Discover your world
Chemistry
lancaster.ac.uk/chemistry
World Changing Chemistry

With world-leading academic staff and world-class facilities, our Chemistry Department is at the forefront of teaching and research. Every day, we explore more of the world around us, making breakthroughs that drive industry and improve lives.

For you, we offer a world of possibilities and prospects, with a modern approach that combines a wide range of subject areas, a mix of teaching styles and all the support you will need to prepare you for your future.

Welcome

Head of Chemistry

Chemistry is a fascinating subject and one that I am incredibly passionate about. Chemistry provides us with a unique perspective on our world; how it emerges from the fundamental properties and interactions of atoms and molecules, and how we can control chemical processes to enable us to shape it. As the scientific study of the matter that makes up everything around us, chemistry allows us to continually push boundaries of understanding, and to carry out research that advances knowledge and improves lives.

Why choose to study Chemistry at Lancaster?

The Chemistry Department is a friendly, engaging and academically rigorous community where students and staff share a love of chemistry. We have an ethos of inclusivity, support, and equal opportunity, with world-class laboratories for teaching and research.

Our students tell us that they appreciate the accessibility of our teaching staff, all of whom are active researchers with many being leading international experts in their field. Through high quality teaching, these experts will bring their knowledge and passion to your lectures and practical lab classes so that you will learn about the fundamentals of chemistry, together with the latest developments and their real-world applications.

We want all our students to flourish so we can help you to make the most of your academic studies and your time here at Lancaster. You will be supported throughout your degree by your Academic Tutor who offers pastoral care and advice as well as helping with more academic concerns.

Your personal and professional development matters to us and we place a strong emphasis on helping our graduates progress successfully to a range of careers both nationally and internationally in the field of chemistry and beyond, and in to further study.

Our degree programme has been specially designed to nurture a range of key transferable skills that will enhance your future employment prospects, such as communication and presentation skills, computing and mathematical skills, as well as a broad range of chemistry skills. Developing a portfolio of skills and tailoring them to your future career choice forms an integral part of our degree, and our dedicated careers service can offer advice about careers both in and out of chemistry.

We are also delighted that the University has just been awarded gold status in the recent Teaching Excellence Framework assessment. This recognises Lancaster as providing outstanding excellence in the quality of its teaching; the learning environment; and, student outcomes and learning gain.

Lancaster is a great place to study and enjoy the experience of being a student. We hope that you’ll make lasting friendships, create special memories and develop life skills that will stay with you long after you graduate.

We’d love to welcome you to the Department.

Professor Peter Fielden
Head of Department
More than £30 million invested in chemistry since 2013

Ranked 9th for overall student satisfaction
National Student Survey, 2018

Small class sizes and approachable academic and support staff

More than 100 hours of practical chemistry teaching per year

Study abroad option for both third and fourth year

#12
for Chemistry in the UK
The Times and Sunday Times
Good University Guide, 2019

Free Learning Resource Pack, provides the key materials to support your studies:
Lab coat, eye protection, all glassware and lab equipment, lab books and online core course text books

#5
for Chemistry in the UK
Guardian League Table, 2020

#11
for Chemistry in the UK
Complete University Guide, 2020
Every hydrogen atom in your body was created at the big bang, that means part of you is 13.5 billion years old.

Study chemistry at Lancaster and discover the inner workings of the world around us.

Why study a chemistry degree?

Be part of something amazing
Chemical technologies enrich our quality of life by providing breakthroughs in energy, genetics, biochemistry, healthcare and medicine, materials science, forensics, nanotechnology, drug discovery and pharmaceuticals, the environment and next generation computer hardware. It also underpins many of our everyday activities including our consumption of food, water, electricity and gas, cosmetics, cleaning products, paints and dyes.

Gain professional accreditation
All our single honours degrees are accredited by the Royal Society of Chemistry.

Play a vital part in the UK economy
The UK chemical and pharmaceutical industry continues to be a vital part of the UK economy, with the UK being one of the world’s top global producers of chemicals and pharmaceuticals. These industries employ vast numbers of chemists in a range of roles, including in research and development, marketing, sales and management.

Chemistry graduates find employment in a broad range of careers, including pharmaceuticals, commercial research and development, academic research, product development, healthcare, medicine, finance, teaching, environmental protection, biotechnology, energy and food. A chemistry degree qualifies you for essentially all graduate careers.
Exceptional, modern facilities

In October 2016, the newly refurbished Chemistry Building was officially opened.

