Modelling covariate effects in extremes of storm severity on the Australian North West Shelf

David Randell, Philip Jonathan, Kevin Ewans, Yanyun Wu
david.randell@shell.com

Shell Technology Centre Thornton, Chester, UK

SIMRIDE March 2013
Acknowledgements

Thanks for work done by summer students

- Emma Ross
- Kaylea Haynes
Outline

1 Background
 - Motivation
 - Australian North West Shelf

2 Extreme Value Analysis: Challenges

3 Modelling Covariates
 - Model Components
 - P-Splines
 - Quantile regression models threshold
 - Poisson models rate of threshold exceedances
 - GP models size of threshold exceedances
 - Return Values

4 Other Applications and Developments
Contents

1 Background
 • Motivation
 • Australian North West Shelf

2 Extreme Value Analysis: Challenges

3 Modelling Covariates
 • Model Components
 • P-Splines
 • Quantile regression models threshold exceedances
 • Poisson models rate of threshold exceedances
 • GP models size of threshold exceedances
 • Return Values

4 Other Applications and Developments
Motivation

- **Rational** design an assessment of marine structures:
 - Reducing *bias* and *uncertainty* in estimation of structural reliability.
 - Improved understanding and communication of risk.
 - Climate change.

- Other applied fields for extremes in industry:
 - Corrosion and fouling.
 - Finance.
 - Network traffic.
Katrina in the Gulf of Mexico.
Katrina damage.
Platform in a Northern North Sea storm.
Platform in the Southern North Sea.
A wave seen from a ship.
Australian North West Shelf
Model storm peak significant wave height H_S.
Wave climate is dominated by westerly monsoonal swell and tropical cyclones.
Cyclones originate from Eastern Indian Ocean and in the Timor and Arafura Sea area is also a region of cyclogenesis.
Storm Peak H_S by Direction

Raw data: 6156 events
Quantiles of storm peak H_S Spatially
1 Background
 - Motivation
 - Australian North West Shelf

2 Extreme Value Analysis: Challenges

3 Modelling Covariates
 - Model Components
 - P-Splines
 - Quantile regression models threshold exceedances
 - Poisson models rate of threshold exceedances
 - GP models size of threshold exceedances
 - Return Values

4 Other Applications and Developments
Extreme Value Analysis: Challenges

- **Covariate** effects:
 - Location, direction, season, time ...
 - Multiple covariates in practice.

- **Cluster** dependence:
 - e.g. storms independent, observed (many times) at many locations.
 - e.g. dependent occurrences in time.
 - estimated using e.g. extremal index (Ledford and Tawn 2003)

- **Scale** effects:
 - Modelling X^2 gives different estimates c.f. modelling X. (Reeve et al. 2012)

- **Threshold** estimation.

- **Parameter** estimation.

- **Measurement** issues:
 - Field measurement uncertainty greatest for extreme values.
 - Hindcast data are simulations based on pragmatic physics, calibrated to historical observation.
Multivariate extremes:
- Waves, winds, currents, forces, moments, displacements, ...
- Componentwise maxima \Leftrightarrow max-stability \Leftrightarrow multivariate regular variation:
 - Assumes all components extreme.
 - \Rightarrow Perfect independence or asymptotic dependence only.
- Extremal dependence:
 - Assumes regular variation of joint survivor function.
 - Gives rise to more general forms of extremal dependence.
 - \Rightarrow Asymptotic dependence, asymptotic independence (with +ve, -ve association).
- Conditional extremes:
 - Assumes, given one variable being extreme, convergence of distribution of remaining variables.
 - Not equivalent to extremal dependence.
 - Allows some variables not to be extreme.
- Inference:
 - ... a huge gap in the theory and practice of multivariate extremes ...
 (Beirlant et al. 2004)
Contents

1. Background
 - Motivation
 - Australian North West Shelf

2. Extreme Value Analysis: Challenges

3. Modelling Covariates
 - Model Components
 - P-Splines
 - Quantile regression models threshold
 - Poisson models rate of threshold exceedances
 - GP models size of threshold exceedances
 - Return Values

4. Other Applications and Developments
Sample \(\{ \hat{z}_i \}_{i=1}^n \) of \(n \) storm peak significant wave heights observed at locations \(\{ \hat{x}_i, \hat{y}_i \}_{i=1}^n \) with storm peak directions \(\{ \hat{\theta}_i \}_{i=1}^n \).

- **Model Components**
 1. **Threshold** function \(\phi \) above which observations \(\hat{z} \) are assumed to be extreme estimated using quantile regression.
 2. **Rate of occurrence** of threshold exceedances modelled using Poisson Process model with rate \(\rho(\Delta) = \rho(\theta, x, y) \).
 3. **Size of occurrence** of threshold exceedance using a generalised Pareto (GP) model with shape and scale parameters \(\xi \) and \(\sigma \).
Rate of occurrence and size of threshold exceedance are functionally independent (Chavez-Demoulin and Davison 2005).

Equivalent to non-homogeneous Poisson point process model (Dixon et al. 1998).

Smooth functions of covariates are estimated using P-splines (Eilers and Marx 2010).
Physical considerations suggest that we should expect the model parameters ϕ, ρ, ξ and σ to vary smoothly with respect to covariates θ, x, y.

n dimensional basis matrix B formulated using Kronecker products of marginal basis matrices

$$B = B_\theta \otimes B_x \otimes B_y$$

Roughness is defined

$$R = \beta' P \beta$$

where P is penalty matrix formed by taking differences of neighbouring β.
P-Splines

- Wrapped bases allows for periodic covariates such as seasonality or direction.

