiparticle charge.  (e.g. using SETs,
as in studies of ν = 1/3 by Yacoby et al.) Moore-Read
quasiparticles have charge e/4 .

*Measurements of spin polarization.  Moore-Read has complete
polarization in second Landau Level.

*Interference-type experiments related to non-abelian
statistics.



Moore-Read state and the Fermion-Chern-
Simons description at  ν=1/2

Ground state = filled Fermi Sea    kF = (4 π ne)1/2

If this is correct, then there is no energy gap,  no QHE.

If the true filling fraction is ν=1/2, then for the transformed
particles:



Depending on the short-distance interactions
between fermions the Fermi surface may be

unstable, e.g.,  to
 formation of p-wave superconductivity

If a superconducting energy gap forms at the Fermi surface,
then state is stabilized at precisely ν = 1/2.  Deviations in
filling fraction => Beff ≠ 0 => require vortices, cost finite
energy.

Get plateau in Hall conductance at ν = 1/2 :  fractional
quantized Hall state.

Apparently:  Superconductivity does not occur for electrons in
the lowest Landau level (ν = 1/2 ) but interactions are different
for electrons in the second Landau level, and it looks like
pairing does occur  occur for electrons at ν = 2 + 1/2.



Moore-Read quasiparticle <=> vortex in
superconductor

By Meissner effect, vortex must bind 1/2 quantum of magnetic
flux to have finite energy. With a Chern-Simons gauge field, the
source of magnetic flux is  charge, rather than current.

1/2 quantum of Chern-Simons flux requires 1/4 electric charge.



Analogy between Moore-Read 5/2 state
(px+ipy) superconductor .

Analogy elucidated particularly by Read and Green (PRB
2000) -- emphasized important difference between a BCS
px+ipy superconductor and a Bose condensate of tightly
bound p-wave pairs.

Tightly bound pairs could also be a mechanism for
producing even-denominator fractional quantized Hall
states (Halperin, 1983), but this would not give rise to
non-abelian statistics.



Quasiparticles in the quantized Hall state
correspond to vortices in the

superconductor.
For a BCS superconductor with pairing function
Δ∝(px+ipy): Energy gap in the bulk, but vortices have
zero energy states.  If there are 2N vortices present, there
are M=2N-1 degenerate ground states.

 Moving vortices around each other generates a unitary
transformation on these states similar to that in the
Moore-Read state.

*Effects of vortex motion on zero energy states
elucidated by Ivanov (PRL 2001); and Stern, von Oppen
and Mariani (PRB 2004), using Bogoliubov-de Gennes
equations for superconductor.



Zero-energy modes
Specifically, in a px+ipy  superconductor,  an isolated vortex, at
point Ri , has a zero energy mode, with Majorana fermion
operator γi  :

γi = γi
† ,    γi

2 = 1  ,   {γi , γj} = 2δij

To form ordinary fermion creation or annihilation operator: need
pair of vortices:  e.g.
             c12 = (γ1+ i γ2) / 2   ,           c12

† = (γ1− i γ2) / 2,

obey usual commutations rules

Ν12 = c12
†c12  has eigenvalues  =  0, 1.   [N12,N34] = 0 , etc.

Constraint :  Number of occupied pairs = Nelectrons  (mod 2) .
->  2N vortices gives 2N-1

 independent states



Bogoliubov-de Gennes Equations for an
Inhomogeneous Superconductor

Generalization of BCS, in presence of vortices, boundaries, or
other inhomogeneities. Here, p-wave superconductor for spinless
electrons.  Effective Hamiltonian has the form

H = ∫ dr ψ†(r) [ - c ∇ 2 + V(r) - µ] ψ (r)

                                   +   ∫ dr dr´ [ Δ (r,r´) ψ (r)  ψ (r´) + h. c. ]

where V and Δ must be determined self-consistently, c = h2/2m .



Solution of the BDG equations

Construct quasiparticle operators γi , related by unitary
transformation to electron creation and annihilation operators,

γi  =  ∫ dr [ ui(r) ψ(r) + vi(r) ψ†(r) ]

which diagonalize the BdG Hamiltonian

H = ∑i Ei γi
† γi - constant.

Generally, Ei occur in pairs:   Ei = - Ej ,        γi = γj 
† ,

ui = vj* , uj = vi* . Restrict sum to positive energy states to avoid
double counting.



Zero energy modes: Explicit relation between
Majorana operator and electron operators

For zero-energy modes: Ei = -Ei ,   can have just a single
solution: i = j

 γi  =  ∫ dr [ ui(r) ψ(r) + vi(r) ψ†(r) ]  ,   with vi(r)  = ui*(r)  ,

localized near each vortex.

