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Abstract

This paper provides a historical review and critique of stochastic generating models

for hydrological observables, from early generation of monthly discharge series,

through flood frequency estimation by continuous simulation, to current weather

generators. There are a number of issues that arise in such models, from uncertainties

in the observational data on which such models must be based, to the potential per-

sistence effects in hydroclimatic systems, the proper representation of tail behaviour

in the underlying distributions, and the interpretation of future scenarios.

1 | STOCHASTIC OBSERVABLES AS
INPUTS TO MODELS

The management of water resources, floods and droughts in hydrol-

ogy is an exercise in predicting the future, at least in some probabilis-

tic sense. The future is, however, not observable and therefore

necessarily unknown. It needs to be predicted, at least in some proba-

bilistic or plausible projection sense, and for that we normally use

some form of hydrological model. In doing it is usual to drive, calibrate

and evaluate the hindcasts of that model as a hypothesis about how

the catchment is functioning making use of some historical observ-

ables. The nature of that modelling process has been discussed exten-

sively elsewhere. Here, I wish to concentrate on the nature of the

variables used to drive the future discharge projections of the model,

in particular catchment discharge, precipitation and evapotranspira-

tion estimates.

The generation of forcing variables will necessarily be directly

related to the observables used in calibration and validation. The gen-

eration process will, however, be stochastic in both the nature of the

observables themselves, and in the uncertain future values. It is worth

emphasizing that the observables and their historical time series of

values are themselves uncertain, particularly when estimated over a

catchment area. We should, therefore, consider the historical data as

virtual variables (e.g., Beven et al., 2012; Coxon et al., 2015; Kiang

et al., 2018; McMillan et al., 2018; Westerberg et al., 2011). This

creates additional constraints on the modelling process and suggests

that hydrology should be treated as one of the inexact sciences

(Beven, 2019). Extending the model projections into the future, we

cannot necessarily expect the statistics of those stochastic variables

to be similar to the past, given the potential for future changes in

catchments and climate and persistence in the hydroclimatic system.

Such changes will then be necessarily subject to epistemic uncer-

tainties, including those associated with any projections of future

conditions.

It has therefore been a fairly natural process in hydrological

analyses, particularly since the start of the digital computing age, to

generate time series of potential future inputs to inform manage-

ment decisions (although, until recently, it has been much less com-

mon to consider the uncertainties in the historical observations). In

some cases, this has meant a process of modifying historical records

to be compatible with expectations of future conditions. In other

cases, stochastic models of inputs have been used to drive hydro-

logical models, in some cases using analytical mathematics but more

often using Monte Carlo methods. Reviews of analytical derived

distribution methods have been provided by, for example,

Eagleson (1972); Klemeš (1978) and Gupta and Waymire (1983). To

derive analytical solutions generally requires some strong simplify-

ing assumptions and constraints. In what follows we will concen-

trate on Monte Carlo methods which are more general and more

flexible.
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Monte Carlo sampling methods on digital computers date back to

the work of Stanislaw Ulam, Nicholas Metropolis, and John von Neu-

mann at Los Alamos in the 1940s where the ENIAC1 computer was

assigned to solve the problem of neutron diffusion using random experi-

ments. Since the project was secret, a code name was required for the

work and Nicholas Metropolis suggested the name Monte Carlo

(Metropolis & Ulam, 1949). He later contributed to the Metropolis-

Hastings Monte Carlo Markov Chain algorithm,2 widely used since in

Bayesian model conditioning including applications in hydrology

(Beven, 2009). John von Neumann also invented a method of generating

pseudo-random numbers for these experiments using the middle-square

method. This was known to be subject to failures, but it was fast and

compact (a critical issue given the capabilities of the ENIAC computer)

and von Neumann argued that when it failed it did so obviously.

In the 1950s and 1960s Monte Carlo methods developed rapidly

in a variety of fields, including hydrology, as digital computers started

to be made more widely accessible. The area of hydrological work we

are concerned with in this paper is the generation of input sequences

for hydrological models to inform management decisions. This

includes the generation of discharge or water yield series for water

resource and reservoir management, and precipitation and evapo-

transpiration inputs for hydrological simulation models. Monte Carlo

methods have also been used for other purposes, such as the descrip-

tion of dispersion in water bodies and the generation of spatial fields

of parameters for hillslope and groundwater models but these will not

be considered further here.

2 | GENERATION OF STOCHASTIC SERIES
OF DISCHARGES

The first paper to address the issue of generating series of flows

seems to have been that of Brittan (1961) in an application to the Col-

orado River, but this was preceded by a number of studies that had

analysed historical flow records from a probabilistic perspective

(e.g., Leopold, 1959; Yevjevich, 1961). It was also followed by the

much better-known paper of Thomas and Fiering (1962) that has

the title ‘Mathematical synthesis of stream flow sequences for the analy-

sis of river basins by simulation’.3 In that paper Thomas and Fiering pro-

vide a method of sampling from a specified distribution of monthly

stream flows including the effects of correlation between months. It is

formulated as the recursion equation:

qiþ1,j ¼ �q0 iþ1þbiþ1 qi,j��q0 i
� �þ tisiþ1 1� riþ1

2
� �1=2

where qi+ 1, j and qi, j represent the synthetic monthly stream dis-

charge during year j for month i � 1 and month i respectively; �q0 iþ1

and �q0 i represent the average monthly flow of the historic streamflow

record for month i � I and month i, respectively; bi+1 is the regression

coefficient for estimating flow during month i � 1 from the flow dur-

ing month i; the value si+1 is the SD of the historic streamflow record

for month i + 1; ri+1 is the correlation between flow for month i + I

and month i; and ti is a random deviate sampled from a normal distri-

bution with zero mean and unit variance (see also Fiering, 1967). This

process therefore has 12 �qiparameters, 12 bi parameters, 12 ri param-

eters and 12 si parameters all of which can be derived from historical

flow records under an assumption of stationarity. Thomas and Fiering

generated 510 years of record as a input to a water resource manage-

ment simulation. Such synthetic records could therefore allow for

more extreme conditions than might be available in the historical

record but Yagil (1963) gave a proof that this type of equation would

preserve the mean, standard deviation and correlation of the original

historical record. Any process representation in such a formulation is

contained only in the coefficients bi and ri. Preservation of the first

two moments, of course, is not necessarily an indication that the

nature of the extremes of interest in water resources management

might be well simulated.