This £20 million project provides the very best in brand-new, custom designed laboratories for both teaching and research, together with instrument suites, computer rooms, offices, and social spaces, including: specialist synthetic, analytical and computational teaching labs, NMR, X Ray diffraction, electron and atomic force microscopes, UV Vis, IR and Raman Spectrometers, a Mass Spectrometry suite and the Nanoscribe microscale 3D printer.

A home for Megan

I knew Lancaster was the university for me when I first came on my Open Day, and I walked into the Chemistry Department, and it was so small and friendly, and all the lecturers knew exactly who I was.

Before I came to Lancaster, I didn’t really know what the college system meant. But when I came here, it was a great way to make friends. It’s nice to have friends in your house, on your course and in your societies. I joined the snow sports society and the wind band because it was a great way to meet new people. In my spare time I enjoy being able to go cycling and really explore what’s around Lancaster because there are so many nice things.

I really enjoy all the lab time you have on the degree because it really helps your learning. A lot of the other universities I’d visited had done chemistry in an organic, inorganic and physical way, but when I came here, the modules were more interchangeable, so you get a lot of variety in what you’re learning and it feels like a broader view of chemistry.

We’re also really lucky because the Chemistry Building is relatively new. We have our own areas to work in and everything’s in a nice central area. The labs are amazing!

My favourite part of the course has been my third year research project. It’s been good to take something right from the start and follow it through, and do all the research, all the learning behind the theory, figuring out what’s going on, and planning experiments and having that control of the science that I’m doing.

I’m not sure what I want to do after my degree yet. The Chemistry Department has been really helpful sending out lots of different job ideas and the careers service has been really helpful by looking over my CV and covering letters. When I do figure out what I want to do, I should be in the best possible position to get a job and succeed.

Megan John is in her final year of her BSc Hons Chemistry.
Osmium is the densest naturally occurring element. A house brick made of it would weigh roughly as much as 56 basket balls – 32kg.

It’s elementary to a chemist!

Outstanding teaching

To ensure that you have the best possible experience, our courses are taught by experienced, highly qualified experts, many with international reputations.

Modern chemistry skills

Science in general, and chemistry in particular is becoming increasingly multidisciplinary. We will therefore equip you with the knowledge and understanding of a broad range of science, as well as advanced subject-specific skills, to meet this need.

Our teaching is research-led, and our curriculum explicitly developed to provide you with the skills that a modern chemistry graduate needs. As part of our commitment to teaching excellence, we have developed our degrees in conjunction with the Royal Society of Chemistry, and operate a continual course development process in response to student feedback.

An integrated approach

You will be taught chemistry as an integrated subject, emphasising the practical and theoretical skills that are important for a modern chemistry graduate and which are highly valued by employers. Our courses develop practical synthetic, characterisation, measurement and analytical skills. They also involve data analysis, mathematical and computational techniques, written and oral presentations, report-writing, literature searching and fundamental research.
Highly supportive learning environment

We provide small group tutorials and seminars, individually supervised projects, dedicated careers advice and staff who are approachable and always on hand if you have any problems.

Supportive environment
We have small class sizes and excellent staff:student ratios to support your teaching and learning.

Continuous feedback
We continually provide you with academic feedback to further develop your knowledge, skills and learning.

Celebrating diversity
As a Department we are all fully committed to the Athena SWAN charter, which challenges the underrepresentation and inequalities of women within science in higher education and research. In early 2016, we received an Athena SWAN Bronze Award, highlighting our commitment to promoting and celebrating inclusivity, diversity, and opportunity for all irrespective of gender or minority.

We are also highly experienced in supporting students with various disabilities and work closely with the University’s Disability Service.

Investing in your future
Our priority is to support every student to make the most of their life and education. As part of this, the University has committed £3.7 million in scholarships and bursaries to help with fees and living costs. Visit lancaster.ac.uk/finance

A typical week...
10+ hours of lectures and small group seminars and workshops
10+ hours of practical chemistry
20+ hours of weekly contact

A community for Benjamin

I came to one of the Applicant Visit Days, and I was very impressed with how friendly the Department was. It was my first impression of Lancaster, and it sold it to me. When you’re looking at different universities you’re also comparing them on rankings, and Lancaster does score highly. You want to be able to say that you’ve been to a top class university.

