As the Director of Natural Sciences I see the tremendous career opportunities that are open to students with a Natural Sciences degree. As the Covid-19 crisis demonstrated, those with a strong interdisciplinary science skill set are highly sought after. Areas like molecular biology, data science and statistics and even engineering have featured heavily in combating the pandemic. Pursuing a range of science subjects, often across discipline boundaries, provides you with a wide skill set and a level of independence that makes you very attractive to employers.

Why study Natural Sciences?
Coming to university does not necessarily mean specialising in one subject. A Natural Sciences degree will allow you to maintain an interest in two or three scientific disciplines where you will learn and integrate knowledge from a range of subjects. Here at Lancaster there are no ‘Natural Sciences’ modules. You will take the same modules as the single honours students and be taught to the same depth of understanding. What differentiates our Natural Sciences programme from other universities is the wide choice of subject pathways and flexibility. We have 21 pathways (a pathway is a selection of modules taken from single honours programmes) and in first year you will choose three, giving you many possible combinations. Such open-minded scientists are in great demand with employers and your job prospects are excellent. Your personal and professional development are of the utmost importance to us and by studying a Natural Sciences degree you are telling a prospective employer that you are the sort of person who is prepared to think and work across the conventional boundaries of science.

You are sure to make lasting friendships, create special memories and develop life skills that will stay with you long after you leave us. So welcome to Lancaster and welcome to Natural Sciences.
Alistair Welford
BSc Hons Natural Sciences

I came here for an Open Day and I absolutely fell in love with the campus. The course was perfect for me, as I wasn’t entirely sure what I wanted to do, so everything just seemed to work out great. It was my first choice as soon as I came here.

I was doing Maths, Physics and Environmental Sciences for my A levels and as I really enjoyed doing all of them, I couldn’t decide which degree to do. Then I came to Lancaster and it was one of the only universities to do a Natural Sciences degree where you could do whatever you wanted, so that was just amazing because it allowed me to keep going with what I enjoyed doing and it was perfect! You can pick whatever you want and then you can specialise as you go through the years. It’s all about the flexibility.

There’s loads of support if you ever feel like you’re struggling with coursework or with exams. Meeting with academic advisors is really useful. They are lecturers and professors within your department, they look at your interactive transcript and you meet them every term. For me, I have three different tutors because I do three subjects. It’s a nice support network which is tailored to your degree; so for example, my physics tutor only deals with Natural Sciences students so she knows exactly what I’m going through and what’s happening, which is great.

I was amazed at how welcoming the College system was. I got involved in the rugby team and loads of different sports teams and everyone was just super welcoming. You can make loads of different friends, you have your flat, you have your college, you have your course, and I just felt really at home here.

I’ll be graduating this year and going to my graduate job at the National Air Traffic Service (NATS) as an Assistant Research Analyst where I’ve got a two year contract. After that I’ll either go into the next level position or do a Masters degree.
A Natural Sciences degree gives you a unique opportunity to mix scientific subjects to form your own hand-picked degree. If you are interested in more than one science subject or are interested in where traditional disciplines overlap, Natural Sciences is the choice for you.

We provide the following degrees:

- BSc Hons Natural Sciences – 3 Years
- BSc Hons Natural Sciences (Study Abroad) – 3 Years
- BSc Hons Natural Sciences (Placement Year) – 4 Years
- MSci Hons Natural Sciences – 4 Years
- MSci Hons Natural Sciences (Study Abroad) – 4 Years

Design your own degree

Lancaster University offers one of the most flexible Natural Sciences degree schemes in the country. Unlike other institutions which package disciplines together, at Lancaster you choose your own combinations.

Our degree programme was established in 1987

It is one of the longest running Natural Sciences programmes in the country.

For the lover of science

Making the grade

The standard entry requirements for all of our courses are AAA at A level with at least two of these being in science subjects from the following: Biology, Chemistry, Computing, Environmental Science, Geology, Information Technology, Mathematics, Physics or Psychology.

In addition, entry to some first year Pathways requires A level qualifications in particular subjects. Please see the list below:

<table>
<thead>
<tr>
<th>Pathway</th>
<th>A level Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry, Cell Biology and Genetics</td>
<td>Chemistry, Mathematics and Chemistry</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Chemical Measurement and Analysis</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Chemical Synthesis and Structure</td>
<td>Mathematics and Physics</td>
</tr>
<tr>
<td>Electronic Engineering</td>
<td>Chemistry and Mathematics</td>
</tr>
<tr>
<td>Environmental Chemistry</td>
<td>Mathematics</td>
</tr>
<tr>
<td>Mathematics</td>
<td>Mathematics and Physics</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>Mathematics and Physics</td>
</tr>
<tr>
<td>Physics</td>
<td>Physics and Mathematics</td>
</tr>
</tbody>
</table>

In your personal statement, we understand that the pandemic has changed everyone’s life. You therefore won’t be disadvantaged if you cannot include extracurricular activities in your personal statement.

We also recognise that you may be applying to universities to study one subject, as well as Natural Sciences. As long as we see your commitment to widening your knowledge in the sciences in general, (e.g. through reading, work experience and attending lectures etc.), then you would not be disadvantaged by us for making your personal statement concentrate on one subject.

If you achieve an A grade in your EPQ, then you are eligible for an offer that is one grade boundary lower than we would usually make, e.g. AAA going to AAB.

Getting to know the Department

We will invite you to one of our offer holder events, if you are offered a place on one of our degrees. Attendance is not compulsory, but we highly recommend you attend.

Due to the pandemic, we will be offering a hybrid mix of events subject to current Covid-19 government advice.

On-campus offer holder events

The structure of these events provides the opportunity for you to find out more about us and what it’s like to live and study here as a Natural Sciences student. You will be given a detailed presentation about our degree programmes and receive a tour of some of our departments. You will also have the opportunity to meet with our subject academics and current students to have your questions answered. Refreshments are provided throughout the day.

Digital offer holder events

If you are unable to visit us in person, then we will also be providing digital opportunities. These will be in the same format as the on-campus events, except the presentations and academic and student Q&A will be delivered live digitally. Tours of the departments will be given as virtual tours.