There were a number of extensions to the Thomas and Fiering

model proposed. Harms and Campbell (1967) for example suggested

sampling a log-normal distribution rather than normal (which also

avoids the potential for negative flows in the synthetic series). Based

on Yevjevich (1964) they also introduced a correlation from year to

year to allow for storage carry-over and historical sequences of wetter

and drier years. Colston and Wiggert (1970) developed confidence

limits for dependable reservoir flows using stochastic monthly simula-

tions, though Klemeš and Bulu (1979) later suggested that such esti-

mates should be considered to have limited confidence. Salas and

Smith (1981) show how the Thomas and Fiering model is equivalent

to an autoregressive moving-average (ARMA) model of flow and

groundwater storage, with structures depending on the structure of

the rainfall inputs in applying the water balance. Srikanthan and

McMahon (1980) generated monthly flows for ephemeral streams in

Australia, comparing six different model structures. An early review of

such methods is provided by Yevjevich (1987).

Later work as digital computers became more widely available also

led to developments in generating discharge hydrographs (rather than

only monthly and annual time series. One of the earliest models of this

type was that of Weiss (1977) who used a shot noise concept of

impulses occurring as a Poisson process in time. Weiss uses impulses of

exponential form, with different time characteristics for surface and sub-

surface contributions to the hydrograph, but other assumptions are also

possible (e.g., Claps et al., 2005). In that such models normally assume

components equivalent to linear stores with different time constants, it

is worth noting that there is significant overlap with the data-based

mechanistic modelling (DBM) methods of Young (2013, and references

therein) as fitted to historical data. and driven by stochastic rainfall series.

Such DBM models could also be driven by stochastic assumptions about

rainstorms to produce discharge series.

3 | DISCHARGE AS A STOCHASTIC SERIES
WITH PERSISTENCE

This concept of stochastic hydrological forcing also led to a body of

literature on the hydrological phenomenon as fractal variables,
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primarily because the hydrologist Jim Wallis4 was working at the IBM

Thomas J. Watson Research Center at Yorktown Heights, NY, at the

same time as Benoit Mandelbrot, the mathematician who coined

the name fractal (see, e.g., Mandelbrot & Wallis, 1968;

Mandelbrot, 1971). Persistence effects in hydrological series had been

known since the analyses of River Nile data and other geophysical

series by Harold Edwin Hurst5 (e.g., Hurst, 1957) but fractal scaling

behaviour provided a novel way of looking at persistence. Others,

however, objected to the fractal description at the time suggesting

there were other mechanisms to explain persistence in time series

(e.g., Klemeš, 1974; Scheidegger, 1970; O'Connell, 1971). More

recently Koutsoyiannis et al. (2018) have argued that what constitutes

a fractal is only very vaguely defined but essentially represents some

local behaviour as scale tends to zero, whereas the type of persistence

exhibited by long time series of discharge is a more global behaviour

that is better described as a form of Hurst-Kolmogorov dynamics (see

also Koutsoyiannis, 2006, 2011).

Hydrological applications of Hurst-Kolmogorov dynamics are dis-

cussed in detail in Koutsoyiannis (2021a). It is an important issue in

terms of generating stochastic variables because it can be demon-

strated that some rather simple longer term stationary models may

exhibit apparently short-term nonstationary characteristics including

apparent changes in mean or trends. The controversy in part arises

because of the difficulties of identification of such models given only

relatively short hydrological records. This remains an issue in deter-

mining the nature of change (e.g., Koutsoyiannis, 2013; Serinaldi

et al., 2018). Dimitriadis and Koutsoyiannis (2018) have recently pro-

posed a general model for stochastic generation of variables that, for

certain structures, can reproduce aspects of intermittency characteris-

tic of some long term series. Koutsoyiannis (2020) has extended this

work to time irreversible processes such as series of event

hydrographs.

4 | GENERATING STOCHASTIC INPUTS TO
HYDROLOGICAL MODELS

These early stochastic models of discharge were primarily intended to

replace observed values as inputs to water resource management

models. Later developments also started to use stochastic models of

the inputs to rainfall-runoff models to replace observed values. There

were a number of reasons for doing so. The first was to provide an

alternative way of estimating flood frequencies in situations where

long discharge records were not available to allow the robust fitting of

a flood frequency distribution. It was often the case that longer rain-

fall time series were available, so that fitting a stochastic model of

rainfalls would allow the generation of long rainfall sequences as an

input to a rainfall-runoff model calibrated to whatever discharge data

were available. This approach had already used based directly on

observed rainfall series, for example, using the Hydrocomp version of

the Stanford Watershed Model in Fleming and Franz (1971).

The origins of generating stochastic inputs for flood frequency

estimation lay in the seminal paper of Pete Eagleson (1972).6 His

motivation for developing a method of flood frequency estimation

from rainfall distributions was

‘to seek an increased understanding of the dynamics of

flood frequency through a theoretical development that

relates peak streamflow statistics to the statistics of cli-

matic and watershed parameters by using the kinematic

equations of runoff as they are derived for homogeneous

catchments and storms’ (p878).