In terms of applying what you learn, I think chemistry is one of the best subjects that you can study. It varies how much lab time we have but it could be up to fifteen hours a week. If you’re doing a project it could be up to 20/25 hours a week.

In my summer break, there are lots of opportunities to advertise for internships and research. Last summer I had the opportunity to do some research here and this year I’m hoping to get an internship at a company. I want to use the experience to decide what I want to do in the future, whether I’d like to keep studying in academia, (doing a PhD), or if industry’s right for me.

One thing that I’ve really enjoyed is the opportunities for research. We’re given quite a lot of independence. It’s quite exciting being at the forefront of science and discovering new things. I really enjoyed working with my supervisor, and we were actually able to make an academic publication from what we researched.

One of the best things about the Chemistry Department at Lancaster is how small it is and this means that the staff to student ratio is really good. You can speak with staff any time, and I’ve been really impressed with how eager they are to help you. It’s a nice friendly atmosphere.

I’ve enjoyed living in Lancaster and have actually been impressed with how much there is to do here.

Benjamin Dale is in his third year of his MChem Hons Chemistry.
Vulcanised rubber tyres are effectively one big molecule. Buses, cars and bikes are rolling around the world on just a few molecules.

At Lancaster University, chemistry can take you far.

Flexible degree programmes
Chemistry is often referred to as the ‘central science’, as it interfaces with the physical, environmental, and biological sciences. We have developed our degree programmes to reflect the diversity of the discipline.

Award: BSc Hons Chemistry
UCAS Code: F100
Duration: 3 years (full-time)

Award: MChem Hons Chemistry
UCAS Code: F101
Duration: 4 years (full-time)

Award: MChem Hons Chemistry (Study Abroad)
UCAS Code: F1T7
Duration: 4 years (full-time) including one year studying abroad

You can view details of all our courses at lancaster.ac.uk/chemistry-courses
Travel the world

As part of our MChem course, it is possible to spend either the third or fourth year studying at a prestigious overseas university. The format of the time overseas depends on the year abroad; in third year, students will primarily study advanced taught courses. If travelling during fourth year, the year will primarily consist of a research project. In each case, your studies abroad contribute directly to your degree.

Possible destinations

3rd Year – USA, Canada, Australia, New Zealand
Other destinations may become available in the future.

A world for Kate

I’d never really thought about Study Abroad until I came to the Open Day and it was mentioned at the end of the speech. I looked into it a bit more and there was loads of support, so you’re not just getting thrown into this different country and having to look after yourself.

We had the opportunity to go to Australia, Canada and a couple of places in America and New Zealand. I went to Kentucky as the course there matched what I was doing here. It was a really cool place and I feel I actually got to experience the real America.

I got to do a project over there and work in an American research group. I also made connections as well; I still email my supervisor who supervised my project in Kentucky. Studying abroad has meant having more skills to add to my CV – I can now say that I’m good at communicating because I’ve communicated with all these different people and I’m flexible as I’ve had to adapt to a whole different country. I also feel like you’re building your confidence as well because you have to make new friends really quickly, and make these connections. It also made me appreciate Lancaster more, as I feel you are a bit spoiled because it’s such a good department.

In Kentucky, I did a computer-based project, where I was simulating molecules that would prevent the overcharging in batteries. For my fourth year research project at Lancaster, I’m now looking at energy storage molecules. It’s been this project that’s made me realise that energy storage is what I want to do.

I visited Vancouver in my year away and could see myself living there, so I’ve applied and been accepted for a PhD at Vancouver University. All the PhDs I’ve applied for have real-world applications.

Kate Fraser is in her final year of her MChem Hons Chemistry (Study Abroad).
Our Chemistry degrees in detail

First Year
Each of our single honours Chemistry degrees shares a common first and second year. Here, the key concepts underpinning chemistry are introduced, along with the supporting practical skills. The topics link and interface with other disciplines and will be built upon in later years.

Core Modules
- Atoms and Molecules
- Organic Structure
- Organic Reactivity and Mechanism
- Chemistry of the Elements
- Coordination Chemistry
- Skills for Chemists
- Spectroscopy and Analytical Chemistry
- Thermodynamics of Chemical Processes
- Chemical Reaction Kinetics
- Physical Foundations of Chemistry

Free Learning Resource Pack, provides the key materials to support your studies:
- Lab coat
- Eye protection
- All glassware and lab equipment
- Lab books
- Online core course text books

In first year you’ll study two thirds chemistry, together with one-third of a subject selected from a list of relevant topics.

