Forty years of hydrological monitoring in UK catchments: its evolution, challenges and needs

Nick Chappell, Lancaster University

Lancaster University

first BHS decade (1983-1992) vs current BHS decade (2014-2023)

focus on continuous monitoring within experimental catchments for discovery science

1. Technology
2. Basin scale
3. Network intensity
4. Comprehensiveness
5. Future prospects

1. Technology

first BHS decade (1983-1992)

1. Technology

current BHS decade (2014-2023)
first BHS decade (1983-1992)

1. Technology

1. Technology

commercially available
current BHS decade (2014-2023)

1. Technology

mostly manual
datalogger interrogation
first BHS decade (1983-1992)

1. Technology

Telemetry loggers - easy to use for researcher

mostly manual
datalogger interrogation

current BHS decade (2014-2023)
first BHS decade (1983-1992)

1. Technology

benefits of telemetry

1/ Report error states - rectify with rapid field visit
2/ Auto concatenation of new data
3/ Show funder data collection live
4/ Show live data graphically community/LLFA flood alerts
5/ API for real-time forecasting 6/ Easy data sharing for other end-users

Chappell \& Mindham (2021) Research into methods of quantifying NFM effectiveness from direct observations in Cumbria (C-NFM): Lessons. Lancaster University Report to EA NFM programme

current BHS decade (2014-2023)
first BHS decade (1983-1992)

2. Basin scale

2. Basin scale

e.g., $£ 10 \mathrm{~m}$ LOCAR 2000-2006 (ended)

Wheater \& Peach 2007 doi.org/10.1080/0790062042000248565

100-200 km ${ }^{2}$

2. Basin scale

2. Basin scale

need monitor intensively at $100-200 \mathrm{~km}^{2}$ to incorporate

water supply interventions

(abstractions, reservoirs, treated sewage returns)
urban areas
large floodplains

3. Network intensity

e.g., Upper Hore flume 1985

Roberts \& Crane 1997 Hydrol Earth Syst Sci 1: 477-482

e.g., two Plynlimon experimental catchments 10 stream gauges over $19 \mathbf{~ k m}^{2}$

3. Network intensity

\qquad current BHS decade (2014-2023)

e.g., NERC Protect-NFM some 30×0.1 km² 'nano-basins'
replicated peatland-restoration NFM

e.g., NERC Q-NFM

over 20x 1 km² micro-basin scale
coverage of diverse NFM intervention types

4. Comprehensiveness

holistic catchment monitoring

attempt to quantify all hydrological variables of interconnected system in
sufficient detail across whole instrumented basin

4. Comprehensiveness

holistic catchment monitoring

attempt to quantify all hydrological variables of interconnected system in
sufficient detail across whole instrumented basin

4. Comprehensiveness

$\mathrm{Q}=\mathrm{P}-\mathrm{E} \pm \Delta \mathrm{S} \pm \mathrm{G}$

Close the water balance, where all variables monitored at a high, common frequency ($15-\mathrm{mins}$)

Are we doing that now?

4. Comprehensiveness

British
Hydrological Society

$Q=P-E \pm \Delta S \pm G$

Close the water balance, where all variables monitored at a high, common frequency ($15-\mathrm{mins}$)

Developing observational methods to drive future hydrological
Are we doing that now? science: Can we make a start as a community?


```
Nick Chappell }\mp@subsup{}{}{1}\odot | Stewart Child [ | Hannah Cloke *` | Simon Dadson 4,7 © |
Nick Everard}\mp@subsup{}{}{2}\odot | Hayley J. Fowler ` | Jim Freer ` © | David M. Hannah``` |
Kate Heppell }\mp@subsup{}{}{10}\mathrm{ © | Joseph Holden }\mp@subsup{}{}{11}\mp@subsup{`}{(0) | Rob Lamb }{}\mp@subsup{}{}{12}\mathrm{ © | Huw Lewis }\mp@subsup{}{}{13
Gerald Morgan }\mp@subsup{}{}{14}|\mathrm{ Louise Parry }\mp@subsup{}{}{15}| Thorsten Wagener '16 © (%
```

"...These knowledge gaps are illustrated by the fact that for many catchments we cannot close the water balance without significant uncertainty..."
"... This lack of water balance closure can also result from a lack of information about the influence of water management on water balance..."

4. Comprehensiveness

British
Hydrological Society

$Q=P-E \pm \Delta S \pm G$

Close the water balance, where all variables monitored at a high, common frequency ($15-\mathrm{mins}$)

Developing observational methods to drive future hydrological
Are we doing that now? science: Can we make a start as a community?

```
Keith Beven }\mp@subsup{}{}{1`}| | Anita Asadullah 2 | Paul Bates `` | Eleanor Blyth *` |
Nick Chappell}\mp@subsup{}{}{1}\odot | Stewart Child [ | Hannah Cloke *` | Simon Dadson,4, © |
Nick Everard}\mp@subsup{}{}{2}\odot | Hayley J. Fowler ` | | Jim Freer r © | David M. Hannah` © |
Kate Heppell }\mp@subsup{}{}{10}\mathrm{ © | Joseph Holden }\mp@subsup{}{}{11}\mathrm{ © | Rob Lamb }\mp@subsup{}{}{12}\mp@subsup{`}{(`) | Huw Lewis }{}\mp@subsup{}{}{13
```

 "...need to improve
    ```
    "...need to improve
observations of all the water
observations of all the water
    balance components..."
```

```
    balance components..."
```

```
Gerald Morgan \({ }^{14}\) | Louise Parry \({ }^{15}\) | Thorsten Wagener \({ }^{16}\) ©
"...means better observational methods for all of the terms in the water balance equation as well as the tracer and quality observations..."