This involves three components: a model of point rainfalls and

the intensity and duration of rainfall excess; a runoff routing model to

derive peak discharge from the rainfall excess variables and catchment

characteristics; and a transformational component to derive ‘the distri-

bution F'(Qp) of peak streamflow from the distributions of the rainfall

excess variables by using the analytic relationship provided by the runoff

model’ (p.879).

Using simple mathematical descriptions of distributions and kine-

matic theory for the routing, Eagleson showed that the derived distri-

bution of flood peaks could be obtained analytically. This provided an

engineering solution to frequency estimation from rainfall characteris-

tics at a time when the use of digital computers was still not wide-

spread. It was also the start of an extremely fruitful and influential

scientific program based on the derived distribution approach, includ-

ing the sequence of 7 papers on Climate, Soil and Vegetation in Water

Resources Research by Eagleson (1978).

The assumption was that such an approach would provide more

robust estimates of flood frequencies than the uncertain estimates

associated with fitting a distribution to a small number of historical

flood peaks. It was also argued that the approach could be applied to

ungauged catchments if the parameters of the rainfall-runoff model

could be estimated independently based on soil and topographic

information. The devil is, of course, in the details of the assumptions

necessary to obtain a tractable analytical solution. In Eagleson (1972)

it is assumed that both mean rainstorm intensities and durations can

be represented as independent one parameter exponential distribu-

tions (since a gamma conditional distribution was more difficult to

handle) with an areal reduction factor to allow for increasing catch-

ment area. Rainfall excess is then calculated by subtracting a constant

loss rate from the mean rainfall intensity (the Φ- index method) leav-

ing a constant excess rate over the duration of the storm. A table of

typical loss rate parameters is given but no account is taken of how

the loss rate might vary with antecedent wetness prior to an event

(Eagleson again notes that would lead to very complicated mathemat-

ics). This is then routed over representative slope segments for the

catchment. Storm runoff here is very much overland flow, but follow-

ing the work of Betson (1964), Eagleson allows that this runoff may

occur only as a partial area response in the catchment, by letting the

rainfall excess to occur on a rectangular area centred on the stream

channel will hillslopes of fixed slope and noting that this might result

in a partial equilibrium hydrograph depending on the intensity and

duration of the excess rainfalls. The routing is completed by routing

down the channel itself to derive a flood peak magnitude for an event.
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Conditional integration over the distribution of storms that have rain-

fall excess rates greater than zero results in the required derived dis-

tribution of flood peaks.

This paper inspired others that provided alternative models for

both the runoff generati0n and the routing components. As computer

power increased, some of the simplifying assumptions about runoff

generation and routing required by Eagleson's analytical analysis could

be relaxed, including the use of the geomorphic unit hydrograph for

routing (e.g., Diaz-Granados et al., 1984; Hebson & Wood, 1982) and

more realistic treatments of the effect of antecedent wetness condi-

tions and runoff generation (e.g., De Michele & Salvadori, 2002;

Sivapalan et al., 1990). This type of analysis is, however, fundamen-

tally depending on the representation of the driving input variables.

More realistic rainstorm generators have been proposed including the

random rectangular pulse Bartlett-Lewis and Neyman-Scott models

(e.g., Rodriguez-Iturbe et al., 1987; Entekhabi et al., 1989;

Cowpertwait & O'Connell, 1992; Onof and Wheater, 1993). Storms

are assumed to be generated as a Poisson process but they differ in

how the time positions are generated for cells. In the Bartlett-Lewis

model the occurrence of cells is independent and identically distrib-

uted, in the Neymann-Scott model the occurrence of cells after the

storm origin is independent and identically distributed. The choice of

distributions for the occurrences and magnitudes of the cells is also

important. For the numbers of cells in a storm both Poisson and geo-

metric distributions have been assumed. These types of model struc-

ture will not reproduce the type of scaling behaviour that has been

inferred from analyses of rainfall time series. They can, however,

reproduce the first few moments of the rainfall distributions. Estima-

tion of the parameters of these types of models can be an issue

(e.g., Favre et al., 2004; Velghe et al., 1994). Reviews of such models

are provided by Waymire and Gupta (1981) and Bordoy and

Burlando (2014).

A further development was to add a distribution of arrival times

for events, and an additional evapotranspiration component to then

allow the generation of time sequences of inputs to a hydrological

model which produces continuous simulations of discharges,

including the flood peaks of interest. These models were effectively

the first ‘weather generators’. Such an approach has less often

been used to generate the statistics of droughts given the limita-

tions of many rainfall-runoff models in predicting low flows as con-

nectivities in flow pathways start to break down. One of the first

studies to use continuous simulation to estimate flood frequency

made use of historical rainfall records and evapotranspiration esti-

mates (Fleming & Franz, 1971). This limits the length of simulations

can be made, whereas an approach based on distribution functions

can generate records of any required length. A rule of thumb in

flood frequency estimation that arose out of some of the early sto-

chastic sampling experiments carried out by Jim Wallis and others

(e.g., Wallis & Wood, 1985) was that robust estimates of frequency

required records of ten times the return period to be estimated

(i.e., 1000 years for events with an annual exceedance probability

[AEP] of 0.01 that are commonly used in flood defence designs).

For dam safety studies, where event magnitudes with an AEP of

0.0001 might be of interest, this suggests realizations of

100 000 years might be required.

