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Abstract

The Q-natural flood management project has co-developed with the Environment

Agency 18 monitored micro-catchments (~1 km2) in Cumbria, UK installing calibrated

flumes aimed at quantifying the potential shift in observed flows resulting from a range

of nature-based-solutions installed by local organizations. The small-scale reduces the

influence of variability characterizing larger catchments that would otherwise mask any

such shifts, which we attempt to relate to a shift in model parameters. This paper dem-

onstrates an approach to applying donor-parameter-shifts obtained from modelling two

of the paired micro-catchments to a much larger scale, in order to understand the

potential for improved distributed modelling of nature-based solutions in the form of

additional tree-planting. The models include a rainfall-runoff model, Dynamic Topmodel,

and a 2D hydrodynamic model, JFlow, permitting analysis of changes in hillslope pro-

cesses and channel hydrodynamics resulting from a range of distributed measures

designed to emulate natural hydrological processes that evaporate, store or infiltrate

flows. We report on attempts to detect shift in hydrological response using one of the

paired-micro-catchment moorland versus forestry sites in Lorton using Dynamic

Topmodel. A donor-parameter-shift approach is used in a hypothetical experiment to

represent new woodland in a much larger catchment, although testing all combinations

of spatial planting strategies, responses to multiple-extremes, failure-modes and

changes to synchronization becomes intractable to support good decision making. We

argue that the problem can be re-framed to use donor-parameter-shifts at multi-local-

scale catchments above communities known to be at risk, commensurate with most of

the evidence of NbS impacts being effective at the small scale (ca. 10 km2). This might

lead to more effective modelling to help catchment managers prioritize those

communities-at-risk where there is more evidence that NbS might be effective.
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1 | INTRODUCTION

In recent years, there has been a marked international interest in

restoring natural capital to seek multiple benefits from a range of

nature-based solutions, NbS (e.g., Bridges et al., 2018; European

Commission, 2020), with an accompanying scientific interest to assess

efficacy (in theoretical trials) and effectiveness (in practice) of environ-

mental benefits including potential to provide flood risk reduction

(Burgess-Gamble et al., 2017; Dadson et al., 2017; Lane, 2017). The

specific NbS of reducing flood hydrographs is known as natural flood

management (NFM) in the United Kingdom.

Quantifying the effectiveness of range of different NFM mea-

sures aimed at storing, infiltrating and evaporating flood water, has

mainly been possible with current trials only at the small scale of the

order 10 km2 (Dadson et al., 2017). However, at larger scales, the

observed change in hydrological response resulting from a large num-

ber of distributed NFM measures (impacting multiple hydrological

processes) soon gets ‘drowned out’ by inevitable environmental vari-

ability. This is exacerbated in complex networks where synchroniza-

tion issues come into play (Ferguson & Fenner, 2020; Metcalfe et al.,

2018; Pattison et al., 2014), and for which NFM asset failure can add

to the complexity. For example, failure and cascade failure of leaky-

barriers is explored in Hankin et al. (2020), or the interdependencies

of distributed NFM in combination with an urban drainage network is

considered in Ferguson and Fenner (2020).

Coupled with variable hydrological extremes of different dura-

tions and spatial patterns within large catchments, the testing frame-

work and advice on spatial deployment of NbS at larger scales,

becomes almost intractable. An alternative solution, which stems from

engaged environmental NGO partners (Hankin, 2020) and the Envi-

ronment Agency, is to focus on NbS placement in small sub-

catchments above communities at risk of frequent flooding

(in locations where the flow accumulation is also smaller than 10 km2),

where the supporting experimental evidence is greater and where the

necessary intensive deployment of measures to reduce risk may be

achieved more quickly.

1.1 | Research questions

Q-NFM is one of three UKRI Natural Environment Research Council

investigations (NERC, 2020) quantifying the effectiveness of NFM.

NFM is specifically about flood hydrograph reductions and so one

aspect of the wider NbS for environmental, social and economic gain.

The project has set up 18 micro-basins in Cumbria (UK), with accu-

rately calibrated flows and local raingauges to try and measure any

changes in hydrological response resulting from a range of NbS mea-

sures. One aspect of the Q-NFM project is to detect any shift in

hydrological response at the micro-basin scale (1 km2) due to NbS and

map this onto model parameters, so this shift could be applied at

greater scales up to the macro-scale (>1000 km2). The key research

questions addressed here are answered in-part through a number of

modelling experiments based on the paired micro-basins and

observational data from a macro-scale catchment, making this a dem-

onstration paper. These modelling experiments are subject to mea-

surement and knowledge uncertainties, and it is acknowledged from

the outset that many more such modelling experiments will be needed

across multiple micro-basins and through before-after intervention

experiments for a range of storms and antecedent conditions to sup-

port the target research questions as follows:

1. Can changes in hydrological responses due to distributed NbS be

characterized with fuzzy parameter shifts in a distributed rainfall

runoff models using micro-basin comparisons? For example, are

there dominant (but uncertain) changes seen in the effective

parameters in a calibration of a wooded catchment as opposed to

a moorland catchment for the same event, that are scalable to

other locations?