Pathway: Biochemistry, Cell Biology and Genetics

A level Requirements: Chemistry, Mathematics and Chemistry

Pathway: Chemical Engineering

A level Requirements: Chemistry

Pathway: Chemical Measurement and Analysis

A level Requirements: Chemistry

Pathway: Chemical Synthesis and Structure

A level Requirements: Mathematics

Pathway: Electronic Engineering

A level Requirements: Mathematics

Pathway: Environmental Chemistry

A level Requirements: Mathematics and Physics

Pathway: Mathematics

A level Requirements: Mathematics

Pathway: Mechanical Engineering

A level Requirements: Mathematics and Physics

Pathway: Physics

A level Requirements: Mathematics and Physics

For the lover of science
Design your own degree

MSci or BSc?
You can enrol on either the three year BSc honours degree or the four year MSci honours degree. Both programmes are identical in years one to three. You are able to transfer between the MSci and the BSc up until the end of third year, providing you achieve at least an upper second class at the end of third year, providing you with the opportunity to specialise in a discipline, allowing you to study where your interest really lies. At the end of the first year, the possible options available to you are:
• Continue to study your original three subjects
• Drop one of the original subjects and continue with a two subject degree

Years 2 and 3 (Part II)
From your second year you will have the opportunity to specialise by choosing areas within a discipline. Your choices will be influenced by the subjects you selected in first year.

Your first year (Part I)
During your first year you will complete 15 modules, five in each of your chosen subjects, though other variations are possible.

Flexible options
In first year you will normally study three subjects, two of which must come from the following disciplines:

- Biology
- Chemistry
- Computing and Communications
- Engineering
- Environmental and Earth Science
- Geography
- Mathematics
- Medical School
- Physics
- Psychology

Non-science subjects
The third subject may be another science or non-science subject. It is possible to take up to 25% of your studies in a non-science subject. Almost any subject taught at Lancaster University is available to you as long as you meet the pre-requisites, it fits with your timetable and the module has the capacity.

Sample timetable for first year students

<table>
<thead>
<tr>
<th>Time</th>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thurs</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>9am</td>
<td>Environmental Science (lecture)</td>
<td>Biology (lecture)</td>
<td></td>
<td>Environmental Science (lecture)</td>
<td></td>
</tr>
<tr>
<td>10am</td>
<td></td>
<td>Chemistry (seminar)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11am</td>
<td>Chemistry (lecture)</td>
<td></td>
<td></td>
<td>Environmental Science (seminar)</td>
<td></td>
</tr>
<tr>
<td>12pm</td>
<td></td>
<td>Biology (lecture)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1pm</td>
<td>Biology (lecture)</td>
<td>Environmental Science (lecture)</td>
<td>Chemical (practical)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2pm</td>
<td>Environmental Science (lecture)</td>
<td></td>
<td></td>
<td>Chemistry (practical)</td>
<td></td>
</tr>
<tr>
<td>3pm</td>
<td></td>
<td>Environmental Science (practical)</td>
<td></td>
<td>Biology (practical)</td>
<td></td>
</tr>
<tr>
<td>4pm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5pm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each module covers a particular aspect of a subject and is typically 12 to 20 lectures in length and incorporates a large amount of laboratory-based practical work. Successful completion of the first year allows you to progress to second year.

After a broad-based first year, you will specialise in particular areas within each discipline, allowing you to study where your interest really lies. At the end of the first year, the possible options available to you are:
• Continue to study your original three subjects
• Drop one of the original subjects and continue with a two subject degree

Years 2 and 3 (Part II)
From your second year you will have the opportunity to specialise by choosing areas within a discipline. Your choices will be influenced by the subjects you selected in first year.

Year 4
The MSci year comes with a mandatory research project selected from a department of your choice and often linked to an array of partner organisations. A wide selection of Masters level modules are open to you.

Pathways made easy
It is not possible to study the entire content of two or three single-honours degree courses simultaneously. To help with your course selection, each science department has created one or more coherent collections of modules called ‘Pathways’.

You choose which Pathways you would like to do – either two or three. By following a Pathway through a particular subject you are guaranteed to have the necessary pre-requisites for each subsequent year.

You can follow any Pathway subject to pre-requisite entry requirements (see page 7).

Double weighted Pathways
Please note, due to the complexity of subject content, some of our Pathways are double weighted. This means you can only take one other Pathway with these Pathway choices. Double weighted Pathways are shown by an asterisk in the table below.

Discover our modules
Each Pathway contains a set of core and optional modules. These are subjects within your broader Pathway area.

Core modules represent the key areas required as part of your Natural Sciences degree and the optional modules provide you with extra skills and knowledge.

You will notice that in most cases, modules in the first year are fixed and more options open up in subsequent years. This is intentional as our Pathways have been expertly selected so that your first year covers as much ground as possible to keep your later options open.

Many Year 2 and Year 3 optional modules have pre-requisites from the previous year’s modules. Once you have decided on your Pathways and modules these will be discussed in detail at a one-to-one meeting at the start of your course where timetable flexibility and course capacity will also be taken into consideration.

<table>
<thead>
<tr>
<th>Subject/Department Area</th>
<th>Pathways</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology</td>
<td>Biology</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Biochemistry, Cell Biology and Genetics</td>
</tr>
<tr>
<td>Environmental and Earth Science</td>
<td>Ecology and Conservation</td>
</tr>
<tr>
<td>Mathematics</td>
<td>Microbiology and Biomedicine</td>
</tr>
<tr>
<td>Medical School</td>
<td>Engineering*</td>
</tr>
<tr>
<td>Physics</td>
<td>Environmental Chemistry*</td>
</tr>
<tr>
<td>Psychology</td>
<td>Mechanical Engineering*</td>
</tr>
<tr>
<td>Computing and Communications</td>
<td>Chemical Engineering*</td>
</tr>
<tr>
<td>Earth Science</td>
<td>Electronic Engineering*</td>
</tr>
<tr>
<td>Human Geography</td>
<td>Mechanical Engineering*</td>
</tr>
<tr>
<td>Single Mathematics</td>
<td>Environmental Chemistry*</td>
</tr>
<tr>
<td>Double Mathematics*</td>
<td>Mechanical Engineering*</td>
</tr>
<tr>
<td>Human Physiology</td>
<td>Physical Geography</td>
</tr>
<tr>
<td>Medical Exercise Science</td>
<td>Double Mathematics*</td>
</tr>
<tr>
<td>Medical Exercise Science</td>
<td>Double Mathematics*</td>
</tr>
<tr>
<td>Psychology</td>
<td>Psychology with British Psychological Society Accreditation*</td>
</tr>
</tbody>
</table>

* Double weighted Pathways
Kick start your career with a placement year

BSc Hons (Placement Year) - 4 Years

Our brand new Placement Year provides a wonderful opportunity for you to increase your attractiveness to employers and to add a distinctive element to your CV.

