

# Klystrons for Linear Colliders

Professor Richard Carter Engineering Department Lancaster University

## Single-beam klystron



## Klystron Applegate diagram



Cockcroft Institute 20/7/04



# Linear Collider Klystron Requirements

#### Design issues:

- High peak power
  - High voltage and current
- High efficiency
  - High voltage and low current
  - Low solenoid power
- High reliability
  - Low voltage to avoid gun and output cavity breakdown
  - Low cathode loading for long cathode life
  - Low peak power to avoid output window failure and waveguide arcs

Klystron Development -State of the art (1)

NLC Klystron Type SBK Frequency 11.4 GHz 490 kV  $V_0$ 260 A  $\mathbf{I}_{\mathbf{0}}$ 75 MW pk Power Efficiency 55 % Number required 8256



# Multiple Beam Klystron

- Several electron beams in one vacuum envelope
- Reduced beam voltage
- Increased efficiency BUT
- More difficult and expensive to make

Diagram courtesy of Thales Electron Devices



Cockcroft Institute 20/7/04

Klystron Development -State of the art (2)

#### MBK for TESLA Frequency 1300 MHz 115 kV $V_0$ I<sub>0</sub> 133 A Power 9.8 MW pk Efficiency 64 % Beams 6 Number required 572

**Courtesy of Thales Electron Devices** 

Cockcroft Institute 20/7/04

## Klystron Development - State of the art (3)

Klystron problem areas

- Reliability (including rate of RF trips)
  - Voltage breakdown in gun and output cavity
  - Window failure
  - Waveguide arcs
- Efficiency
  - Electronic efficiency
  - Solenoid power consumption
- Cost
- Industrial capacity

## Future Linear Collider Klystron Study

- June 2001 to June 2003
- Funded by PPARC (£82k)
- Research Associate: Dr Feng Jinjun
- Collaborators
  - CERN
  - DESY
  - ASTeC
  - e2v technologies Ltd
  - TMD Technologies Ltd

### MAFIA model of a klystron output cavity









#### Cockcroft Institute 20/7/04

### MathCad model of a klystron output cavity



## **Klystron Efficiency**

#### • Perveance = I / $V^{3/2}$



## MathCad model of klystron bunching



## Models of klystron output cavities







Achievements

Improved design tools,
Novel cavity geometry,
Conceptual MBK designs for TESLA and CLIC