The chemistry modules provide you with a broad introduction to degree-level chemistry, to ensure that you have the foundation knowledge you will need to study more advanced topics in later years of the degree, irrespective of your pre-Lancaster background. Each module consists of lectures, practical classes and seminars, workshops and tutorials.

You will develop maths and computational skills as well as theoretical and practical knowledge of synthetic, physical and analytical chemistry.

Teaching in first year takes place for 2½ terms, with examinations following. The year is 50% exam and 50% coursework.

Timetables: Timetables are normally available one month before registration. Although we make every effort to make the timetabling as student-friendly as possible, scheduled teaching can take place on any day of the week.
Second Year
The second year of our Chemistry degrees builds upon the strong foundations of the first year, where we introduce a range of new topics, and go into greater depth with more familiar topics.

<table>
<thead>
<tr>
<th>Core Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Chemistry of π systems</td>
</tr>
<tr>
<td>+ Strategies for Chemical Synthesis</td>
</tr>
<tr>
<td>+ Analysis and Determination of Organic Structure</td>
</tr>
<tr>
<td>+ Organometallics, Catalysis and Mechanism</td>
</tr>
<tr>
<td>+ Inorganic Chemistry</td>
</tr>
<tr>
<td>+ The Physical Principles of Spectroscopy</td>
</tr>
<tr>
<td>+ Thermodynamics and Statistical Mechanics</td>
</tr>
<tr>
<td>+ Electrochemistry</td>
</tr>
<tr>
<td>+ Solids, Surfaces and Soft Matter</td>
</tr>
<tr>
<td>+ Quantum Chemistry, Symmetry and Group Theory</td>
</tr>
</tbody>
</table>

The structure of second year is based around studying three chemistry modules at any one time, for the first two terms. All of our chemistry modules have been designed to encourage the development of problem solving, communication, practical, research and technical skills. We also offer a transferrable skills and employability module, which seeks to provide you with explicit practice in many of these skills in a broader context.

As in the first year, associated with each module are lectures, practical classes (synthetic, physical, or computational), and a combination of seminars, tutorials and workshops.

Modules in second year build upon the foundations of first year; more advanced synthetic chemistry is introduced, including topics dealing with rationalising the reactivity and mechanism of organic and inorganic molecules.

Familiar characterisation techniques such as NMR, IR, and mass spectrometry are built upon, and new techniques such as X-ray diffractometry and UV/vis spectroscopy are introduced, both from a practical point-of-view, and from the theoretical side.

Phases of matter (including those associated with liquid crystals) and influences on bulk behaviour are discussed, and characterised using thermodynamic techniques, spectroscopy and electrochemistry.

The underlying origin of all of these effects is introduced by means of quantum chemistry, which allows us to understand the fundamental properties and interactions of atoms and molecules at a molecular level.

Again, the year is approximately 50% exam and 50% coursework, although details of each individual module vary.

Third and Fourth Years
The final years of our degree programmes allow an element of specialisation, and provide the opportunity for all students to undertake independent research projects in conjunction with one of our world-leading research groups.

<table>
<thead>
<tr>
<th>Third Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Modules</td>
</tr>
<tr>
<td>+ Advanced Synthetic Chemistry</td>
</tr>
<tr>
<td>+ f-block Chemistry and Metals in Biology</td>
</tr>
<tr>
<td>+ Investigation of Chemical Mechanisms</td>
</tr>
<tr>
<td>+ Biological Chemistry and Chemical Biology</td>
</tr>
<tr>
<td>+ Core Computational Chemistry</td>
</tr>
<tr>
<td>+ Advanced Spectroscopy and its Applications</td>
</tr>
<tr>
<td>+ Solids, Surfaces and Soft Materials II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optional Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Advanced Techniques for Analytical Separations</td>
</tr>
<tr>
<td>+ The Chemistry of Biomedical Imaging</td>
</tr>
<tr>
<td>+ Investigating Mechanism in Sustainable Polymer Synthesis</td>
</tr>
<tr>
<td>+ Elucidating the Properties and Interactions of Molecules</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Modules</td>
</tr>
<tr>
<td>+ Independent Research Project</td>
</tr>
<tr>
<td>Optional Modules</td>
</tr>
<tr>
<td>+ Solar Energy Conversion and Storage</td>
</tr>
<tr>
<td>+ Advanced Quantum Chemistry</td>
</tr>
<tr>
<td>+ Organic Photochemistry</td>
</tr>
<tr>
<td>+ Self-organising Soft Nanomaterials</td>
</tr>
<tr>
<td>+ Supramolecular Chemistry</td>
</tr>
<tr>
<td>+ Transition Metal Structure and Application to Catalysis</td>
</tr>
<tr>
<td>+ Advanced NMR: Proteins, Solids and Imaging</td>
</tr>
</tbody>
</table>

In the third year of our BSc degree, you will take a one-term research project, together with a series of taught modules that further develop chemistry knowledge and skills in more advanced areas.