2. Can these fuzzy parameter-shifts be attributed to differing land-

scape scale (spatial) characteristics of the micro-catchments

3. Can these be used to quantify change associated with particular

hydrological (temporal) changes arising from nature-based solu-

tions (NbS)?

4. If these shifts are implemented in a model of a much larger scale,

such as the Eden (2300 km2), is it possible to reduce uncertainties

with new types of data, such as satellite imagery?

5. At high stream-orders in large catchments, is it possible to appraise

risk by characterizing an ‘average response’ (Hankin et al., 2017a),

or key modes of behaviour (Hankin, 2020) stemming from the

superposition of many small-scale changes to hydrological

response resulting from many small-scale distributed NbS

measures?

6. Given a distributed hydrological model of a large system

(>100 km2) with a strong global measure of performance at the

outlet, should we focus the assessment of flood risk-reduction due

to NbS at the multi-local scale? In this way, the donor parameter

shifts are applied at a similar scale to the micro-basins they are

derived from, and the scaling-issue associated with non-linear

hydrological processes is partly avoided.

1.2 | Overview of donor parameter shift
experiment

The focus in this paper is to test the potential for detecting of param-

eter shifts, given the uncertainties in the modelling process, in a pair

of these micro-basins in a tributary of the River Cocker catchment

(Cumbria, UK), one with moorland grazing and the other with a com-

mercial forestry plantation (see Figure 1). These changes are then

used as ‘donor parameter shifts’ to represent similar, future hydrolog-

ical changes as a result of woodland planting in this instance, or more

generally for other types of NbS interventions.

The broader experimental approach used here uses the rainfall

runoff model, Dynamic Topmodel (Beven & Freer, 2001; Metcalfe

et al., 2016) using a recently improved open-source code

(Smith, 2020), calibrated to the two micro-catchments for two storms
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in December 2019 (named Storm Atiyah) and then in February 2020

(named Storm Ciara). Dynamic Topmodel is fundamentally suited to

the idea of identifying changes to hydrological responses since it

groups areas of similar hydrological response in the landscape (hydro-

logical response units or HRUs), typically based on classes of wetness

index and for example average rainfall.

As with many applications of Dynamic Topmodel, the greatest

sensitivity is in the m parameter, defined as the rate of decline in the

downslope transmissivity with depth below the ground surface (see

Beven, 2001a), and strongly influences the rate of hydrograph reces-

sion. In this paper, m has been calibrated for the two particular winter

storms and antecedent conditions. Myers et al. (2021) investigated

the impact of the calibration period and how it can have a large impact

on derived parameter values and stress the need to consider effects

of non-stationarity in parameter estimates. Here, the donor

parameter-shift identified in the calibration events is applied to one of

the same storms in a different larger catchment to understand possi-

ble changes to hydrological response at a much larger scale in the

2300 km2 Eden catchment.

Linking recession parameters to broad land use/cover types is not

new, and has been demonstrated in a range of studies (see Bulygina

et al., 2012; Heuvelmans et al., 2004; Karvonen et al., 1999), including

Bogaart et al. (2016), where it was concluded that dynamic recession

parameters can be linked to landscape evolution. Beven (2001b) also

discusses mapping parameter-landscape mapping in an uncertainty

framework, whereas here we are interested in contrasting behaviour

of two adjacent catchments. Rather than aiming to transpose ‘calibra-
tion parameters from similar, gauged catchments’ to address the

ungauged catchment problem (Blöschl, 2006), the approach here is to

‘transpose observed contrasts in calibration parameters to reflect

internal hydrological differences’, with respect to particular magnitude

storms and for particular types of NbS. The approach is also more

aligned with the ‘uncertain or fuzzy landscape space to model space

mapping’ discussed by Beven (2001a). Whilst the approach of donor

parameters is used commonly in hydrological analyses of ungauged

catchments, it does not address the scale problem on how parameter-

shifts might change with size of catchment, the size and duration of

storms and antecedent conditions, due to the non-linearity of hydro-

logical processes. However, this is partly addressed through the rec-

ommended approach of considering the multi-local scale, where we

step away from trying to understand the whole-system response to

many small distributed interventions at very large scale, where obser-

vations have only been made at the micro-basin scale, and instead

focus in multiple small scale watersheds above communities at risk.

The paper explores the fuzzy change observed in calibrated

m parameters in Dynamic Topmodel between wooded and non-wooded

F IGURE 1 Overview of Q-natural flood management paired micro-basins
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hillslopes, having similar size, aspect and hydrological characteristics

(e.g., the baseflow index and standard percentage runoff are the

same) for two different winter storms, and the same relative shift

was then applied at sites at a much larger scale in the Eden catch-

ment (2300 km2) in Cumbria, where tree planting would be expected

to have the greatest impact on reducing the likelihood of saturation

overland flow for one of the same storms (Storm Ciara). However,

whilst the paired catchments were selected carefully for similar

scale, aspect, slope and topography, it is acknowledged that the

donor-shifts can in part be due to other differences, not just as a

result of woodland, including differences in micro-topography, drain-

age and geology. Eliminating such differences in a non-laboratory

system is very difficult, so further replication or apportionment of

change due to other differences is needed.