5 | ISSUES IN GENERATING INPUTS FOR
RAINFALL-RUNOFF MODELS

Point models of rainfalls are generally based on historical raingauge

records, for which daily data are much more commonly available. For

larger catchments daily data might be adequate for hydrograph pre-

diction (knowledge of spatial patterns might then be more important,

see next section) but for small catchments it can be important to have

some knowledge of sub-daily rainfall variation. In both cases, how-

ever, what a point raingauge measurement represents may be subject

to uncertainty. Many studies have been done about the effects of

wind, height and exposure on raingauge catch of different designs,

and on the effects of intensity on what is recorded by a tipping bucket

gauge. There have also been a number of studies on the small-scale

variability of raingauge catches. As far back as Hutchinson (1969) for

example, it was demonstrated that the coefficient of variability for a

collection of 12 raingauges in a single enclosure at an exposed site in

New Zealand decreased with mean storm rainfall but could be 10%

for a storm of 10 mm. Averaging to monthly values decreased this to

1%–2%. Such uncertainty is often ignored in rainfall generation.

There is then the further issue of relating point rainfall estimates

to the catchment area values required as inputs to hydrological

models. Many studies have simply assumed that point rainfall distribu-

tions can be used at the catchment scale or have simply defined an

areal reduction factor (as used in Eagleson, 1972, above). Others, that

point values can be associated with subcatchments, but with a simple

cross-correlation structure between subcatchments used in generat-

ing catchment scale storms (e.g., Blazkova & Beven, 2009). There have

also been developments in space–time stochastic rainfall models to

address this problem that aim to preserve the point statistics (see next

section); the issue of what is a good estimate of catchment area rain-

fall, however, remains.

To define a stochastic point rainfall generator, long term rainfall

records are generally required, especially in hydrological regimes with

strong seasonal or weather type variability. Generating rainfall alone

may also not be sufficient where snowfalls can be important, which

will require a model that includes both rainfall and temperatures (see

next section). Early derived distribution methods tended to fit distri-

butions of storm duration, mean intensity and arrival time of the next

storm to the sample values derived from the available rainfall records,

checking for correlation between the values. This then requires the

definition of what constitutes a storm in the available data

(e.g., Beven, 1986a; Restrepo-Posada & Eagleson, 1982) by what mini-

mum period of zero or negligible rainfalls should be required between

storms. Such issues arise both for daily and sub-daily rainfall values

and will inevitably result in some degree of approximation.

Later studies have also involved the generation of storm profile

data. One approach has built on the analyses of the multifractal nature

of observed rainfalls in time (e.g., Gupta & Waymire, 1993), by
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disaggregating the event total and duration into a sequence of fractal

increments for a specified time step (e.g., Puente and Obreg�on, 1996;

Obregon et al., 2002; Maskey et al., 2019). Wavelet analysis has also

been proposed as a more robust way of analysing multifractal behaviour

and has led to some important insights about the small-scale variability

within and between pulses of rainfalls within an event (e.g., Venugopal

et al., 2006). This type of scaling behaviour might be expected if the high

frequency variations in rainfall rates are linked to atmospheric turbulence

(though see the discussion in Veneziano et al., 2006, suggesting that it

may not be that simple). A simpler approach, based directly on the obser-

vational series, is to sample directly from cumulative profiles taken from

the observed storms. This approach was taken by Cameron et al. (1999);

Cameron et al. (2000) who classified the sampled profiles, normalized by

event volume and duration, into a number of event classes. Given a sam-

pled profile for a generated event, the intensities can be calculated for

any required time step.

Another issue, noted earlier, is that some applications require the gen-

eration of long time series, for instance in frequency analysis for the design

of flood defences or dam safety studies. This raises two problems: one is

the issue of how pseudo-random number generators produce extreme

values on the tails of the specified distributions (some generators are much

better than others in that respect, see Bowman, 1995; Press et al., 2007;

Bertoni et al., 2010)7; the second is the infinite tails of those distributions

which can allow the generation of some very extreme values. In terms of

extremes, some consideration needs to be given to reproducing higher

moments of the observed data (e.g., Burton et al., 2008;

Koutsoyiannis, 2004, 2021a) but for rainfalls, those extreme values might,

by random sampling during a long enough run of random numbers, exceed

what might be atmospherically possible in a hydroclimatic region. What is

atmospherically possible was embodied in the idea of a maximum possible

precipitation, that later evolved into a probable maximum precipitation

(PMP) (Benson, 1973; Hershfield, 1961). It is, however, difficult to define

and its evaluation is subject to multiple assumptions and different sources

of epistemic uncertainty, especially in what to assume about the potential

advection of moisture and vapour (see, for example, Koutsoyiannis, 1999;

Papalexiou & Koutsoyiannis, 2006; Micovic et al., 2015).

Different applications of rainfall generators have dealt with these

problems in different ways. Some have simply ignored the problem,

particularly when the interest is in defining frequencies that are not

too far out on the tails. When the interest is in more extreme values

two approaches have been taken. One is to resample if an event

exceeds some upper threshold. For rainfalls this has often been some

regional definition of PMP (e.g., Blazkova & Beven, 2009). Another

approach has been to use a form of sampling distribution that does

not have an infinite tail, but rather is asymptotic to some upper limit.

Cameron et al. (1999) for example, introduced an upper bound for the

distribution of storm intensities based on the UK national envelop of

rainfall extremes for different durations. Cameron et al. (2000) com-

pared three different stochastic rainfall models for a number of sites:

a version of the original Eagleson (1972) model that had also been

used in the continuous flood frequency modelling of Beven (1986a,

1986b, 1987); a data-based model for the Plynlimon rainfalls that had

been introduced by Cameron et al. (1999); and the gamma distribution

of the Bartlett-Lewis model developed by Onof and Wheater (1994).