Working in a science or non-science related role at graduate level, you will deepen your understanding of the workplace and how to apply your skills and knowledge. This will greatly increase your confidence and broaden your horizons.

Throughout your first and second year we will support you to find a graduate level role for your placement in Year 3.

As this year does not contribute to the final degree classification, you only pay 20% of your year’s tuition fee.

Whilst on placement you will be expected to update a reflective work diary and you will be supported in your role by a Lancaster University academic and a company employee.

“I started working for the Environment Agency in the Flood and Coastal Defence Team. My work involves modelling coastal flooding and data quality assurance.

If you choose to do a Placement Year you will study an extra curricular provision, which will provide information on a range of subjects such as LinkedIn, psychometric tests and help finding a placement. You’re very well supported by the University placement team during your year as they work closely with your Line Manager. There’s quite a lot of flexibility of where you can work.

A Placement Year has definitely given me the experience to grow in confidence, develop my knowledge and really helped with my time management skills. It’s also given me the chance to earn the same amount of money that I would do on a graduate scheme. By doing this year, I have increased my employability and gained invaluable skills in the environmental sector.”

Bethan Hobson
BSc Hons Natural Sciences (Placement Year)
I went to study at the University of Calgary in Canada. I had a good time because around Calgary there is the Rocky’s so you can go and explore and it’s really, really pretty. I think studying abroad has made me a lot more independent than I was before. University is all about learning to live on your own and learning to manage yourself but going on a study abroad year is on another level because you’re in a completely different county all by yourself. You also learn how to make time for yourself and your studies as well as time to explore the country, because you’re not just there to learn.

It’s pretty easy to find something that you are doing in another country that also relates to your degree when you come back. The Natural Sciences department works in conjunction with the global experience office to find universities that do the course that you are doing, and then do similar modules as well.

I would highly recommend it.

Esther Ansah-Ansmaah
MSci Hons Natural Sciences (Study Abroad)
Hello
Future

A multidisciplinary degree, such as Natural Sciences, opens up a wide range of career opportunities. You will be highly sought after for your technical and practical skills that can be transferred across a range of industries.

Many of our students have progressed on to postgraduate studies at Lancaster and universities around the UK in the following areas:
- Advanced computing
- Astrobiology
- Chemistry
- Clinical research
- Energy storage applications
- Particle physics
- Information technology
- Management and organisational change
- Mathematics
- Medical statistics
- Molecular medicine
- Medical physics
- Teacher training
- Theoretical modelling in science

Others have gained full-time work in a variety of sectors in roles such as:
- Application support specialist
- Audit associate
- Civil service
- Football analyst
- Graduate consultant enterprise
- Market survey officer
- Project co-ordinator
- Recruitment consultant
- Risk and hazard management
- Science media production
- System operations analyst
- Tax consultant

Preparing for your future
We also believe that relevant work experience while you are at university is crucial to achieving a good graduate job. Not only that, our comprehensive careers service provides advice and guidance on writing CVs and job applications, and preparing for interviews.

Discover internships
We have an extensive network of businesses providing a range of full and part-time paid for internship opportunities. You get to apply your knowledge in the real-world and businesses get the skills they need. Having the skills that are much sought after by employers, such as team working, commercial awareness and time management will give you an edge in the job market.

Choosing Natural Sciences at Lancaster was one of the greatest decisions I made for my career.

The course is incredibly diverse and enabled me to combine my love for the biosciences with human geography. The facilities offered at Lancaster are second to none and the staff are always willing to assist you.

I believe Lancaster better equipped me to tackle the competitive job market through the available workshops and volunteering opportunities, which proved to be invaluable.

Since leaving Lancaster in 2018, I have gone on to study whale sharks in the Maldives with the Maldives Whale Shark Research Programme and great white sharks in South Africa with White Shark Projects, as part of the MSc Marine Environmental Management course with the University of York. I was also selected as a 2019 Women in Shark Science Scholar with the South African Shark Conservancy and have been researching the role of ecotourism in shaping public perceptions of sharks. Today I am the campaigns officer for the Angling Trust and a freelance science communicator and marine conservationist working with New Nature Magazine and the UK Youth for Nature coalition, as well as the founder of the Leading Women in Marine Science platform and an ambassador for the Ocean Conservation Trust.

I would recommend the Natural Sciences course, and Lancaster University, to anyone who is interested in pursuing a multi-disciplinary degree at a university that is at the cutting edge of scientific research.

It was the flexibility to choose almost any module that interested me.

I chose Lancaster because it provided a flexible approach to Natural Sciences and it was also in the Top 10.

I started first year doing Environmental Science, Biology and Spanish. I finished my third year having done primarily Environmental Science, with a couple of Environmental Biology and Geography modules, with a plan to get an MSc (after a gap year) to give me the best chance of getting a job as an environmental consultant.

I really enjoyed the range of topics I learnt about at Lancaster, as well as all the societies that were on offer. I also took part in the Career Mentoring Scheme, which lead me to apply for a 6 month internship at Stopford in my second year and ultimately helped me decide that I wanted to give environmental consultancy a try.

I’m an Environmental Consultant within the Permitting & Compliance team at RPS, a multi-disciplinary consultancy. All developments that could potentially cause pollution during their operational life (to the air, land or water) need to have an environmental permit in order to operate. The main part of my job involves preparing the necessary documents and assessments that are needed to apply for an environmental permit or to change or surrender an existing one.