2 | DATA AND METHODS

The paired micro-basins in the Cocker catchment are first described,

along with the much larger Eden catchment in Section 2.2. Two key

storm periods were investigated, for named-storm Atiyah in December,

2019 and named-storms Ciara and Dennis in February 2020, which

impacted some communities badly (e.g., Appleby in the Eden catch-

ment). The first two sections introduce the catchment characteristics,

followed by details of the independent fuzzy calibrations of the three

catchments, along with detailed of the modelling experiments.

2.1 | Micro-basin data: Micro-basins in the cocker
catchment

Figure 1 presents the two small paired Cumbrian micro-basins, with

moorland characterizing the Sware Gill micro-basin to the west in red,

and the commercial conifer forest of the Darling How micro-basin to

the east. The different characteristics have been obtained from the UK

Flood Estimation Handbook (Centre for Ecology & Hydrology, 1999)

and the BGS (2021), and are summarized below.

2.1.1 | Sware Gill

Land-use: rough grazing; Area: 0.24 km2, Superficial geology—absent;

solid geology: Loweswater formation dominated by relatively low per-

meability greywacke beneath the lower half of the basin, and Kirk Stile

Formation of mudstone and siltstone beneath the upper half of the

basin; altitude: 404 mAOD; base flow index: 0.57, specific percentage

runoff: 33.3, standard annual average rainfall: 1916 mm).

2.1.2 | Darling How

Land-use: working confer plantation (33% mature trees with some larch

and pine); Area: 0.46 km2, Superficial geology—glacial till diamicton

covers the centre of the catchment; solid geology: Kirk Stile Forma-

tion, predominantly of permeable sandstone; altitude: 403 mAOD;

base flow index: 0.57, specific percentage runoff: 33.1, standard

annual average rainfall: 1786 mm).

In summary, the Sware Gill and Darling How catchments contrast

markedly in the surficial geology with slowly permeable till being pre-

sent beneath parts of Darling How and absent beneath Sware Gill.

The Kirk Stile Formation has been shown to be permeable elsewhere

in Cumbria, and its extent differs between the two catchments. How-

ever, the hydrological descriptors of base flow index and percentage

runoff are very similar. There is a difference in the annual average

rainfall based on the Flood Estimation Handbook (Institute of Hydrol-

ogy, 1999) given their proximity, although this is likely to be an arte-

fact of the strong local hydrological gradients due to the mountainous

terrain, and unlikely to be significant, especially when it is considered

that the estimates are based on an interpolation of a 1 km grid. All of

these differences highlight epistemic uncertainties and illustrate how

difficult it is to make inferences in hydrology when no two catch-

ments, even neighbouring micro-catchments within 1 km of each

other are the same.

This hydrological gradient could also be responsible for the lower

specific runoff generation in Darling How compared with Sware Gill

for the two storms generated, although there is no rainfall measure-

ment in Darling How, with the model being driven by the Sware Gill

rain-gauge only 1 km to the south west. This results in a key knowl-

edge uncertainty (in the absence of rainfall measurement in both

micro-catchments), although for the specific storms there is no know-

ing if this is realistic, or whether it simply adds additional uncertainty.

2.2 | Macro-basin data for Eden catchment

The much larger Eden catchment investigated here, rises in Black Fell

moss, Mallerstang valley and flows south to Carlisle (shown as red cir-

cle in Figure 2). Stagnosol and Gleysol soils are extensive in the catch-

ment and derived from the underlying glacial till diamicton. The valley

floor is also underlain by deep permeable sandstone aquifers. There is

also a strong NE to SW positive gradient in the rainfall between

868 mm to 1548 mm based on the Met Office 1961–1990 averages.

There have been numerous recent floods impacting especially

Appleby town and Carlisle city, including in 2005, 2009, 2015, 2020,

where the peak flow for named storm in (2015) achieved a record

level of approximately 1740 m3/s, while Storm Ciara, modelled here,

had a peak of 1000 m3/s.

Previous modelling of the Eden catchment has highlighted the

potential synchronization issues (Pattison et al., 2014) and studies to

understand the resilience of integrated flood risk management mea-

sures that include NbS across multiple hydrological extremes (Hankin

et al., 2017a). Prioritizing spatial configurations of NbS such as tree-

planting in such a large catchment is difficult, given the different pres-

sures and localized conditions. One approach identified here has been

to identify all communities at risk from frequent flooding (3.33%

annual exceedance probability—AEP) in small catchments (<10 km2)
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following co-creation work with environmental NGOs (Hankin, 2020).

These watersheds are then used to intersect a national set of maps

set up to identify areas with potential for NbS for the Environment

Agency (see Hankin et al., 2017b), in particular for advantageous

wider woodland planting, which is identified by the presence of till-

diamicton. Strong spatial correlations between till and gleyed soils

were found in comparisons with those mapped in detailed ‘soil series’
maps by the Soil Survey of England and Wales (Hankin et al., 2018),

showing till to be synonymous with the presence of slowly-permeable

soils, more likely to generate saturation overland flow.

The areas that this approach suggests should be targeted for

planting (shown as green in Figure 2) are also constrained by the pres-

ence of existing woodland, which to avoid double-counting was

removed based on Forestry Inventory (Forest Research, 2020) and OS

open woodland data (Ordnance Survey, 2021).