Based on the data for that site, they also introduced an upper bound

on durations in fitting a Generalized Pareto Distribution to the class

of longest duration storms. They concluded that the Eagleson model

is the least satisfactory model for that site (though could be improved

by relaxing the choice of distributions), that the data-based model had

some difficulties in reproducing summer storm profiles for one of the

sites where the extreme intensities were associated with longer dura-

tion storms; while the gamma Bartlett-Lewis model might require

fitting of parameters for sub-annual periods to improve the estimation

of extremes at all sites. Cameron et al. (2001) also modified the

Bartlett-Lewis model to allow an upper limit to the generation of

extremes that was set above the upper envelope of UK rainfall statis-

tics for different durations.

This may, however, be a misguided approach to the problem.

Koutsoyiannis (1999) revisits the paper of Hershfield (1961) that

made use of data from multiple stations in advocating the probable

maximum precipitation concept. He shows that the joint data set used

by Hershfield is consistent with a Generalized Extreme Value Type

2 (EV2) distribution out to the very long return periods allowed by

concatenating the data from different sites. He also later shows

(Koutsoyiannis, 2004, 2021a) that the shape parameter of the EV2

distribution is close to a value of 0.15 for a very wide range of stations

across Europe and North America. An EV2 distribution does not, of

course, have an upper limit, it will always predict more extreme values

than the EV1 (Gumbel) distribution for a given return period (though

both will be subject to significant uncertainties at high return periods

depending on the length of the data set available for analysis. The sta-

tistics therefore do not justify imposition of an upper limit.

In a stochastic generator, however, it remains the case that values

of event rainfalls much larger than the envelope curves of extremes

for a given duration (often assembled on a national basis) might be

randomly generated. These will have low probability, consistent with

the distribution from which they are generated, but will clearly gener-

ate extremely high flows if used as the input to a hydrological model.

What we do not know is whether those values might be beyond the

range of atmospheric possibility at these very low probabilities.

The implication is that, even if there is no justification for applying any

upper limit, sufficiently long realizations should be used, relative to

the return period of interest for an application, to allow any ‘outlier’
values generated, of much lower probability, not to have an effect on

the return period of interest; hence the rule of thumb noted earlier

that the realizations should be at least ten times longer than the

return period of interest. Multiple realizations will also allow the sam-

pling variability at different return periods to be evaluated (see, for

example, Blazkova & Beven, 2009, for a dam safety example).

5.1 | Space–time rainfall models

The point rainfall generators of the last section have often been used

as if they represented catchment averaged inputs, in the same way

that data from single raingauges is also often used as if it represented
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the catchment average inputs when there is no other information

about the spatial pattern. Data from multiple raingauges can, of

course, be averaged or interpolated over the catchment area in a vari-

ety of ways to estimate an average input value but there may be epi-

stemic uncertainties associated with such estimates, especially where

there is a large elevation range in a catchment or where the precipita-

tion also involves snowfall. Attempts to estimate such uncertainties

have been rather rare in the literature but can be derived for methods

such as general linear models (e.g., Chandler et al., 2006) or kriging

and co-kriging (e.g., Clark & Slater, 2006).

In stochastic generation of precipitation values, going from single

sites to a full space–time field is not simple because of the time-

varying correlation structures in space and time associated with rain-

fall fields and the possibility of only partial coverage by some events.

Both synoptic and convective rainfall events are structured in cells

and bands, with analyses suggesting that this might involve a

multifractal scaling (e.g., Schertzer and Lovejoy, 1987; Hubert

et al., 1993). An early model of space–time rainfall was suggested by

LeCam (1961) within a framework of evolving rainfall cells or

‘showers’, clustered in space and time, with later developments by

Waymire et al. (1984) and Cox and Isham (1988).

More recent extensions of point rainfall models to space–time

event generation, include the RainSim code of Burton et al. (2008)

which is based on a Neyman-Scott clustering process (Cowpertwait

et al., 2002; Leonard et al., 2008). Wheater et al. (2000) present an

analysis from the 49 gauges of the HYREX (Hydrological Radar Experi-

ment) study in the UK before presenting a model that combines

Bartlett-Lewis clustering of rainfall cells in time, with a Neyman-Scott

process for the clustering of cells in space. Cells are born and evolve

within a storm moving with a stochastically chosen direction and

velocity. Yang et al. (2005) and Chandler et al. (2006) suggest a

method based on General Linear Modelling suitable for use in contin-

uous simulation, recently extended to multisite simulation by Chan-

dler (2020). As noted earlier for point rainfall models, all of these

approaches depend on the underlying parametric distributions that

are used to represent the rainfall generation mechanisms. For the

rainfall extremes the results will depend heavily on how the tail

behaviour is defined, even if the lower moments of the distributions

of observations are well reproduced. This has, it seems, been little

studied to date.

5.2 | Issues in generating snow inputs

Snow and snowmelt are important in many catchments, particularly in

mountainous areas where at times of transition only part of a catch-

ment may be accumulating or melting snow. Depths of snow accumu-

lation and their water equivalents are difficult to observe and predict,

because of the effects of wind and topography on accumulations, the

variability of temperature conditions and snow densities, and

the potential for changes in albedo as a snow pack ripens. Some of

these difficulties were revealed in the WMO snowmelt model

intercomparison exercise8 (WMO, 1986) and, while there have been

improvements in remote sensing of surface temperatures, albedo and

snow-covered areas, there has been little real advance in modelling.

There are too many uncertainties in the energy budget method, and

too much approximation in the degree-day method. That is why, in

real-time snowmelt modelling, data assimilation of snow-covered

areas is often used to improve the forecasts during the melt season.