Lancaster is a great university with a campus that contains all you need.

Alice Gibbs
BSc Hons Natural Sciences
and is now working as an Environmental Consultant

Hannah Rudd
BSc Hons Natural Sciences
and is now working in MSc Marine Environmental Management
Biology Pathways

Biology

Fundamental biological mechanisms are related to the environmental challenges of the 21st century such as food security, environmental pollution, ecosystem functioning, sustainable resource management and biodiversity conservation. You will be trained in the scientific study of interactions between organisms and the environment, and how these are modified by human activities.

YEAR 1

CORE MODULES
- Aquatic Ecology
- Evolutionary Biology
- Global Change Biology
- Marine and Estuarine Biology
- Zoology

OPTIONAL MODULES
- Biodiversity and Conservation
- *Field Course in the Eden Project, Cornwall* (One of these modules can be taken in place of either Aquatic Ecology or Marine and Estuarine Biology)

YEAR 2

CORE MODULES
- Environmental Physiology
- Evolution

OPTIONAL MODULES
- Experimental Design and Analysis
- Field Biology
- Introduction to Eco-Innovation
- Populations to Ecosystems
- Research Design and Delivery
- Vertebrate Biology

YEAR 3

CORE MODULES
- Animal Behaviour

OPTIONAL MODULES
- Coral Reef Ecology
- Dissertation
- Dissertation with Work Placement
- Environmental Plant Biology
- *Field Course in Kenya – Tropical Biology and Conservation*
- *Field Course in the Scottish Highlands – Host-Parasite Interactions*
- Issues in Conservation Biology
- Sustainable Agriculture

Ecology and Conservation

Interactions between organisms, the environment and humanity are often complex. You will receive a thorough grounding in ecological theory and how these biological principles relate to the conservation of wildlife and ecological habitats. The pathway also concerns the practice of ecology and has a strong fieldwork component designed to encourage you to develop your practical skills.

YEAR 1

CORE MODULES
- Aquatic Ecology
- Biodiversity and Conservation
- Evolutionary Biology
- Global Change Biology
- Marine and Estuarine Biology
- Zoology

OPTIONAL MODULES
- *Field Course in the Eden Project, Cornwall*
- *Field Course in the Spanish-Doñana*
- *Field Course in Kenya – Tropical Biology and Conservation*
- *Field Course in the Scottish Highlands – Host-Parasite Interactions*
- Issues in Conservation Biology
- Sustainable Agriculture

YEAR 2

CORE MODULES
- Populations to Ecosystems
- Principles of Biodiversity Conservation

OPTIONAL MODULES
- Environmental Physiology
- Evolution
- Experimental Design and Analysis
- Field Biology
- Introduction to Eco-Innovation
- Research Design and Delivery

YEAR 3

CORE MODULES
- Coral Reef Ecology
- Issues in Conservation Biology

Biochemistry, Cell Biology and Genetics

A Level Requirements: Chemistry

Cellular biochemistry examines the macromolecular structure and the relationship of cellular organisation to the central pathways of intermediary metabolism and the physical processes underlying cellular functions. Cell biology covers the interactions within and between cells which allow them to perform their function in the whole organism. Genetics examines the mechanisms of heredity moving through Mendelian genetics and its extensions to molecular genetics.

YEAR 1

CORE MODULES
- Biotechnology
- Cell Structure and Function
- Genetics
- Molecules of Life
- Protein Biochemistry

OPTIONAL MODULES
- Biochemical Techniques
- Biochemistry
- Bioinformatics
- Cell Biology
- Cell Biology Techniques
- DNA Technology
- Genetics

YEAR 2

CORE MODULES
- Genetics
- Molecular and Biochemical Genetics

OPTIONAL MODULES
- Biology of Ageing
- Cancer
- Cell Signalling
- Cell Signalling, Transport and Disease
- Genetics
- Medical Genetics
- Proteins, Structure, Function and Evolution

YEAR 3

CORE MODULES
- Anatomy and Tissue Structure
- Hormones and Development
- Human Physiology
- Impact of Microbes
- Infection and Immunity

OPTIONAL MODULES
- Cell Biology
- Cell Biology Techniques
- Genetics
- Medical Microbiology
- Microbiological Techniques

Microbiology and Biomedicine

The pathway contains a balanced mix of biochemistry, microbiology and physiology. It attempts to demonstrate the relevance of microbiology to human affairs, whether the connection is direct, e.g. diseases of humans, or indirect, e.g. the control of diseases of food crops. Although some lectures deal specifically with one group of microbes, i.e. bacteria, fungi or protzoa, entire modules emphasise ecological and functional relationships between different groups of microbes.

YEAR 1

CORE MODULES
- Biology of Ageing
- Cancer
- Cell Signalling
- Cell Signalling, Transport and Disease
- Clinical Immunology
- Environmental Pathogens
- Molecular and Biochemical Parasitology

OPTIONAL MODULES
- Medical Microbiology
- Microbiological Techniques

YEAR 2

CORE MODULES
- Medical Microbiology
- Microbiological Techniques

OPTIONAL MODULES
- Medical Microbiology
- Microbiological Techniques

YEAR 3

CORE MODULES
- Medical Microbiology
- Microbiological Techniques

OPTIONAL MODULES
- Medical Microbiology
- Microbiological Techniques

Please note: some field courses will incur additional costs and are subject to availability
Chemistry Pathways

Chemical Synthesis and Structure

A Level Requirements: Chemistry
Chemical synthesis concerns the creation of new molecules. Key to this is understanding molecular reactivity and mechanism techniques to design and synthesise molecules, and how we can characterise and measure their properties. This pathway develops knowledge and practical skills across all of synthetic chemistry and prepares you for potential research projects in chemical synthesis in your final year.