The new ‘modelled’ woodland is assumed to give rise to changes

in a number of hydrological processes from increasing friction to over-

land and near surface flows (Goudarzi et al., 2021), enhancing infiltra-

tion rates due to roots, and enhanced through-storm wet canopy

evaporation (this latter has been studied in detail by Page et al., 2020).

Rather than modifying multiple Dynamic Topmodel parameters (listed

in Section 2.3) as in the approach of Ferguson and Fenner (2020), all

these effects are lumped into the shift in the key sensitive parameter,

m, as a percentage of the independently calibrated value for the whole

of the Eden. A 10 m resolution digital terrain model (DTM) was used

to process the topographic index for the Eden (the finest scale it was

F IGURE 2 Whole Eden rendered as a
projection with complexity of network,
the woodland planting scenario (green)
and Environment Agency river gauge at
Sheepmount shown as a green triangle
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possible given computational limitations). Whilst only 200 simulations

were undertaken for the much larger Eden due to run-time con-

straints, some strong performance measures were obtained (Nash-

Sutcliffe Efficiency—NSE up to 0.9), and a sub-set of these were used

for which NSE ≥0.7 in the larger scale modelling experiment to under-

stand change in hydrological responses.

2.3 | Micro-basin modelling method: Calibrating
Dynamic Topmodel in Sware Gill and Darling How
to explore parameter shift

Two independent Dynamic Topmodel models were set up for the

neighbouring micro-catchments of Sware Gill and Darling How, using

20 classes of topographic index based on an analysis of 2 m resolution

DTM, and two spatial classes for rainfall to allow the potential for var-

iable inputs. The seven key Dynamic Topmodel parameters are:

• Lateral saturated transmissivity, ln(T0) (m2/h)

• Form of exponential decline in transmissivity, m (m)

• Maximum root storage, srzmax (m)

• Initial root storage, srz0 (m)

• Unsaturated zone time delay, td (h/min)

• Overland flow routing velocity, vof (m/h)

• Channel flow routing velocity, vch (m/h)

The ranges were selected to be relatively wide, uniform prior-

distributions (table 1 in Metcalfe et al., 2018) and 10 000 Monte-

Carlo simulations were undertaken independently for each storm,

calibrating against the data from the two micro-catchments collected

for the storms in December 2019 and February 2020.

Local rainfall was measured with an RG3 raingauge connected to

an RX3000 telemetry unit (Onset Computer Corporation, Bourne,

USA). This was telemetered from Sware Gill and compared using

double-mass plots with a local Environment Agency gauge 5 km away

in the main Cocker valley near Crummock Water, and whilst a reason-

able relationship was obtained for the December storm, the Q-

NFM rain-gauge was damaged after Storm Ciara, resulting in

under-recording and meaning that the subsequent Storm Dennis

was not modelled. Furthermore, for both storms a consistent

adjustment was made to the rainfall and the minimum potential

evapotranspiration (PET min), which is typically estimated at 2 mm

for this latitude, and whilst different for the two events (due to

malfunction of the single raingauge), these adjustments were the

same for both micro-catchments, such that the same net rainfall

was used in each event (suspecting that the rainfall measurements

had a positive mean bias in the first storm). The maximum potential

evapotranspiration (PET max) was set at 9 mm, typical of the maxi-

mum at this latitude.

Details of the fuzzy-calibration are as follows, with the correc-

tions to the rainfall and the evapotranspiration, plus the runoff coeffi-

cients for the two storms indicating a reasonable mass balance, which

is notably stronger for second storm for Darling How.

• December 2019—named Storm Atiyah

� 5 days warm-up; no correction to rainfall

� Sware Gill

• PETmin = 5.5 mm; PETmax = 9 mm

• Runoff Coefficient = 0.48

� Darling How

• PETmin = 5.5 mm; PETmax = 9 mm,

• Runoff Coefficient = 0.62

• February 2020—named storm Ciara

� 3 days warm-up; rain factor of 1.8 required due to under-

recording for both models

� Sware

• PETmin = 2 mm; PETmax = 9 mm

• Runoff Coefficient = 0.67

� Darling How

• PETmin = 2; PETmax = 9

• Runoff Coefficient = 0.95

Figure 3 shows the range of predictions for a higher-performing

model for Sware Gill to the micro-flume telemetered data for the

December event. The more complete results are shown in the results

section.

Following independent calibration of both catchments a range

of ‘dotty plots’ (where the performance in terms of the NSE is

plotted against the parameter value) were developed for the

higher performing models, and the differences in these were

explored.

A further modelling experiment was then undertaken whereby

the resulting contrast in m was then applied to a hypothetical plant-

ing of the lower third of the Sware Gill, to understand the potential

shift in the hydrological response based on the differences in

response between the two basins is driven by the difference in land-

use, and not due to intrinsic geological differences. This is only a

hypothetical assumption to demonstrate the subsequent upscaling

of example results from 1 km2 basins to multiple 10 km2 basins

(watersheds above communities at risk) distributed across a basin

>2000 km2.