For our MChem students, you will spend that time beginning to specialise in an area of advanced chemistry, whilst honing the skills you need for undertaking a more in-depth research project in your final year.

The final year of the MChem degree involves a two-term research project, together with a choice between a number of optional advanced taught Masters-level modules.

Practical work still forms a significant part of these years. However, rather than individual practical sessions which advance skills and techniques of previous years, the practical work takes a more combined and integrated approach, where many of the skills connect and integrate in longer-term practicals and projects.

Please note: This list may change slightly as it is subject to academics and their research.
Exciting research projects

In the final year of your degree, you will have the opportunity to undertake a piece of original research. We offer a broad range of projects across all our research areas.

The research projects form a major part of your studies. They provide the opportunity to work more independently, but under the guidance and supervision of our expert academic staff, who have extensive experience in chemistry research.

For the BSc, the research project contributes 25% of your final year. For the MChem, the research project contributes 50% of your final year.

Project details
Each project consists of:

- An initial literature investigation, which places the proposed research into the broader picture of existing research and provides context and details of the research challenge and goals
- Appropriate training in the specialist advanced techniques relevant to that project, as well as building on the knowledge developed during the rest of the degree. These techniques are then put into use, tackling a problem in contemporary chemistry research over the course of one term (BSc) or two terms (MChem)
- A concluding project report where you will detail the project, the experiments you have conducted, results and discussion, what conclusions can be drawn from the study and what still needs to be done

The final year research projects provide an opportunity to discover whether a future career in research is for you. They also build confidence and develop many transferable skills including written and oral presentation skills, critical thinking and data analysis, amongst many others.

Spoilt for choice for Emily

I loved the feel of the University when I first visited as it seemed to be like a small, friendly community. The consistent high rankings across university league tables were also really appealing as well!

Everyone I spoke to was really friendly, and made me feel excited at the prospect of studying here. Although Lancaster is a small city, there is still so much to do here.

Over the course of my degree, I have spent extensive time in both synthetic and physical chemistry laboratories, developing my analytical and problem solving skills. The degree has provided opportunities to also improve my teamwork, communication and independent thinking skills.

There is a vast range of research being conducted here at Lancaster across the different areas of chemistry. When it came to choosing my Master’s research project, I was spoilt for choice! My research project was on ‘Investigating the impact of monomer sequence on biodegradable copolymers’. It involved combining different polymers in an attempt to synthesise biodegradable polyesters that have desirable properties so they can be used in a variety of industries – including pharmaceuticals, biomedicine and packaging.

My supervisor has provided me with so much support. As my project links so closely to projects she is currently researching, it is clear she has a really keen interest in the results I have got, and how to progress the project even further. I loved doing my project, as it combined many different areas of chemistry - including coordination chemistry, polymer chemistry and analytical chemistry.

I am currently considering pursuing a PhD here at Lancaster University. Everyone at Lancaster is extremely friendly and makes the idea of completing my PhD here even more exciting.

Emily Hindley is in her final year of her MChem Hons Chemistry.
Local chemist, John Dalton, developed the first atomic theory which laid the foundations of modern chemistry.

See how modern-day techniques, combined with innovative equipment like our £1.2 million 700 MHz wide-bore solid state NMR spectrometer, can produce world-changing results.

World-leading departmental research

We are ranked 10th in the UK for the quality of our current research in the 2014 Research Excellence Framework (REF2014). Our modern approach seeks to address the major challenges we face as a global community.

We are developing research programmes that cross the standard discipline boundaries, and indeed the interfaces with the other natural sciences and that engage with government and industry.

Significant investment from both the University and the European Regional Development Fund into custom-designed facilities and equipment enables us to tackle major research challenges. This will provide you with the opportunity to use an extensive array of modern analytical and characterisation techniques.