Because of the importance of snow in many regions, however,

there have been many attempts to include snow in weather genera-

tors, particularly in assessing the impacts of future climate scenarios.

In some cases this also involves consideration of the accumulation

and melt of snow on glaciers. These approaches are based either on a

full energy budget approach or the degree-day method. In both cases,

temperatures and precipitation values must be generated (with more

meteorological variables for the energy budget method), and a tem-

perature threshold is used to decide whether the precipitation falls as

snow or rain as a parameter of the model. Temperatures can, of

course, be variable in space, particularly in mountainous terrain so that

there is an issue of generating spatial patterns, even if that is approxi-

mated to an elevation lapse rate relative to temperature at some

point. It also raises the issue of covariation of all the required

variables.

5.3 | Issues in converting stochastic precipitation
inputs into flows

Peak flows will depend on velocities and rates of flood runoff genera-

tion; low flows will depend on storage-discharge characteristics of the

subsurface including, at very low flows, the potential for the break-

down of connectivity in some flow pathways. Both are far more diffi-

cult problems than how to route that runoff once it is in a river, in

part because of the observations of rainfall and runoff under extreme

conditions are both limited and uncertain. This will have an important

effect on any attempt to validate rainfall-runoff models (Beven,

1986b, 2019).

In continuous simulation studies, rainfalls are not the only input

required to drive a hydrological model (and if snow is an important

input, then other variables such as temperature and radiation might

already be required to estimate melt rates). To allow the simulation of

antecedent conditions prior to each event account must also be taken

of actual evapotranspiration losses from a catchment. There may also

be other losses, such as deep groundwater seepage, but these are

generally ignored. Potential evapotranspiration rates can be simulated

as part of a weather generator where it is expected that temperatures

and humidities might be changing. However, some studies suggest

that evapotranspiration rates in a hydroclimatic zone are rather con-

servative, so that if significant change is not an issue, rather simple

models of potential evapotranspiration might be used to give good

simulations of soil moisture deficit, even under extreme dry conditions

(e.g., Calder et al., 1983).

For extreme wet conditions, a major issue in generating flows

from any stochastic model of the inputs is just how good are the pro-

cess representations of hydrological models, particularly under
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extreme conditions? In principle there is an opportunity to use a

rainfall-runoff model to reflect dynamic changes in the dominant run-

off processes with event magnitude and antecedent conditions. In

practice this has proven to be difficult to confirm; though it has to be

said that the hydrological modelling community has not really tried

that hard to invalidate its model formulations (Beven & Lane, 2019). It

has instead relied on calibration techniques to obtain a parameter set

giving acceptable results within a model structure (where the defini-

tion of acceptable has been rather variable). There has been little

attempt to really test the underlying process concepts of model struc-

tures, and very few studies where a model formulation has been

rejected (but see, for example, Page et al., 2007; Hollaway

et al., 2018).

In the case of flood hydrology, there is a long tradition of applying

baseflow and stormflow concepts with the continued use of hydro-

graph separation techniques (e.g., recently Ghotbi et al., 2020). But

there is no common definition of what might constitute baseflow

(e.g., Beven, 1991) such that different definitions will provide a differ-

ent balance of volumes. The only physically justifiable method is to

estimate what the discharge might have been if the next event had

not occurred, but this is not commonly used since that estimation can

be difficult when sequences of events occur. Tracer experiments also

show that stormflow and baseflow (however defined) are not equiva-

lent to surface and subsurface runoff (see, for example,

Kirchner, 2003; Beven, 2012, 2020a, 2021a). The relationship is much

more complex.

The identification of model parameters based on historical data also

remains an issue, especially when the emphasis is on the higher magni-

tude flows for flood frequency estimation. Lamb and Kay (2004), for

example, applied flood frequency estimation by continuous simulation to

a wide variety of catchments in the United Kingdom. They showed that

in fitting the model parameters the simulations could often reproduce

the observed annual maximum flood frequency statistics (though not in

all the catchments studied) but in many cases the highest flood simulated

in a year was not the same as the highest flood observed in that year.

This is partly a result of model limitations in both representing runoff

generation and setting up the antecedent conditions prior to an event,

but also a result of the limitations of rainfall and flood discharge observa-

tions for extreme (and not so extreme) events.

Indeed it has been suggested that machine learning method might

be more successful in converting rainfalls into streamflows than

models based on process representations (e.g., Kratzert et al., 2019;

Nearing et al., 2021). Such data-based methods are heavily dependent

on the range and quality of the training data set available, though they

will be able to compensate for inconsistencies in a data set if those

inconsistencies show some form of consistent structure (see the dis-

cussion in Beven, 2020b). There may also be problems in predicting

rare events or extremes using machine learning methods, since by

definition such events will be rare in the training data and extrapola-

tion beyond the range of the training data may not be well controlled.

There will certainly more attempts to use such techniques with addi-

tional constraints (e.g., an event water balance constraint) in future

but such studies are still at an early stage.

There is an extensive literature on the uncertainties in hydrologi-

cal observations and in predicting streamflows from rainfalls and other

input data (see the other papers in this volume). This is compounded

in the current context by the additional uncertainties associated with

any stochastic model of those input data that then cascades through

whatever approach is being used to simulate the discharges. The epi-

stemic cascading nature of such uncertainties suggests that all the

resulting discharges will be uncertain, and that any estimation of that

uncertainty will be subject to the specific assumptions made in an

analysis (e.g., Beven & Lamb, 2014).