2.4 | Macro-basin modelling method: Calibrating
Dynamic Topmodel and model cascade for the Eden

The macro-scale Eden catchment Dynamic Topmodel was set up and

calibrated against discharge data from the Environment Agency

Sheepmount gauge (NRFA, 2021) for storm Ciara. The rainfall data

was based on weighted average of the Great Asby (upper headwaters

in south-east), Penrith (mid-catchment), Ullswater (mid catchment,

mountainous) and Carlisle (lower western) raingauges. This makes the

assumption that there was no hydrological gradient for the large

storm under investigation, which could be improved in the future with

distributed rainfall.

A 10 m resolution DTM of the Eden was used to divide the large

catchment into hydrological similarity units (HSUs) based on:
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• 20 classes of topographic wetness index;

• 1 km2 grid of distributed rainfall (held at the mean in this

experiment);

• An indexing grid of locations for hypothetical conifer planting in

areas of slowly permeable soil in small catchments above commu-

nities at risk (Metcalfe et al., 2017a).

Monte-Carlo analysis was used at this much larger scale to identify

strongly fitting models for the storm sequence that included storms

Ciara (as for the micro-catchments) and Dennis and resulted in a peak

flow of 1000 m3/s the Sheepmount gauge. Strongly performing base-

line models with NSE up to 0.9 were identified (see Figure 8), and the

m parameters HSUs falling within the hypothetical tree-planting grid

were later increased based on the shift from the paired basin results

for Storm Ciara alone. This makes the tacit assumption that the better

performing m parameters are specific for this storm and can only be

used as a donor for this storm with associated antecedent conditions

(and for the same change in landscape).

The model was re-run and the change to the hydrograph at the

Sheepmount gauge was explored with reference to models having

NSE ≥0.7 with and without hypothetical tree-planting on areas of

slowly permeable soils. The strongly performing models typically

represent the peak flows well, but with underestimate of the

recession, implying a greater groundwater response was needed—

which could be relatively significant due to sandstone geology in

the lower part of the catchment. The distributed changes in runoff

response at the local, river reach scale were also investigated to

understand the significant changes in the vicinity of hypothetical

new tree-planting.

In a further modelling experiment the distributed streamflow

from the top-performing model was fed into a 2D hydrodynamic

model following the hybrid approach of Hankin, Kretzschmar,

et al. (2019); Hankin et al. (2019), in part, to enable comparisons of

flood extent with new types of data. In this approach, Dynamic

Topmodel is used to predict sub-surface and overland flows

emerging to every pre-defined river segment (~100 m segments)

and the emerging flows are used in an internal inflow boundary to

drive the 2D hydrodynamic model, JFlow. The predicted runoff

components for all 21 595 river segments were input to the 2D

Shallow Water Equation solver, JFlow (Environment Agency,

2013) and routed to allow a better understanding of attenuation,

and to permit modelling of hydrodynamic interactions with in-

stream and floodplain including the effects of hypothetical tree

planting.

The JFlow model was used to generate maximum depth rasters at

10 m resolution, from which vector flood outlines were derived to

permit comparison with satellite remotely sensed flood extents for

Storm Ciara. The satellite-based flood extent was based on a change-

detection algorithm applied to Sentinel-1 C band synthetic aperture

radar (SAR) data. The approach used the ratio of pre-flood (5th

February 2020) and post-flood (10th February) images, with a thresh-

old applied to attain the greatest contrast.

To enable further benchmarking of the hybrid modelling

approach, the predicted flood extent was also compared with Flood

Foresight (Bevington et al., 2019). This system is based on a real-

time indexing approach that links the peak flow across a network of

flow gauges to the volume on the floodplain computed for a range

of pre-simulated scenarios (five design events ranging from 20 year

to 1000 year return periods). It has been set up for use in real-time

and forecasting modes and produces 30 m resolution depth grids

spanning the whole of Great Britain. It therefore produces an inter-

polated flood-footprint based on linking the rarity of the flow for a

F IGURE 3 Predicted and observed hydrographs for Sware Gill, storm Atiyah (2019) with 10 and 90 percentile of higher performing model
predictions
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network of telemetered flow gauges (a network of over 1000

gauges across England operated by the Environment Agency are

available on-line).

3 | RESULTS

3.1 | Micro-basin modelling results

Using Dynamic Topmodel (Smith, 2020), the new experimental

data is used here to independently calibrate the paired catchments

using 10 000 Monte-Carlo simulations, with wide effective param-

eter ranges, similar to those reported in Metcalfe et al. (2017b) for

two winter storms. For the 50 top-performing parameter combina-

tions (having NSE between 0.5 and 0.8), the range of the most

sensitive parameter, m, were then compared between the two

micro-basins (Figure 4). A more constrained superset of results

could also be compared for example NSE >0.7, giving a similar

results, but all the values are shown in Figure 4 are used in this

instance. All the parameters exhibited equifinality, apart from

m and to a much smaller degree the maximum root-zone storage

(SRmax).