\section*{5. Future prospects}


\section*{Single UK Observatory}
comprising of 3 comprehensively instrumented \(+100 \mathrm{~km}^{2}\) sub-catch capturing UK end-members of hydrological behaviour


\section*{5. Future prospects}
FDRI Delivery partners
UK Centre for
Ecology \& Hydrology

British Hydrological Society

Wagener et al., 2019 Hydrol Processes
e.g., groundwater vs steep mountain dominated, also capturing West-East gradients and water quality contrasts

\section*{Single UK Observatory}
comprising of 3 comprehensively instrumented \(+100 \mathrm{~km}^{2}\) sub-catch capturing UK end-members of hydrological behaviour


\section*{5. Future prospects}

Eddy Covariance AWS (driving variables) Scintillometers

Raingauges
Distrometers
Snow-gauges


Shallow: Tensiometry; TDR; Cosmic Ray Neutron Sensing Deep: Nested piezometers; Tensiometry; Electrical Resistance Tomography

\section*{5. Future prospects}

\section*{FIXED}

Water tracers:
Optical WQ

\(\mathrm{PO}_{4}-\mathrm{P}, \mathrm{NO}_{3}-\mathrm{N}\) analysers
Optical WQ sondes
ALS (isotopes etc.)

Distributed discharge:
Gauging structures Level sensors
SideADCP, radar, video, cont dilution

Water tracers:
Optical WQ sondes
ALS (isotopes etc.)
Temperature tracing

\section*{5. Future prospects}


Drone L-band radar; Pump/packer test; water sampler / tracer test kit
Additional Tensiometry; TDR; Cosmic Ray Neutron Sensing

\section*{5. Future prospects}

Additional water
tracers: Optical WQ sondes


Drone LIDAR survey (channel bathymetry)
RTK GPS topo survey stations
Additional distributed discharge: Gauging structures; Level sensors; SideADCP, radar, video, cont dilution

Additional water tracers:
Optical WQ sondes
ALS (isotopes etc.)
Temperature tracing

\section*{5. Future prospects}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  &  &  &  &  &  &  &  & NERC have been \\
\hline Nick Chappell & Hannah Cloke & Lindsay Beevers & Andrew Tyler & Isabelle Durance & Joseph Holden & David Hannah & Jamie Hannaford & preparing bid for \\
\hline Lancaster & Reading & Edinburgh & Stirling & Cardiff & Leeds & Birmingham & UKCEH & f38M funding \\
\hline
\end{tabular}
\begin{tabular}{cccccc} 
Sean \\
\begin{tabular}{c} 
Peter \\
Songfield \\
Singleton
\end{tabular} & \begin{tabular}{c} 
Benn \\
Kidd
\end{tabular} & \begin{tabular}{c} 
Steve \\
Kay
\end{tabular} & \begin{tabular}{c} 
Imogen \\
Barnsley
\end{tabular} & Tom & Criffin \\
EA & SEPA & ARUP & UKWIR & JBA & STFC
\end{tabular}

\author{
your interests represented
}

\section*{5. Future prospects}


\section*{Now time for your engagement to finalise design \& deliver UK monitoring platform}
to enable UK hydrologists to deliver next generation internationallysignificant science funded by NERC Thematic \& other programmes

\section*{5. Future prospects}

\section*{©AGUPUBLICATIONS}

\section*{Water Resources Research}

\section*{REVIEW ARTICLE}
10.1002/2014WR016839

\section*{Special Section:}

The 50th Anniversary of Water Resources Research

\section*{Key Points:}

Reviews benchmark WRR on runoff generation
 work in hydrology is context for a vision for the future

\section*{Correspondence to}
T. P. Burt,
t.p.burt@durham.ac.uk

\section*{Citation:}

Burt, T. P., and J. J. McDonnell (2015), Whither field hydrology? The need for discovery science and outrageous hydrological hypotheses, Water Resou Res., 51, 5919-5928, doi:10.1002/
2014WR016839.

Whither field hydrology? The need for discovery science and outrageous hydrological hypotheses
T. P. Burt \({ }^{1}\) and J. J. McDonnell \({ }^{2,3}\)

Department of Geography, Durham University, Durham, UK, \({ }^{2}\) Global Institute for Water Security, School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, \({ }^{3}\) School of Geosciences, University of Aberdeen, Aberdeen, UK

Abstract Field hydrology is on the decline. Meanwhile, the need for new field-derived insight into the age, origin and pathway of water in the headwaters, where most runoff is generated, is more needed than ever. Water Resources Research (WRR) has included some of the most influential papers in fieldbased runoff process understanding, particularly in the formative years when the knowledge base was developing rapidly. Here we take advantage of this 50th anniversary of the journal to highlight a few of these important field-based papers and show how field scientists have posed strong and sometimes out rageous hypotheses-approaches so needed in an era of largely model-only research. We chronicle the decline in field work and note that it is not only the quantity of field work that is diminishing but its character is changing too: from discovery science to data collection for model parameterization. While the latter is a necessary activity, the loss of the former is a major concern if we are to advance the science of watershed hydrology. We outline a vision for field research to seek new fundamental understanding, new mechanistic explanations of how watershed systems work, particularly outside the regions of traditional focus.
 \(\square\)```