5.4 | Issues in generating future sequences:
Stochastic weather generators and stationarity

Stochastic models are designed to reproduce the statistics of the

observational series against which they are calibrated. But this will

then depend on the sample support for that calibration and whether

the process can be considered as stationary for periods of similar

length. In one sense this does not matter in that all the series gener-

ated by a stochastic model are necessarily conditional; they will

behave strictly according to the assumptions on which they are based

(if programmed correctly, and approximately so in the case of, for

example, fractional Gaussian generators of finite memory length). This

does not mean that they will adequately span the possibilities of

future behaviour if either the calibration period is atypical, or if the

system shows persistent behaviour that cannot be adequately charac-

terized in the data available, or if the system is changing over time. In

all of these cases the generated series might underestimate the poten-

tial future variability (see, for example, Thompson & Smith, 2019).

Sometimes it is difficult to determine which of these possibilities

might hold. This is illustrated, for example, in the flood frequency esti-

mation by continuous simulation study of Blazkova and Beven (2009).

The aim of that study was to get a better estimation of very rare

events for assessing dam safety in the Skalka catchment in the Czech

Republic. A rainfall-runoff model was calibrated for the catchment

using 60 years of discharge records using the GLUE methodology. A

rainfall model was also calibrated for covarying subcatchment storm

rainfall (including occult precipitation and snow accumulation and melt

components), and a simple model of evapotranspiration was used. A

variety of limits of acceptability and fuzzy weights were used in fitting

the model parameters for different subcatchments within a GLUE

framework. Only 39 model realizations out of a sample of more than

600 000 were found that satisfied all the 114 limits of acceptability,

but a Pareto method of relaxing limits was then used to obtain a sam-

ple of 4000 models for the final simulations. The observed flood fre-

quency curve was well covered by these simulations, but with

significant uncertainty. This included a period of 60 years at a site

prior to the construction of the Skalka Dam that was not used in the

model identification. However, this earlier record showed quite different

frequency characteristics to the upstream sites used for the model identi-

fication period. That is not to say that the system had changed (though

developments in land use and agricultural practice might have resulted in
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a change in catchment response), it could have been only exhibiting the

characteristics of a stationary stochastic system (e.g., Koutsoyiannis &

Montanari, 2015; Montanari & Koutsoyiannis, 2014).

An enormous number of studies have taken the projections from

climate models for different future decades to make an evaluation of

future change in rainfalls and flows. A very large proportion of those

studies have done so without any form of uncertainty estimation of

those projections, or only making use of a limited ensemble of projec-

tions. This is, in part, still a reflection of computer limitations since

there is always a trade-off with global scale models between resolu-

tion, process detail, and the number of simulations that can be run

given the available computer resource.

Perhaps more importantly, very few have done so while allowing

for the potential for persistent stochastic behaviour (though see

Tyralis & Koutsoyiannis, 2017). Most authors of such studies will

make the argument that the outcomes are only potential scenarios,

and that the projections of climate models are the best indication of

future boundary conditions that are available. However, the outcomes

from this type of study have rarely been tested, for example, by evalu-

ating such an approach as predicted before the last decade against

the actual observations over the last decade. This is not surprising

since climate models change over time, so it would not be surprising if

a past generation of model did not do well in predicting change in the

last decade. The current generation of climate model might do better

in predicting change in the next decade but will then also be super-

seded by the time we have the observations for that decade. In the

past, however, they have certainly not done well in predicting hydro-

logically relevant variables such as rainfalls and near-surface humidi-

ties and wind speeds (see, for example, Koutsoyiannis, 2021b); indeed

it has been suggested that at the decadal scale simple data-based

models can be more successful even for predicting changes in global

temperature (Fildes & Kourentzes, 2011; Suckling and Smith, 2013;

Young, 2018; Young et al., 2021), but even for local predictions for

land surface fluxes (e.g., Nearing et al., 2016).

This problem is generally overcome by only looking at the per-

centage changes predicted in future decades, and applying those

changes to an observed record, or the parameters of a weather gener-

ation model. This might also involve downscaling algorithms that allow

for the difference in scale from the climate model grid scale to the

scale of an application such as a particular catchment.

The downscaling algorithms also have to be calibrated and this

allows corrections for bias and other characteristics to be made

between the climate model and observational statistics. These cor-

rections are then assumed to hold into the future. This is a conve-

nient working procedure, but since changes are being predicted

there is no reason why that assumption should hold (see, for exam-

ple, Koutsoyiannis et al., 2008; Beven, 2011). Indeed, some tests of

weather generators suggest that they have not done. This is now

cited in the text that well in reproducing the statistics of historical

weather (e.g. Semenova et al., 1998), especially for the extremes

(e.g. Verhoest et al., 2010).

More recent weather generators produce outputs of high-

resolution spatial fields of precipitation and meteorological variables

(e.g., AWE-GEN of Peleg et al., 2017; Peleg et al., 2019). Weather

generators are subject to the same issues as stochastic rainfall models,

of identifiability of parameters, unverified extreme tail behaviours,

and issues of extreme values being generated by chance. There are

also issues as to how well covariation between variables can be repre-

sented, and Li et al. (2017) suggest that the assumptions about the

spatial structure of the generated fields can have an important effect

on the outputs of hydrological models. To my knowledge, none of the

currently available weather generators used in such studies take any

account of the potential for Hurst-Kolmogorov persistence in generat-

ing values, albeit that there are algorithms for generating fractional

Gaussian noise and other types of persistent behaviour available,

including time irreversible processes such as event discharges

(Koutsoyiannis, 2020).

6 | CONCLUSIONS

There are enough issues associated with the stochastic generation of

observables as inputs to hydrological models that they should be both

used with care and the outputs, particularly the extremes, be assessed

for realism. This is, of course, easier said than done, since even in the

historical record the sample of available extremes might be rather lim-

ited. Evaluating future projections is impossible, but that also suggests

that such projections should not be used without some effort being

made to assess what the potential range of uncertainty associated

with the projections might be and how that might propagate through

the cascade of models involved in any impact study (e.g., Beven &

Lamb, 2014).