F IGURE 4 Contrasts in ‘m’ parameter between Darling How (conifer) and Sware Gill (moorland) micro-catchments specifically for storm
Atiyah (2019) and Ciara (2020) storms
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The contrasts in the mean value of m for both storms are shown

in Figure 4 and an average contrast is shown in Figure 5. The NSE

values do tend to be better on average for Sware Gill, which could be

as a result of the rain gauge being within the Sware Gill catchment

and being used by proxy for Darling How. The percentage difference

is in relation to the Sware Gill parameter set. To reiterate, if we make

a hypothetical assumption that the contrast in the m parameter is cau-

sed by the woodland enhancing sub-surface movement of water

(rather than intrinsic differences arising from contrasting geologies)

then we make take the apparent difference and apply to hypothetical

target areas for tree planting in the Eden catchment. Storm Ciara was

used to illustrate the approach, it being the larger storm in the Eden

catchment.

The average percentage change (in the mean value of m) was not

applied in the larger Eden model, but rather the shift of 53% observed

in Figure 4 for Storm Ciara, the damage-causing storm with a peak of

1000 m3/s at Sheepmount. This is somewhat larger than for example

the value of 20% increase used in modelling experiments undertaken

in Ferguson and Fenner (2020), although none of the other Dynamic

Topmodel parameters have been changed here as was the case in that

study. Here only the m parameter was found to be significantly sensi-

tive when calibrated independently for the same storm in the paired

catchments.

However, the shift in the m parameter was first applied in another

micro-scale modelling experiment as a demonstrator, whereby the

lower third of Sware Gill was hypothetically planted with conifers

(green area in Figure 6). The HSUs were split to include this area, and

the baseline simulation without planting and with planting were then

simulated for a top-performing simulation to demonstrate the effect.

The addition of this green area as a realistic planting scenario for

this catchment, with a greater m parameter value compared to the

calibrated m for Sware Gill results, as expected in a small reduction in

the peak flow (Figure 7).

Clearly this is a hypothetical storm-mitigation scenario for condi-

tions similar to Ciara in this specific location. Figure 7 gives an indica-

tion of the potential scale of the reduction of peak flow (17%) for this

hypothetical scenario (which also happens to be a similar proportion

to the 33% of current conifer extent in Darling How).

3.2 | Macro-scale modelling results

At the macro-scale, the Dynamic Topmodel performance is strong

(Figure 8), with the best scenario yielding NSE = 0.9, shown individu-

ally to illustrate clearly what happens when the distributed runoff

flows in the detailed river reach network are fed in to the 2D hydro-

dynamic JFlow model (the spread of ensemble of better performing

models are shown more clearly in Figure 9 to illustrate uncertainty).

There is a clear reduction in the peaks when the hybrid modelling

approach is used, only partly accounted for by increased attenuation

not included in the routing implicit to Dynamic Topmodel. However,

this does not account for the full volume difference, and it is consid-

ered that surface water stores/floodplain storage (in areas of concav-

ity) are also being filled and that water is not draining down again in

the 2D model domain. This was in part alleviated through setting an

initial warm-up or feeder flow in the main river, this representing the

base flow in the 2D model domain, and the two significant bodies of

water (Haweswater reservoir and the natural lake Ullswater) were

modified such that levels were approximately full before the simula-

tion begins. It was not possible to apply the same approach to the

numerous smaller lakes and waterbodies so hence some of the miss-

ing water will be surface water stores at these locations.

F IGURE 5 Shifts in ‘m’ parameter averaged across the two calibration events for Sware Gill catchment (red) and forested Darling How
catchment (blue)
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The 10 m resolution JFlow model maximum depth grid is com-

pared in Figure 9 with the Sentinel-based remotely sensed flood out-

line and the interpolated footprint generated using Flood Foresight

(Bevington et al., 2019).

The left-hand panel of Figure 9 shows the hybrid model of the

Eden set up here (Dynamic Topmodel coupled with JFlow) and sug-

gests that the model is over-predicting the flood extent in the vicinity

of Carlisle city (at the location of the Sheepmount river gauge),

although the satellite image processing is known not to be accurate

where there is a lot of vegetation.

Comparing with the right-hand panel, the hybrid model is very

similar to the footprint predicted by Flood Foresight (Bevington

et al., 2019). Both models are over-predicting the remotely sensed

flooding, although it should be noted the more localized flooding

that occurred in Appleby 50 km upstream, was not picked up by

the remote sensing analysis. Without this level of fine-scale detec-

tion (potentially as a result of greater tree-cover), it is concluded

that Sentinel data is currently too coarse to place additional signifi-

cant spatial constraints on the whole-system behaviour for this

particular storm at this resolution, but that it may be possible in

the future.

Eight of the 200 Monte-Carlo simulations were considered

acceptable (NSE ≥0.7) and were taken forward to the macroscale

hypothetical tree-planting experiment. For the tree-planting scenario

the calibrated m parameter was then shifted and increased by 53%

based on the microscale paired findings. The difference between the

simulated discharge at Sheepmount and that following the application

of an ensample of m parameter shifts is given in Figure 10. The first

peak represents Storm Ciara, having a monitored peak flow of

1000 m3/s, implying a range of 0.5–5% peak flow reduction (1%

F IGURE 6 Map of the two
catchments showing land-cover and
inset below, the modification of
hydrological similarity units. Sware
Gill catchment in red; Darling How
forested catchment in blue;
telemetered gauges as green
triangles, green shaded areas denotes
hypothetical tree planting

10 of 17 HANKIN ET AL.



median) across the ensemble, arising from the targeted planting in

small watersheds above communities at risk. A full GLUE analysis

(Beven & Binley, 1992, 2014), that would include allowing for

uncertainty in shifted parameter values, has not been undertaken

here, but the range in predicted change hydrographs gives a good

indication of uncertainty across the ensemble.