YEAR 1
- **CORE MODULES**
 - Atoms and Molecules
 - Chemical Reaction Kinetics
 - Physical Chemistry of the Elements
 - Coordination Chemistry
 - Organic Reactivity and Mechanisms
 - Organic Structure

YEAR 2
- **CORE MODULES**
 - Alkene and Aromatic Chemistry
 - Inorganic Chemistry
 - Organometallics Catalysis and Mechanisms
 - Strategies for Chemical Synthesis

YEAR 3
- **CORE MODULES**
 - Advanced Chemistry Practical
 - Advanced Chemistry Practical Research Skills
 - Advanced Kinetics, Reaction Dynamics, and Surfaces
 - Advanced Synthetic Chemistry
 - Biological Chemistry and Chemical Biology
 - Further Inorganic Chemistry I: Black and Metals in Biology
 - Investigating Mechanisms in Sustainable Polymeric Chemistry
 - Investigating Novel Mechanisms in Experimental Design
 - Research Project (BSc only)

YEAR 1
- **OPTIONAL MODULES**
 - Molecular Structure Determination: Solids, Soft Matter and Surfaces

YEAR 2
- **OPTIONAL MODULES**
 - Spectroscopy and Analytical Chemistry: Thermodynamics of Chemical Processes

YEAR 3
- **OPTIONAL MODULES**
 - Advanced Spectroscopy: Theory and Applications
 - Advanced Techniques for Analytical Separations
 - Biological Chemistry and Chemical Biology Practical Research Skills
 - Computational Chemistry
 - Computational Structure Theory Research Project (BSc only)

Environmental Chemistry

A Level Requirements: Chemistry and Mathematics
Environmental chemistry specifically relates to the chemistry of the aqueous, atmospheric and terrestrial environments. This pathway is designed to give a thorough grounding in chemistry whilst covering the techniques and methodology of environmental chemical analysis, together with an introduction to environmental planning and assessment.

Double Weighted Pathway: Due to the complexity of this subject and the background knowledge it requires in later years, this Pathway is double weighted. As such you can only take one other Pathway with this option.

YEAR 1
- **CORE MODULES**
 - Atmospheric, Weather and Climate
 - Atoms and Molecules
 - Biogeochemical Cycles
 - Chemical Reaction Kinetics
 - Hydrology: Water in the Environment
 - Physical Foundations of Chemistry
 - Spectroscopy and Analytical Chemistry

YEAR 2
- **CORE MODULES**
 - Aquatic Biogeochemistry
 - Atmospheric Sciences
 - Electrochemistry
 - Thermodynamics and Statistical Mechanics

YEAR 3
- **CORE MODULES**
 - Experimental Design and Analysis
 - Field Course in the Lake District - Environmental
 - Molecular Structure Determination
 - Quantum Chemistry and Group Theory
 - Soil Science
 - Solids, Soft Matter and Surfaces
 - The Physical Principles of Spectroscopy

YEAR 1
- **OPTIONAL MODULES**
 - Advanced Chemistry Practical Research
 - Advanced Chemistry Practical Research Skills
 - Advanced Kinetics, Reaction Dynamics, and Surfaces
 - Advanced Spectroscopy
 - Advanced Techniques for Analytical Separations
 - Biological Chemistry and Chemical Biology
 - Computational Chemistry
 - Dissertation
 - Global Change and the Earth System
 - Water Resources Management

YEAR 2
- **OPTIONAL MODULES**
 - Advanced Chemistry Practical Research
 - Advanced Chemistry Practical Research Skills
 - Advanced Kinetics, Reaction Dynamics, and Surfaces
 - Advanced Spectroscopy
 - Advanced Techniques for Analytical Separations
 - Biological Chemistry and Chemical Biology
 - Computational Chemistry
 - Dissertation
 - Global Change and the Earth System
 - Water Resources Management

Please note: some field courses will incur additional costs and are subject to availability
Computing and Communications

This Pathway explores the theory and practice of innovative and experimental computing, allowing you to develop well-rounded professional and technical skills. Areas covered include programming and software development, the theory of computation, human-computer interaction, digital media and its applications.

YEAR 1
- **CORE MODULES**
 - Software Development

YEAR 2
- **OPTIONAL MODULES**
 - Advanced Programming
 - Computer Networks
 - Computer Science Group Project
 - Database
 - Human Computer Interaction
 - Operating Systems
 - Software Design

YEAR 3
- **OPTIONAL MODULES**
 - Artificial Intelligence
 - Computer Science Seminars
 - Distributed Systems
 - Internet Applications Engineering
 - Languages and Compilation
 - Media Coding and Processing
 - Security and Risk

Chemical Engineering

A Level Requirements: Chemistry and Mathematics

Chemical Engineering focuses on chemical and molecular aspects of technology. This Pathway will help you to develop the skills needed to conceive and design processes for the production, transformation and transportation of materials.

Double Weighted Pathway: Due to the complexity of this subject and the background knowledge it requires in later years, this Pathway is double weighted. As such you can only take one other Pathway with this option.

YEAR 1
- **CORE MODULES**
 - Chemical Engineering Laboratory Projects I
 - Fluid Mechanics and Chemical Engineering Thermodynamics
 - Particle Technology and Separation

YEAR 2
- **OPTIONAL MODULES**
 - Advanced Process Transfers
 - Catalytic and Bio-reaction Engineering
 - Chemical Engineering Design and Process Safety
 - Computer Applications in Process Engineering
 - Energy Conversion

YEAR 3
- **OPTIONAL MODULES**
 - Business Development Project
 - Engineering Analysis
 - Mass Transfer
 - Reactors and Equipment

Electronic Engineering

A Level Requirements: Mathematics and Physics

This Pathway will help you develop a sound foundation in all aspects of Electronic and Electrical Engineering that is crucial to the design and manufacture of future systems in the medical, environmental, energy, transport and ICT markets. You will also have the opportunity to specialise in areas including wireless communications, silicon chip design, nanotechnology, green technologies and power generation.

Double Weighted Pathway: Due to the complexity of this subject and the background knowledge it requires in later years, this Pathway is double weighted. As such you can only take one other Pathway with this option.