Our research is structured around some core themes
- Synthetic Chemistry
- Analytical Chemistry and Spectroscopy
- Chemical Theory and Computation
- Biological Chemistry

The research itself seeks to address many major challenges, relating to:
- Healthcare
- Energy
- Materials
- The environment
An amazing future career

Chemistry graduates are in high demand due to the many transferable skills that are developed in a chemistry degree.

Some examples of graduate careers are:
+ All areas of chemical industry, ranging from multinational oil, chemical and pharmaceutical companies, to a host of smaller enterprises producing new and specialised products
+ Energy providers
+ Public health and environmental protection
+ Research in universities, government institutions, industry and private agencies
+ Teaching
+ Patent agencies
+ Scientific journalism
+ Forensic science
+ Postgraduate medicine

Graduates can also seek employment in a wide range of non-chemistry related industries, in business, commerce, finance, banking or the Civil Service.

We offer careers advice and guidance throughout your time here and beyond, as all Lancaster graduates have lifetime access to our careers service.

A career for Sapphire

I really enjoyed my chemistry degree at Lancaster. The support from all the staff members was really amazing. There was a really good staff to student ratio in lectures as well as seminars/workshops which meant you got to know both staff and other students very well, leading to a welcoming learning environment.

During my degree I did an internship in the Chemistry Department. This helped me make faster progress with my fourth year project as I was already familiar with the software I used and it helped me gain a PhD place here in the Department.

I decided to stay at Lancaster because it was a unique opportunity to pursue research in actinide chemistry through computational modelling.

In my PhD research, I’m working with an academic who is looking at nuclear chemistry. I’m enjoying the research as it has applications in the wider world, particularly in the nuclear industry. If we can understand the fundamental chemistry with respect to bonding in uranium, then we can use this knowledge as a solution to clean up nuclear waste. After my PhD I hope to continue my research as a post-doctoral researcher in this field of work.

If you’re looking for research excellence and a friendly, safe and beautiful place to both live and study, then Lancaster University is for you!

Sapphire McNeil completed her MChem Hons with a 1st class and is now studying a PhD in Computational Chemistry at Lancaster University.

For more information please visit lancaster.ac.uk/chemistry
Graphene is 200 times stronger than steel, but light, flexible and transparent – one of a range of new materials offering innovative applications across transport, medicine, energy, the environment and technology.

Discover how new materials are changing the world outside the lab.

Exciting opportunities with industry

We are host to an £11 million North West centre for chemical industry engagement, funded by the European Regional Development Fund to support the chemical industry and build links between academia and enterprise.

This unique centre provides the opportunity for graduate and postgraduate level industrial research projects through a range of support options for industry, from short term feasibility studies and materials characterisation, to developing longer term collaborative programmes.

The Collaborative Technology Access Programme (cTAP), provides industry with an opportunity to access our equipment and expertise.

We have a growing portfolio of industrial partnership clients.

Internships

An internship will give you the opportunity to apply your academic knowledge in real world situations whilst helping you to develop your transferable skills. In collaboration with the University we offer competitive internships to our students in regional industries across the North West and beyond.

For more information please visit lancaster.ac.uk/chemistry
Entry requirements

A Levels
BSc Hons Chemistry: Our typical offer is ABB.
MChem Hons Chemistry and MChem Hons Chemistry (Study Abroad): Our typical offer is ABB.

A level Chemistry is required for all of our courses. We also typically ask for an A level in a second science (preferably biology, mathematics or physics). The third A level can be in any subject.

We also require a pass in the chemistry practical endorsement.

Other qualifications
Details of our standard offers for non-A level routes can be found at lancaster.ac.uk/chemistry-courses

Additional requirements
We require at least a grade B or 6 in GCSE Maths and a grade C or 4 in English Language. Many chemistry students are surprised by the maths content of degree-level chemistry. To prepare our students for this, all our programmes include introductory mathematics courses to cover this material. We therefore do not require A level Maths (or equivalent), although it is useful if you have studied maths to that level.

What next?

Admissions
All applications to study on our degree programmes must be completed through UCAS, the UK Universities and Colleges Admissions Service (see ucas.com for more details).

Choosing a Degree Programme
BSc or MChem
If you are uncertain whether you want to study for three or four years, bear in mind it is possible to switch between the BSc and MChem at any point during your first two years of study at Lancaster. However, this is subject to internal progression requirements; you must obtain an upper second class mark overall in your studies to be allowed to remain on the MChem.