F IGURE 7 Reduction in
hydrograph peak from hypothetical
tree-planting scenario

F IGURE 8 Sample calibration for Dynamic Topmodel and hybrid models for the whole Eden
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F IGURE 9 Spatio-temporal calibration: Comparison of hybrid model outputs with flood foresight and the Sentinel flood footprint

F IGURE 10 Difference between baseline and with-trees scenario
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This range demonstrates that the model uncertainty is large,

but potentially also that the distributed changes to m are some-

times interacting ‘constructively’ or ‘destructively’ in this very

large network of 21 595 river segments. This is for a single

damage-causing storm, and a single tree-planting strategy summa-

rized as planting on slowly permeable soils in small catchments

above communities at risk of frequent flooding, where based on

open-data there is not already planting. The huge number of com-

binations of policy (spatial deployment strategy)/storm size and

shape/model uncertainty leads to the conclusion that it may

instead be more effective to focus on the multi-local scale—to

those small at-risk communities (shown in pink in Figure 11),

where the modelled changes are relatively significant. The model-

ling experiment indicates that that it is going to be very difficult,

even with modern remotely sensed data, to objectively constrain a

model of a large catchment sufficiently to demonstrate the inte-

grated impact of many distributed NFM interventions.

Figure 11 shows how the peak runoff during storm Ciara changes

spatially at the river segment scale, and segments with an increase in

peak flow of >0.25 m3/s are highlighted in red. These are significant

changes between the scenarios at this scale.

There also appears to be some interaction here between the scale

of HSUs and the resolution of the woodland planting shown in green,

for which the m values have been uplifted for Storm Ciara.

4 | DISCUSSION

The discussion section refers back to the numbered research ques-

tions in parenthesis. The main premise of the paper has been to

understand the potential for upscaling changes in effective parame-

ters calibrated for micro-basins to much larger scales using a process

of donor-parameter-shift (1). Changes to multiple processes are

‘wrapped-up’ in the shift in the Dynamic Topmodel m parameter, yet

without detailed investigations it is impossible to know what has cau-

sed the contrasting between the two study basins (2). The modelling

therefore is a hypothetical experiment in order to demonstrate the

donor-parameter-shift approach, and to explore more of the implica-

tions when modelling much larger scales. The approach was also used

in Hankin et al. (2017) in a more complex uncertainty framework

whereby stratified sampling was undertaken of the fuzzy shift applied

to a fuzzy set of better performing baseline (pre-NbS) scenarios. With

the large run-time of the Eden model (48 h), the mean donor-shift

(as opposed to sampling from a range of weighted shifts) has been

applied across an ensemble of eight strongly performing models for a

single large flood event (3).

The complexity of the interactions and possible changes in syn-

chronization, resulting from different modelled distributed hydrological

responses interacting differently, becomes apparent at this large scale

especially from Figure 10 where very different changes are predicted in

the ensemble of top performing models. This is despite seeing relatively

significant changes at the local scale (0.25 m3/s in many river segments

draining catchments 10 km2), which without destructive interference,

would add to reductions in peak flows many times greater (estimated

50 m3/s) than the median peak reduction (15 m3/s) seen in Figure 10

for storm Ciara (the first peak). The large-scale parameterizations are

difficult to constrain even using modern satellite detected data (4), but

potentially represents a problem domain where local changes to the

modelled scenario could be considered in more detail to reduce risk at

the impacted communities. This multi-local scale seems to offer a better

posed optimisation problem, such that if peak flows are observed to be

reduced locally then it is already known that there will be a local benefit

(5), and there is little point looking beyond this at the whole catchment

scale where modelling the synchronization effects becomes intractable

and difficult to constrain even with current advances in remote sensing.

The argument requires further evidence, which will hopefully stem from

the 18 micro-catchments under investigation, where it is hoped more

evidence for parameter shifts from NFM measures can be identified

(1, 2, 3), and such evidence is crucial for taking the donor parameter-

shift approach further.

In an attempt to delineate some of the process uncertainty here,

a modelling experiment was also investigated using a spatially more

simplistic rainfall-runoff model, based on the probability moisture dis-

tribution approach of Moore (1985) called HYMOD (e.g., see Quan

et al., 2015), which also differs from Dynamic Topmodel as it is

lumped, rather than spatially distributed. This was used to help under-

stand whether a pure increase in hydrological losses (e.g., due to

enhanced wet-canopy evaporation) from planting trees could also

result in a shift to the key parameter controlling recession (m).

HYMOD was calibrated to storm Atiyah (2019) for Sware Gill, and the

resulting fitted flow response was then reduced by 20% to emulate

increased losses associated with woodland for high elevation, non-

saturated conditions (see Page et al., 2020). This reduced response

was then used to re-calibrate the model with the same rainfall, to see

if the HYMOD parameter controlling recession shifted significantly.