YEAR 1
- **CORE MODULES**
 - Electrical and Electronic Fundamentals
 - Engineering Mathematics I-V
 - Fundamentals of Digital Electronics
 - Fundamentals of Electronic Instrumentation
 - Programming Fundamentals

YEAR 2
- **OPTIONAL MODULES**
 - Design, Innovation and 3D Thinking
 - Fundamentals of Chemistry for Engineers
 - Heat Transfer
 - Introduction to Engineering Thermodynamics
 - Mechanics of Material
 - Manufacturing Fundamentals
 - Process Engineering Fundamentals

YEAR 3
- **OPTIONAL MODULES**
 - Analogues Electronics
 - Digital Signal Processing
 - Integrated Circuit Engineering
 - Optoelectronics and Wireless Communications
 - Power Electronics and Applications Research Project (BEng only)

Mechanical Engineering

A Level Requirements: Mathematics and Physics

Mechanical Engineering is a field covering any industry that uses moving parts, from construction to transport, medicine to manufacturing, renewable energy to consumer technology. Our programme gives you the skills necessary for the subject, with an applied focus on mechanical system designs.

Double Weighted Pathway: Due to the complexity of this subject and the background knowledge it requires in later years, this Pathway is double weighted. As such you can only take one other Pathway with this option.

YEAR 1
- **CORE MODULES**
 - Design, Innovation and 3D Thinking
 - Engineering Mathematics I-V
 - Fluid Transfer
 - Internal Combustion Engines
 - Manufacturing Fundamentals
 - Mechanics of Material
 - Process Engineering Fundamentals

YEAR 2
- **OPTIONAL MODULES**
 - Advanced Process Transfers
 - Catalytic and Bio-reaction Engineering
 - Chemical Engineering Design and Process Safety
 - Computer Applications in Process Engineering
 - Energy Conversion

YEAR 3
- **OPTIONAL MODULES**
 - Business Development Project
 - Engineering Analysis
 - Instrumentation and Control
 - Power Engineering

Engineering Pathways

Computer Applications in Process Engineering Design and Construction

A Level Requirements: Mathematics and Physics

These Pathways will help you develop the skills needed to conceive and design processes for the production, transformation and transportation of materials.

Double Weighted Pathway: Due to the complexity of this subject and the background knowledge it requires in later years, this Pathway is double weighted. As such you can only take one other Pathway with this option.
Environmental and Earth Science Pathways

Earth Science
The solid rocks that comprise Earth’s upper crust contain a record of change driven by processes originating from the core to the atmosphere over a period exceeding 2 billion years. This Pathway provides the basic skills needed to read this record and understand how Earth has evolved over both long and short periods of time. You will have the opportunity to take a number of field-based modules in both the UK and abroad.

YEAR 1
- **CORE MODULES**
 - Biogeochemical Cycles
 - Geology
 - Hydrology
 - Water in the Environment
 - The Earth’s Interior
- **OPTIONAL MODULES**
 - Subject to A level portfolio, you may be required to replace one or more of the above modules with one or more of the following:
 - Introduction to Environmental Chemistry
 - Numerical Skills I
 - Numerical Skills II

YEAR 2
- **CORE MODULES**
 - Experimental Design and Analysis
 - Geoscience in Practice
- **OPTIONAL MODULES**
 - Aquatic Biogeochemistry
 - Catchment Hydrology
 - Field Course in the Lake District - Environmental
 - Field Course in Scotland - Geological Mapping
 - Soil Science

YEAR 3
- **CORE MODULES**
 - Introduction to Geophysical Techniques
- **OPTIONAL MODULES**
 - Dissertation
 - Dissertation with Work Placement
 - Extended Essay
 - Field Course in Devon - Hydrological Processes
 - Geothermal Hazards
 - Hydrogeology
 - Water Resources Management

Environmental Science
This Pathway aims to train you in those areas of natural science (including chemistry, physics, biology, mathematics, geology, physical geography) that are used to understand natural and anthropogenic processes on the surface of the Earth, its lakes, oceans and the atmosphere, as well as Earth’s internal processes, against the backdrop of environmental change.

YEAR 1
- **CORE MODULES**
 - Atmosphere, Weather and Climate
 - Biogeochemical Cycles
 - Earth’s Interior
 - Geology
 - Hydrology: Water in the Environment
- **OPTIONAL MODULES**
 - Subject to A level portfolio, you may be required to replace one or more of the above modules with one or more of the following:
 - Introduction to Environmental Chemistry
 - Numerical Skills I
 - Numerical Skills II

YEAR 2
- **CORE MODULES**
 - Experimental Design and Analysis
- **OPTIONAL MODULES**
 - Climate and Society
 - Dissertation
 - Field Course in the Lake District - Environmental
 - Soil Science

YEAR 3
- **OPTIONAL MODULES**
 - Climate and Society
 - Dissertation
 - Extended Essay
 - Field Course in Devon - Hydrological Processes
 - Geothermal Hazards
 - Hydrogeology

Please note: some field courses will incur additional costs and are subject to availability

Geography Pathways

Human Geography
This Pathway provides you with an understanding of society, culture, development and issues of globalisation within a framework of environmental issues in the 21st century.

YEAR 1
- **CORE MODULES**
 - Development, Geography and the Majority World
 - Research Methods in Human Geography
- **OPTIONAL MODULES**
 - Being a Geographer: Issues, Ethics and Skills
 - Children’s Geographies
 - Cultural Geography
 - Economic Geography
 - Geosocial Spaces
 - Introduction to Eco-Innovation
 - People and the Sea
 - Political Geography
 - Spatial Analysis and GIS

YEAR 2
- **CORE MODULES**
 - Geographical Skills and Application in a Changing World
 - Society and Space - Human Geography
- **OPTIONAL MODULES**
 - Being a Geographer: Issues, Ethics and Skills
 - Children’s Geographies
 - Cultural Geography
 - Economic Geography
 - Geosocial Spaces
 - Introduction to Eco-Innovation
 - People and the Sea
 - Political Geography
 - Spatial Analysis and GIS

YEAR 3
- **OPTIONAL MODULES**
 - African Geographies of Transformation
 - Cities and Globalisation
 - Climate and Society
 - Dissertation
 - Dissertation with Work Placement
 - Economic Geography
 - Food and Agriculture in the 21st Century
 - Geographies of Health
 - Understanding and Tackling Inequality
 - GIS: Principles and Practice
 - Independent Research
 - Perspectives on Technology and Environment
 - Urban Infrastructure in a Changing World

Please note: some field courses will incur additional costs and are subject to availability

Physical Geography
You will learn about the main components of our ‘Earth-system’, how environments have changed in the past, what controls the dynamics of environments in the present, and how we can predict changes in the future. All this is studied in the context of an interconnected planet.