- High dimensional bases can easily be constructed although number of parameters problematic.

- Strength of roughness penalty is controlled by roughness coefficient λ: cross validation is used to choose λ optimally.
Quantile regression models threshold

- Estimate smooth quantile \(\phi(\theta_i, x_i, y_i; \tau) \) for non-exceedance probability \(\tau \) of storm peak \(H_S \).

Spline basis:

\[
\psi(\tau, \theta) = \sum_{k=0}^{p} \Phi_{\theta_k} \beta_{\tau_k}
\]

- Estimated by minimising penalised criterion \(\ell^*_\phi \) with respect to basis parameters:

\[
\ell^*_\phi = \{ \tau \sum_{r_i \geq 0} |r_i| + (1 - \tau) \sum_{r_i < 0} |r_i| \} + \lambda_\phi R_\phi
\]

for \(r_i = z_i - \phi(\theta_i, x_i, y_i; \tau) \) for \(i = 1, 2, \ldots, n \), and roughness \(R_\phi \) controlled by roughness coefficient \(\lambda_\phi \).

- Quantile regression with P-splines can be formulated and solved as a linear program (Bollaerts et al. 2006).
Marginal 50% Quantile Threshold

Spatio-directional threshold estimation

Value vs. Covariate 1: Direction

Value vs. Covariate 2: Longitude

Value vs. Covariate 3: Latitude
Spatio-Directional 50% Quantile Threshold
Cross Validation for Penalty

QR lack of fit as a function of penalty

David Randell (Shell)
Modelling covariate effects
SIMRIDE March 2013

Lack of fit

log_{10}(penalty)

2400
2600
2800
3000
3200
3400
3600
3800
-2
0
2
4
6
8
Poisson models rate of threshold exceedances

- Rate of occurrence of threshold exceedances is estimated by minimizing the roughness penalised log likelihood

\[\ell^*_\rho = \ell_\rho + \lambda_\rho R_\rho \]

- (Negative) penalised Poisson log-likelihood for **rate of occurrence** of threshold excesses:

\[\ell_\rho = -\sum_{i=1}^{n} \log \rho(\theta_i, x_i, y_i) + \int \rho(\theta, x, y) d\theta dx dy \]

- \(\lambda_\rho \) is estimated using cross validation.
Marginal Rate of Threshold Exceedances

Spatio-directional threshold exceedence rate

Covariate 1: Direction

Covariate 2: Longitude

Covariate 3: Latitude

David Randell (Shell)
Modelling covariate effects
Spatio-Directional Rate of Threshold Exceedances

David Randell (Shell)

Modelling covariate effects

SIMRIDE March 2013
Cross Validation for Penalty

Poisson lack of fit as a function of penalty

Lack of fit

log_{10}(penalty)
Generalised Pareto density (and negative conditional log-likelihood) for sizes of threshold exceedances:

$$
\ell_{\xi,\sigma} = \sum_{i=1}^{n} \log \sigma_i + \frac{1}{\xi_i} \log \left(1 + \frac{\xi_i}{\sigma_i} (z_i - \phi_i) \right)
$$

Parameters: shape ξ, scale σ.

Threshold ϕ_i set prior to estimation.

Smoothness is imposed by minimising the roughness penalised log-likelihood.

$$
\ell^*_{\xi,\sigma} = \ell_{\xi,\sigma} + \lambda_\xi R_\xi + \lambda_\sigma R_\sigma
$$

λ_ξ and λ_σ are estimated using cross validation. In practice set $\lambda_\xi = \kappa \lambda_\sigma$ for fixed κ.

Marginal Rate GP Shape and Scale

Spatio-directional GP shape

Spatio-directional GP scale
Spatio-Directional Scale of GP Exceedances

David Randell (Shell)
Spatio-Directional Shape of GP Exceedances

David Randell (Shell)

Modelling covariate effects

SIMRIDE March 2013
Cross Validation for Penalty

Generalised Pareto lack of predictive fit as a function of penalty
The return value z_T of storm peak significant wave height corresponding to some return period T, expressed in years, can be evaluated in terms of estimates for model parameters ϕ, ρ, ξ and σ

$$z_T = \phi - \frac{\sigma}{\xi} \left(1 + \frac{1}{\rho} \left(\log(1 - \frac{1}{T})\right)^{-\xi}\right)$$

- z_{100} corresponds to the 100–year return value, often denoted by H_{S100}.
Marginal 100-year Return Value $H_{S_{100}}$
Spatio-Directional 100-year Return Value H_{S100}
Contents

1 Background
 • Motivation
 • Australian North West Shelf

2 Extreme Value Analysis: Challenges

3 Modelling Covariates
 • Model Components
 • P-Splines
 • Quantile regression models threshold
 • Poisson models rate of threshold exceedances
 • GP models size of threshold exceedances
 • Return Values

4 Other Applications and Developments
Other Applications and Developments

- Spatio-directional models for other ocean basins
 - North Sea
 - Gulf of Mexico

- Spatio-temporal splines for non-stationary extreme values
 - Almost all current EVA assumes data are steady state
 - Climate change means this is no longer reliable.
 - Using GCM, RCM as well as historical hindcasts.

- Incorporation of uncertainty
 - Spatial block bootstrapping allows quick estimates of parameter uncertainty
 - Bayesian estimation.

- Incorporation of spatial dependency
 - Composite likelihood: model (asymptotically dependent) componentwise–maxima.
 - Censored likelihood: allows extension from block-maxima to threshold exceedances.

Thank You

david.randell@shell.com