Figure 12 shows this is the case based on 10 000 simulations.

This suggests that the effects of a pure loss can manifest itself

as a significant shift to the key parameters controlling recession.

However, on investigating the same approach applied to Dynamic

Topmodel for the same Sware Gill micro-catchment, no significant

shift in the m parameter was detected, in fact there was no trend

and this implied that the shift is more complex than just a change

to hydrological losses (due to wet-canopy evaporation), and

impacts the soil storage and recession in a more complex way. Fur-

thermore, the larger flood runoff coefficients for the conifer-covered

Darling How basin presented in Section 2.3 is not consistent with it

having a larger rate of wet-canopy evaporation compared to the

moorland Sware Gill catchment. This again points to intrinsic geolog-

ical differences between the two catchments giving contrasting

water storage dynamics in the surficial and solid geology of the

micro-catchments.

The modelled shift in m was applied to the macro-scale, and the

model outputs compared through time at the furthest downstream

gauge and then spatially using new Sentinel C-band data (4). The

ensemble of predicted hydrograph differences is very wide, and the

median reduction in the peak is relatively small. In reality, neither
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dataset provides satisfactory ‘additional’ constraint to the model

parameterisation, although using multiple datasets can help improve

confidence in the baseline model.

The problem at the large scale is that to properly appraise the net

impact of millions of permutations of: distributed NbS interventions

and spatial strategy; variability of extreme weather; and performance

F IGURE 11 Differences between baseline and with-trees scenario—Red is a significant increase in runoff generation >0.25 m3/s per segment
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failure—requires enormous computational resources, and the resulting

model uncertainty cannot necessarily be constrained even considering

just key modes of whole-system behaviour (demonstrated in Hankin

et al., 2019). More local, distributed measurements closer to the inter-

ventions are needed to identify the donor-shifts and constrain which

of the ensemble model predictions are realistic.

The conclusion is that analysis of effectiveness should focus on

the multi-local scale where observed contrasts in behaviour might be

observed in response to targeted interventions and evidence for shifts

at scales commensurate with the micro-catchments where the param-

eter shifts are evidenced (6). This could in turn help with the scaling

issue, and intrinsic hydrological non-linearities whereby modelled

shifts in parameters at different scales will likely be different. There

will of course be a need to model larger parts of a catchment to

develop larger-scale storage solutions, such as broad-scale floodplain

re-connection, but the risk for these can also be understood at the

reach-scale with a detailed hydrodynamic investigation.

The multi-local scale could be an important principle for the many

applications of NbS that are being currently being implemented

(e.g., see 60 case studies in Burgess-Gamble et al., 2017), without signif-

icant ‘model-driven design’, informed by credible distributed hydrologi-

cal modelling. This can partly be addressed by focussing initially on

these local communities at risk, but also if more donor-shifts from accu-

rate paired plot experiments can be generalized more. An example of

this are the changes to model effective roughness (using Mannings n)

due to local re-vegetation (e.g., see Addy & Wilkinson, 2019;

Shuttleworth et al., 2018) across a variety of landscapes.

5 | CONCLUSIONS

This paper demonstrates applying donor-parameter-shifts from effec-

tive model parameters based on paired micro-catchments set-up to

quantify changes in hydrological responses from different types of

NbS measures, in this case specifically for the deliverable of flood

hydrograph reductions (NFM). The detected shifts are place- and

storm- specific and based on the independent fitting of the distributed

hydrological rainfall-runoff model, Dynamic Topmodel to new, accu-

rate monitoring data. Applying shifts in the parameter controlling the

rate of decline of the downslope transmissivity controlling sub-surface

flows to a much larger catchment and exploring the outputs using

modelling experiments has led to a number of conclusions which will

require further evidence.

• Using models to scale micro-scale findings on how NbS shifts

hydrological response at the macro-scale is still limited by the large

uncertainties in non-linear scaling of hydrological processes, and

the complexity of whole system interactions as the river network

increases in size, and the signal from our changes is lost in the inev-

itable environmental variability.

• It is not surprising that there is some evidence to suggest NbS

measures can be effective at the small scale (<10 km2), but much

less at larger scales (>10 km2), simply because testing and con-

straining the whole system response with large input-errors and

knowledge uncertainties becomes intractable, and because we lack

direct, high quality observations of hydrological change in the few

global locations where wholescale landscape change has taken

place.

• Models of natural systems will always be both imperfect descrip-

tions of reality and predictors of environmental behaviour (Beck

et al., 1993), but they are better and more constrained by directly

observed evidence, more widely available at smaller catchment

scales.

• Local deployment of NbS in very few locations of a large catch-

ment is by definition only going to reduce flood risk locally for

communities affected by small streams. Therefore, we should have

a more nuanced focus at the multi-local scale, not at the macro-

scale, partially to side-step the scaling problem, and partially to

remove the need for fully testing whole system response in larger

catchments for huge numbers of permutations. This moves the

focus into communities at risk in small catchments where there is

strong evidence for NbS being more effective.
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the versions of Dynamic Topmodel have been referenced, although

the open-source model development is still on-going (Smith, 2020).
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