Some of the most important issues that remain are:

1. The characteristics of the observations and their uncertainties that

underlie stochastic models of inputs. It is still difficult to have an

idea of catchment average inputs, because of uncertainties in

observations (raingauge, radar or satellite) and interpolations. That

makes it difficult to properly calibrate and test any stochastic

models of inputs that might be used to produce long term

sequences for flood frequency estimation or assessing impacts of

change.

2. The limitations of the observational data are also an issue when it

comes to representing the extremes (both wet and dry) based on

the tail assumptions of the distributions that underlie these sto-

chastic models. This includes the potential for persistence that has

been found in time series of hydrological observables. Since we

are not going to get this ‘right’ (it represents an epistemic uncer-

tainty about the nature of the extremes) there can only be a choice

of assumptions, but we should make an assessment of the sensitiv-

ity of decisions to uncertainty in the assumptions.

3. In terms of assessing impacts of climate change projections it is still

difficult to really know how rainfalls will change into the future, or

whether there has been any real change in the recent past relative

to persistence in natural variability. Downscaling and bias correc-

tions based on historical data, with the same limitations as the

8 of 12 BEVEN



previous point that have been used to compensate for limitations

of climate models are a neat trick to compensate for model defi-

ciencies but will not necessarily hold into the future. Atmospheric

modelling of particular storms with convection resolving schemes

is improving but is not yet at a stage when it could be used for

generating long term sequences of storms because of the depen-

dence on boundary conditions from larger scale (and often coarser

resolution) models and the greater sensitivity to land surface

boundary conditions, with limitations of representation of

surface and subsurface water and energy fluxes.

4. There is still much to understand about the apparent scaling

behaviour of rainfall and discharge data, implying some form of

long-term persistence in the hydroclimatic system, at least over a

certain range of scales, with consequences for the assessment of

frequencies. Some studies have made use of this in generating

storm profiles and sequences in the short term, but there remains

an issue about implications about longer term frequency character-

istics, the use of persistence in weather generators, and whether

there might be physical constraints on higher magnitude events.

5. We cannot avoid the general problem that the hydrological models

used to convert stochastic sequences of inputs into simulated dis-

charges have not been properly tested for high magnitude events,

whether those be models based on process representations or

derived by data-based methods or machine learning. More work is

required on model validation (or invalidation, see Beven &

Lane, 2019; Beven, 2018, 2021b). This also suggests that any such

study should include an appropriate assessment of uncertainty in

the outcomes, cascading from the model of the inputs through the

discharge simulation model, with an expectation that the uncer-

tainty be significant.

ACKNOWLEDGEMENTS

Work on this paper has been supported by the NERC Q-NFM project

led by Dr. Nick Chappell (grant no. NE/R004722/1). The paper has

greatly benefitted from an excellent review and the recent work of

Demetris Koutsoyiannis for which I am most grateful.

DATA AVAILABILITY STATEMENT

This paper does not include any original data.

ORCID

Keith Beven https://orcid.org/0000-0001-7465-3934

ENDNOTES
1 See https://en.wikipedia.org/wiki/ENIAC. ENIAC was first commis-

sioned in 1945. By the end of its operation in 1956, ENIAC contained

18 000 vacuum tubes; 7200 crystal diodes; 1500 relays; 70 000 resis-

tors; 10 000 capacitors; and approximately 5 000 000 hand-soldered

joints. It was roughly 2.4 m � 0.9 m � 30 m in size, occupied 167 m2

(1800 sq ft) and consumed 150 kW of electricity. Programming involved

by a combination of plugboard wiring and three portable function tables

(containing 1200 ten-way switches each), so that setting up a new job

could take weeks. Several of the early master programmers were women

who did not receive proper credit for their work.

2 The algorithm was first described by Metropolis et al. (1953) although

later accounts (Gubernatis, 2005) suggest that the credit for the original

idea should go to Edward Teller and Marshall Rosenbluth, and that the

coding was done by Arianna Rosenbluth (all co-authors on the paper).

One account suggests that Metropolis' role was only to make the com-

puting time available. The algorithm was extended to a more general

form by W. K. Hastings (1970).
3 Harold A. Thomas (1913–2002) was a Professor of Civil and Sanitary Engi-

neering at Harvard University and a member of the interdisciplinary Har-

vard Water Resources Program that was founded in 1955 and chaired by

Arthur Maass from the Department of Public Administration (Maass, 1962;

Reuss, 2003). Myron B. Fiering (1934–1992) was a PhD student of Thomas

and, after a short spell as an assistant professor at the University of Califor-

nia, returned to spend the rest of his career at Harvard. He was eventually

appointed as a Professor of Applied Mathematics.
4 http://www.history-of-hydrology.net/mediawiki/index.php?title=

Wallis,_Jim
5 See http://www.history-of-hydrology.net/mediawiki/index.php?title=

Hurst,_H_E
6 See http://www.history-of-hydrology.net/mediawiki/index.php?title=

Eagleson,_Peter_S
7 As far as I know, no hydrological application has used a “true” random

number generator based on some external source (e.g., Szczepanski

et al., 2004; Yu et al., 2019) rather than a pseudo-random number

generator.
8 After participating in which, I have to admit, I gave up trying to model

snowmelt as far too difficult. Even simple parameters like albedo change

in such unpredictable ways. It is far better posed as a data assimilation

problem for forecasting during the snowmelt season, but data assimila-

tion is not possible for future scenarios.
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