YEAR 1
- **CORE MODULES**
 - Environmental Process and Systems
 - Geographical Skills and Application in a Changing World
- **OPTIONAL MODULES**
 - Aquatic Biogeochemistry
 - Atmospheric Science
 - Being a Geographer: Issues, Ethics and Skills

YEAR 2
- **CORE MODULES**
 - Glacial and Fluvial Landscape Processes
 - Soil Science
- **OPTIONAL MODULES**
 - Aquatic Biogeochemistry
 - Atmospheric Science
 - Being a Geographer: Issues, Ethics and Skills
 - Catchment Hydrology
 - Environmental Data Visualization and Analysis
 - Field Course in Croatia - Water, Society and the Istrian Landscape
 - GIS: Principles and Practice
 - Glacial Systems
 - Independent Research
 - Lakes, Rivers and Estuaries

YEAR 3
- **OPTIONAL MODULES**
 - Field Course in New York - Cultural, Economic, Political and Social Geographies
 - GIS: Principles and Practice
 - Independent Research
 - Perspectives on Technology and Environment
 - Urban Infrastructure in a Changing World

Please note: some field courses will incur additional costs and are subject to availability
Mathematics Pathways

Single Mathematics
A Level Requirements: Mathematics
This Pathway allows you to continue your study of maths at degree level in a top ranking department. You'll focus on both pure mathematics and statistics with an emphasis on solving practical mathematical problems.

YEAR 1
- CORE MODULES
 - Calculus
 - Further Calculus
 - Linear Algebra
 - Probability
 - Statistics

YEAR 2
- CORE MODULES
 - Abstract Algebra
 - Computational Mathematics
 - Linear Algebra II
 - Probability II
 - Statistics II

YEAR 3
- CORE MODULES
 - Algebraic Curves
 - Bayesian Inference
 - Combinatorics
 - Commutative Algebra
 - Financial Mathematics
 - Geometry of Curves and Surfaces
 - Generalised Linear Models
 - Graph Theory
 - Groups and Symmetry
 - Likelihood Inference
 - Machine Learning
 - Mathematical Education
 - Medical Statistics
 - Number Theory
 - Representation Theory of Finite Groups
 - Stochastic Processes

OPTIONAL MODULES
- Algebraic Curves
- Bayesian Inference
- Combinatorics
- Commutative Algebra
- Financial Mathematics
- Geometry of Curves and Surfaces
- Generalised Linear Models
- Graph Theory
- Groups and Symmetry
- Likelihood Inference
- Machine Learning
- Mathematical Education
- Medical Statistics
- Number Theory
- Representation Theory of Finite Groups
- Stochastic Processes

Double Mathematics
A Level Requirements: Mathematics
Double Weighted Pathway: If you prefer to focus your studies on maths, we also offer a double-weighted Pathway that allows you to study the subject in greater detail. This incorporates the maths modules listed above and gives you the opportunity to concentrate on theoretical problems. As a double-weighted Pathway you can only take one other Pathway with this option.

YEAR 1
- CORE MODULES
 - As above, plus:
 - Convergence and Continuity
 - Discrete Mathematics
 - Geometry and Calculus
 - Integration and Differentiation
 - Numbers and Relations

YEAR 2
- CORE MODULES
 - As above, plus:
 - Complex Analysis
 - Project Skills
 - Real Analysis

YEAR 3
- CORE MODULES
 - As above, plus:
 - Differential Equations
 - Hilbert Spaces
 - Lebesgue Integration
 - Linear Systems
 - Metric Spaces
 - Probability Theory

Medical School Pathways

Human Physiology and Exercise Science
If you are interested in science and physical education, this Pathway provides a solid foundation in application and performance modules. These will help to increase your understanding of the functions and regulations of the human body and physiological integration of the systems.

YEAR 1
- CORE MODULES
 - Digital Technologies in Sports and Exercise Science
 - Fundamental Anatomy

YEAR 2
- OPTIONAL MODULES
 - Essentials of Sports and Exercise Physiology or Introduction to Nutrition
 - Hormones and Metabolism
 - Public Health Challenges
 - Principles of Biomechanics or Concepts in Sports and Exercise Psychology

YEAR 3
- OPTIONAL MODULES
 - Biomechanics II
 - Current Debates in Sports and Exercise Science
 - Physiology and Metabolism
 - Sports and Exercise Psychology
 - Sports Medicine or Exercise Medicine

- OPTIONAL MODULES
 - Advanced Psychology
 - Applied Sport, Exercise and Performance Psychology
 - Biomechanics III
 - Maximising Elite Performance
 - Optimising Health Outcomes
 - Research Project

YEAR 1
- MODULES
 - Fundamental Anatomy
 - Introduction to Nutrition

YEAR 2
- MODULES
 - Biomechanics II

YEAR 3
- MODULES
 - Biomechanics III
 - Optimising Health Outcomes
 - Research Project

- MODULES
 - Advanced Psychology
 - Applied Sport, Exercise and Performance Psychology
 - Biomechanics III
 - Maximising Elite Performance
 - Optimising Health Outcomes
 - Research Project
Physics Pathways

Physics

A Level Requirements: Mathematics and Physics

You will gain a working knowledge and understanding of the physics of fluids and solids, especially their thermal and electrical properties, with an emphasis also on computing, classical mechanics and quantum physics.

Double Weighted Pathway: This Pathway requires a set of first-year maths-based modules, either through the Physics Department or the Mathematics and Statistics Department under the Pathway Single Mathematics, on the previous page. As such, students taking Physics can only take one other Pathway in addition to either of the supporting Maths Pathways.