Study Abroad
It is also possible to switch on to this course once you have started at Lancaster. Again, this course is subject to higher internal progression requirements than our other degrees. You are free to switch to a Lancaster-based degree at any time.

Help from a Chemistry Unibuddy Ambassador
We recognise that this can be a stressful time, especially when you will have so many questions about universities and their departments. To help you make an informed decision, we have a number of current chemistry students who have volunteered to be available to answer any questions you might have about life and study at Lancaster, through the University’s online unibuddy platform. All you have to do is visit lancaster.ac.uk/study/chat and choose a chemistry unibuddy ambassador to chat to.

It’s your chance to ask one of our current students what life here is really like!

Experience Lancaster life for yourself

Lancaster University is a diverse, varied, exciting, vibrant and close knit community; you couldn’t ask for a better student experience.

Lancaster University is situated in a 560 acre picturesque parkland campus, just three miles from the centre of Lancaster. It offers the very best of city, countryside and coast.

On campus you will find everything you need from shops, library, student learning zone, theatre, £20 million sports centre, supermarkets, banks, travel agent, pharmacy, dentist, medical centre, hairdressing salon to a variety of restaurants, bars, cafes and lots, lots more.

Lancaster is one of a small number of leading UK universities to operate a college structure. All students join one of our eight undergraduate colleges—Bowland, Cartmel, County, Furness, Fylde, Grizedale, Lonsdale and Pendle.
Come and visit us

Book a campus tour online at lancaster.ac.uk/visitus

Open Days and Campus Tours
Join us at one of our many Open Days or Campus Tours and take the time to find out as much as you can about Lancaster University.

In addition, you can meet with staff and students from the Chemistry Department to help you find out what it is really like to study here and find out whether the University is right for you.

Campus Tour Extras
The University also offers Campus Tour Extras with a drop-in session to the Chemistry Department. Take a campus tour and visit our award-winning student accommodation, a range of social venues, our library, study areas and lots more. After the tour, take the opportunity to meet an academic from chemistry, take a tour of our brand new state-of-the-art Chemistry Building and find out more about the degrees on offer.

Interview/Applicant Visit Days
If you’re offered a place on one of our degrees, you’ll be invited to an Interview/Applicant Visit Day. Attendance is not compulsory, but we highly recommend you attend. As you will already have received an offer from the University, these one-to-one interviews provide the platform for you to impress us and to potentially receive a more advantageous offer.

Throughout the rest of the day you can find out more about us and what it’s like to live and study here. We will show you the Department and the University and you will also have the opportunity to meet with some of our current staff and students and to take part in a practical chemistry session in one of our teaching labs. If you cannot make one of our Interview/Applicant Visit Days then we also provide individual visits on a date convenient to you. These visits involve an interview, campus tour with one of our experienced student ambassadors, a chat with the admissions tutor, a tour of the Chemistry Building and lunch.

For more information please visit lancaster.ac.uk/chemistry
Get in touch

We are passionate about our subject and are always happy to answer any questions about our degrees and the application process.

Website information
For more information about our degrees and the Department please visit lancaster.ac.uk/chemistry
For more information about Lancaster University visit lancaster.ac.uk

Get in touch
If you have any further questions then please don’t hesitate to contact Gail Sheldrick, Chemistry Recruitment, Conversion and Marketing Coordinator, for friendly help and advice.
T: +44 (0)1524 5 94931
E: g.sheldrick@lancaster.ac.uk
Facebook: @LancasterUniChemistry
Twitter: @LancUniChem
We look forward to hearing from you.

We are easy to reach!

By road
From the north or south, leave the M6 motorway at Junction 33 and take the A6 north towards Lancaster for about 2 miles. The University is on the right. For SatNav use LA1 4YW.

By rail
There are direct rail links between Lancaster and many of the UK’s major cities and airports. The single journey between London and Lancaster takes between 2.5 and 3 hours. Buses and taxis are available from just outside the station.

Further details can be found at lancaster.ac.uk/travel

By coach and bus
Lancaster city is on the national coach network; National Express coaches call at the University. A number of local buses run from Lancaster bus station to the University every 5 minutes on weekdays.

Edinburgh

Lancaster

London

2.5 hour journey

Disclaimer
The University makes all reasonable efforts to ensure that the information in this brochure is correct at the time of printing (June 2019). Please see lancaster.ac.uk/compliance/legalnotice for further information.