 γi = γi
†

Phase of ui depends on positions of other vortices, changes by -1
if a vortex j is moved around vortex i.



Braiding properties

Vortices at points      R1     R2        R3     R4

Move vortex 2  around vortex 3:   .
Changes N12 -> (1-N12) ,   N34 -> (1-N34) .

Changing the sign of γ2  interchanges

c12 = (γ1+ i γ2) / 2         <==>       c12
† = (γ1− i γ2) / 2,

Gives unitary transformation  ∼ γ2 γ3 .



Braiding properties

Vortices at points      R1     R2        R3     R4

Move vortex 2 around 3 and 4.   Gives unitary transformation
~ γ2γ4 γ2γ3  = γ3 γ4   : leaves N12 and N34 unchanged



Boundary states
Finite sample with an odd number of elementary vortices will
have a zero energy state at the boundary.  Form pair between
boundary state and one of the vortices. Again have constraint :
Number of occupied pairs = Nelectrons  (mod 2) .

Generally, edge of superconductor has a series of low-energy
fermion modes, with energies   Em

  = m (π v / L) ,

m = 0, ±1, ±2, ... if  number of vortices is odd,

m= ±1/2, ±3/2, ... if number of vortices is even.

Get even-odd alternation in energy to add an electron to the
system, if number of vortices is even, not if number of vortices
is odd. Alternation energy  ~ v / L ;  goes to 0, for L → ∞



Contrast to s-wave superconductor

s-wave superconductor has no low-energy fermion states at
boundary.

Energy to add an electron has an even-odd alternation
independent of whether there are an even or odd number of
vortices present, and independent of the perimeter of the
sample.

True also for gapless d-wave superconductor, Δ ∝ (px+ipy)2,

or for a Bose condensate of tightly bound p-wave pairs .



It may be possible to detect even-odd
effect experimentally in an FQHE

system at ν = 1/2.
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Coulomb blockade regime, R12 is large, except on
resonance, when EN=EN+1



If the number of quasiholes is even, EN has an
even-odd alternation in the electron number N.

The period for oscillations in R12  is then ΔA=4Φ0/B,
corresponding to the addition of two electrons to the partially-
filled landau level.

If the number of quasiholes is odd, there is no even-odd
alternation in EN. The period oscillations is then ΔA=2Φ0/B,
there is no oscillation with period ΔA=4Φ0/B.

Similar effects are predicted for weak back-scattering.

Different behavior for even and odd quasihole number is a
consequence of the particular non-abelian statistics of the
Moore-Read state.





Other Phenomena in the Second and
Higher Landau Levels

Re-entrant integer QHE
And Resistance Anisotropies
(Stripe and Bubble Phases)



Rxy and Rxx in the Second Landau Level



Third Landau Level

Hall Resistance (not shown)                     T = 50 mK

= h/4e2    at ν ≈ 4.25

= h/5e2    at   ν ≈ 4.75
From Cooper, Eisenstein, Pfeiffer and West, PRL  90, 226803 (2003)



Higher Landau Levels: Rxx and Ryy

From  Cooper, Eisenstein, Pfeiffer and West, PRL 2004

B



Stripe and Bubble Phases

Predicted by

Fogler, Koulakov, & Shklovskii (1996)

Moessner & Chalker (1996)

Fukuyama, Platzman, & Anderson (1979): Partially full
Landau level should be unstable to formation of charge
density waves, due to exchange interaction. (Hartree-Fock
approximation).



Bubble Phases
A regular array of “bubbles”, each one containing n=2 or more
electrons, embedded in the otherwise empty Landau Level,

or containing n=2 or more holes in the otherwise full Landau
Level.   (n=1 would be a Wigner crystal of electrons or holes)

Localized electrons or holes do not contribute to transport.

Get integer Quantized Hall conductance,  Rxx= Ryy=0,



Stripe Phases

Alternating stripes of full and empty Landau Level.

Current can flow easily in y-direction (along edges of
stripes)  Ryy -> 0.

Difficult for current to flow in x-direction:  Rxx can be
very large.

Interesting issues: effects of dislocations, and other
disorder?  What determines orientation of stripes?



Concluding Reminder

These lectures have covered only a fraction of the wide range
of phenomena included in the subject of quantum Hall
effects, and have touched on only a few of the theoretical
ideas used to explain these phenomena.

There still are many open questions in the field, and a
number of experimental results which are poorly understood.