YEAR 1

Core Modules
- Classical Mechanics
- Electric and Magnetic Fields
- Quantum Physics
- The Physical Universe
- Thermal Properties of Matter

Optional Modules
- Students need to take either the Physics Mathematics modules listed below or the Single Mathematics Pathway.
- Complex Methods
- Functions and Differentiation
- Integration
- Series and Differential Equations
- Vector Calculus

YEAR 2

Core Modules
- Introduction to Experimental Lab

Optional Modules
- Astronomy
- Astrophysics I
- Classical Fields
- Cosmology I
- Electromagnetism, Waves and Optics
- Experimental Lab I
- Experimental Lab II
- Experimental Principles of Particle Detection
- Maths I
- Maths II
- Mechanics and Vibrations
- Quantum Mechanics
- Relativity, Nuclei and Particles
- Scientific Programming and Modelling Project
- Thermal Properties of Matter

YEAR 3

Core Modules
- Astrophysics II
- Astrophysics Group Project
- Astrophysics Laboratory
- Atomic Physics
- Computer Modelling
- Cosmology Group Project
- Cosmology II
- Energy
- Flavour Physics
- Groups and Symmetries
- Low Temperature Physics Laboratory
- Particle Physics
- Particle Physics Group Project
- Physics Literature Search
- Physics of Fields
- Physics of Living Systems
- Semiconductor Physics Laboratory
- Solid State Physics
- Space and Auroral Physics
- Statistical Physics
- Theoretical Physics Group Project
- Theoretical Physics Independent Study

Psychology Pathways

Psychology

This Pathway develops your range of knowledge and skills in order to continue your study of psychology at degree level.

YEAR 1

Core Modules
- Introduction to Cognitive Psychology
- Introduction to Developmental Psychology
- Introduction to Neuroscience
- Personality and Individual Differences
- Social Psychology in the New Digital Age

Optional Modules
- Research Integrity and Open Science 1
- Research Integrity and Open Science 2
- Statistics for Psychologists 1
- Statistics for Psychologists 2

YEAR 2

Core Modules
- Cognitive Psychology
- Developmental Psychology
- Foundations of Cognitive Neuroscience
- Social Psychology

Optional Modules
- Cognitive, Affective and Clinical Neuroscience
- Bewildering, Biases or Just Banal?
- Cognition in and out of the laboratory
- Culture in Cognition and Development
- Current Directions in Social Psychology
- Forensic and Investigative Psychology
- Piaget Nation
- Human Psychopharmacology
- Psychology of Art
- Psychology of Meditation
- The Developing Mind
- The Lying Brain: An Examination of Hacks, Tricks and Deceptions
- Neural and Behavioural Populations
- The Neuroscience of Typical and Atypical Development
- The Psychology of Cooperation
- Topics in Clinical Psychology

Psychology with BPS accreditation

Double Weighted Pathway: This double-weighted Pathway allows you to study psychology and receive accreditation from the British Psychological Society. It can only be taken alongside one other Pathway and cannot be taken by BSc students intending to study abroad due to the accreditation regulations.

YEAR 1

Core Modules
- Introduction to Cognitive Psychology
- Introduction to Developmental Psychology
- Introduction to Neuroscience
- Personality and Individual Differences
- Social Psychology in the New Digital Age
- Essential Skills for Psychologists
- Research Integrity and Open Science 1
- Research Integrity and Open Science 2
- Statistics for Psychologists 1
- Statistics for Psychologists 2

YEAR 2

Core Modules
- Cognitive Psychology
- Developmental Psychology
- Social Psychology

Optional Modules
- Cognitive, Affective and Clinical Neuroscience
- Bewildering, Biases or Just Banal?
- Current Directions in Social Psychology
- Forensic and Investigative Psychology
- Human Psychopharmacology
- Psychology of Art
- Psychology of Meditation
- The Developing Mind
- The Lying Brain: An Examination of Hacks, Tricks and Deceptions
- Neural and Behavioural Populations
- The Neuroscience of Typical and Atypical Development
- The Psychology of Cooperation
- Topics in Clinical Psychology
I chose to study my Natural Sciences degree because it is so flexible. I have the freedom to pick and choose the modules I want to study, which means I enjoy all my modules. I find that the practical workshops and learning how to write reports really puts me in good stead for the future and provides me with a range of great future prospects after my studies. If I want to further research and study for a PhD, I’m readily equipped with independent study skills and I know how to undertake research, or if I decide to work in industry I’m equipped with hands-on skills and experience.

I first came to Lancaster University on an Applicant Visit Day and I remember walking up the main drive of campus being completely blown away at how stunning it was! I was greeted by both the staff and students in a welcoming manner which sparked my sense of belonging to the University straight away and I immediately felt comfortable, meaning that I didn’t end up looking at other universities.

I’m from London, so coming from a big city to a campus university has been a big change. Lancaster University has a real community feel and everything you need access to is right on your doorstep, however, you can still escape from your studies by making use of the woodland walks in the grounds, as the campus is surrounded by countryside.

The favourite aspect of my course so far is the group project we did on my chemistry module, where we designed safe rechargeable zinc batteries, as this allowed us to put a lot of our foundations of skills and knowledge learnt from previous years into practice, whilst learning new techniques too.

Eloise Fraser-Hurley, MSci Hons Natural Sciences

A flexible choice for Eloise
How to reach us

We’re easy to find!

By road
From the north or south, leave the M6 motorway at Junction 33 and take the A6 north towards Lancaster for about 2 miles. The University is on the right. For SatNav use LA1 4YW.

By rail
There are direct rail links between Lancaster and many of the UK’s major cities and airports. The single journey between London and Lancaster takes between 2.5 and 3 hours. Buses and taxis are available from just outside the station.

By coach and bus
Lancaster city is on the national coach network; National Express coaches call at the University. A number of local buses run from Lancaster bus station to the University every 5 minutes on weekdays.

Further details can be found at lancaster.ac.uk/travel

Lancaster University is set in beautiful parkland and lies approximately three miles south of the City of Lancaster. The campus is easily accessible via road, rail and bicycle and is within 70 miles of Manchester’s International Airport.
Natural Sciences
Chemistry Building, Lancaster University, Lancaster, LA1 4YB, United Kingdom
E: naturalsci@lancaster.ac.uk
lancaster.ac.uk/natural-sciences