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Lecture 1: Kondo effect in metals: Kondo model
- T-matrix in perturbation theory, log(T/D) divergencies
- Anderson's "poor man's scaling",  Kondo temperature
- Strong coupling regime, Fermi liquid theory, Friedel sum rule
- Kondo resonance

Lecture 2: Kondo effect in quantum dots: Anderson model
- Experimental Results
- Mapping of Anderson to Kondo model by Schrieffer-Wolff transformation
- Anderson model with two leads

Lecture 3:  Flow equation Renormalization Group
- General idea: diagonalize Hamiltonian by unitary transformation
- Application to Kondo model in equilibrium
-     out of equilibrium

Lecture 4:  Numerical Renormalization Group 
- General idea: map model to linear chain and diagonalize numerically
- Wilson's iterative RG scheme
- Matrix product states
- Relation to DMRG
- Finite temperature 



Lecture 1: Kondo model

anomalous resistivity minimum in dilute magnetic alloys 
(localized spins scatter conduction electrons)

Kondo Model:

final state: initial state:
Spin-flip scattering:

turns out to be enhanced at 
low temperatures:

universal curve

conduction electron spin

magnetic impurity

ground state  = 
 spin singlet

T = 0: Fermi liquid theory

[Kondo, Phys Rev 1964]

Scattering states and T-matrix

Free state:

Scattering state:

Ansatz:

Check:

Iterate (4):

T-matrix:



Matrix elements of T
pert. 
exp:

relative minus: 

versus

act in opposite order

final state is

Consider 

performing entire integral yields log. divergence

Anderson "poor man's 
scaling" idea: split off 
contribution from 
strips near band edges:



Integrated-out strips 
yield term of same form 
as bare vertex:

Scaling of T-matrix
under band-width
reduction:

Scaling eq. for 
dimensionless coupling:

So, reducing bandwidth

generates increase in 
coupling constant:

Flow to strong coupling; Kondo temperature

Scaling equation:

and use as effective coupling 
constant at temperature T:

Reduce bandwidth until  [because by (4.5b), renormalization of coupling stops for D1 << T ;
 lecture 3 will illustrate this in more detail ! ]

For g0 > 0, scaling approach
eventually breaks down:
eff. coupling diverges at
a scale Tk :



Strong coupling fixed point: Fermi liquid theory
* Scaling approach breaks down for  Nevertheless, it allows qualitative conclusion:

* For T-> 0,  "KM flows to strong-coupling fixed point", dominated by 

* Local spin binds "one" electron from band into a singlet:
(conduction band "screens" local spin to form a singlet)

* Other electrons form Fermi liquid, for which singlet acts a 
(static) potential scatterer, causing only phase shifts:

S-  [or T-] matrix:
standard relation between S and T

KM is invariant under 
particle-hole symmetry:

Thus, particle scatteres same way as hole

At Fermi level:

P. Nozières, J. Low Temp. Phys. 17, 31 (1974)

This relates phase shifts
for spin up and down:

Friedel sum rule:
Friedel, Can. J. Phys. 34, 1190 (1956) charge displaced by local potential scatterer

Use radial box, radius R, 
radial wavefunctions

Radial momentum sums:

Potential scatterer 

Change in charge of cond. 
electrons around impurity 
("screening charge"):

for Kondo problem, scattering near band edge is weak, see (6.3)

to quantize momenta of 
radial waves :

Derivation:



Screening of local spin to form singlet:

Consider how charge inside
a large but finite volume
changes when J is 
switched on: 

conduction band is 
initially unpolarized: 

total spin inside volume:

large but finite volume

change in cond. band
charge inside volume 
to achieve screening:

Phase shifts at
Fermi energy:

Pustilnik, Glazman, ”Nanophysics: Coherence and Transport,”  
eds. H. Bouchiat et al., pp. 427-478 (Elsevier, 2005).

maximal possible value

Kondo-Abrikosov-Suhl resonance in density of states

* geff(D') becomes large only for 

* phase shifts change on scale of 

* similarly for DOS:

This resonance also arises in:
- T-matrix 
- electron scattering rate (causing resistivity anomaly)
-     in dynamical correlation function of composite operator F:

KAS-resonance

 Costi, Phys. Rev. Lett. 85, 1504 (2000)


