Discover the major challenges facing environments globally

Develop your knowledge of how the Earth system works, learn new laboratory and research skills and join us on amazing fieldtrips to Italy, Croatia and Switzerland. You’ll study how the environment has evolved to the present state and how it might change in the future, enabling you to tackle some of the major challenges facing the world.

Awareness of major global challenges is mounting, including concern over climate change, water and soil pollution, food production and the management of hazards such as flooding or volcanic eruptions. The environmental and Earth sciences uniquely equip you to address such challenges, by applying your understanding and practical experience from across a range of scientific disciplines.

Join us in the Lancaster Environment Centre and become part of a community of students, academics, researchers, scientists and commercial enterprises, working together to address today’s biggest environmental challenges.
There has never been a better time to study the environmental and Earth sciences. At Lancaster, you will become part of the world-renowned, multidisciplinary Lancaster Environment Centre and be taught by leading experts in their fields.

Our team will provide you with fundamental understanding and hands-on experience related to the environment, giving you the key skills required for a wide range of careers inside or beyond the environment sector. Lancaster offered the first environmental science degree in the country in the 1960s, representing a long track record of excellence, and since then our staff have helped to shape this rapidly evolving subject both in the UK and internationally.

Flexible and interdisciplinary
We believe that you will excel in your degree when you have the opportunity to explore in depth the areas of the environmental or Earth sciences that interest you the most. Your first year of study will give you the foundation, knowledge and skills you need before specialising in subsequent years of your degree.

What's more, studying in a multidisciplinary department gives you the unique opportunity to expand the breadth of your degree by taking complementary modules in ecology or geography.

Practical study
You won't just learn in lecture theatres at Lancaster! We believe that the environmental and Earth sciences are best appreciated through hands-on practical experience, whether that is in the field, in our teaching laboratories or in computer classes. Practical learning enables you to put theory into practice, providing a deeper understanding of the subject, whilst developing skills which will be of use throughout your degree and future career.

Links with employers
Our in-house Enterprise and Business Partnerships team engages with hundreds of different organisations, giving you fantastic opportunities to work alongside these partners through internships or even during your dissertation project. We give you the opportunity to enhance your career-related skills and experience during your degree, which is crucial for standing out in the graduate jobs market.

Made for learning

#1
in the UK for career prospects six months after graduating (The Guardian University League Tables 2020)

#6
in the UK for Geography and Environmental Science (The Times and Sunday Times Good University Guide 2020)

World Top 100
for Environmental Sciences (QS World University Subject Rankings 2019)
The place for the researcher

Our lecturers are renowned experts at the forefront of their fields and are shaping our understanding of the world. Their work feeds into our degree programmes, ensuring that your education is informed by cutting-edge thinking. During your degree, you’ll conduct your own independent research project where you’ll benefit from the research experience of our internationally renowned staff and the latest technology used in research laboratories or fieldsites.

Emerging concerns over Earth’s ozone layer
Research led by Dr Ryan Hossaini has highlighted emerging concerns over the production and emission of uncontrolled ozone-depleting chemicals. Depletion of the ozone layer – which shields the Earth from harmful UV radiation - gained prominence in the 1980s following the discovery of the Antarctic ‘ozone hole’ and has remained a persistent environmental issue since.

The research examined ‘very short-lived substances’, a class of ozone-depleting chemicals whose production is not controlled by the UN Montreal Protocol – the international treaty designed to safeguard the ozone layer.

With colleagues from the US National Oceanic and Atmospheric Administration, Ryan’s group discovered that the atmospheric abundance of some of these chemicals has more than doubled since the early 2000s. Analysis of global atmospheric measurements, combined with state-of-the-art computer modelling, revealed rapidly increasing industrial emissions of these chemicals from Asia, consistent with economic growth in the region.

Owing to the Montreal Protocol, production of many ozone-depleting chemicals (e.g. chlorofluorocarbons, CFCs) is prohibited and the ozone layer is beginning to show signs of ‘recovery’. Emissions of uncontrolled very short-lived substances are expected to increase in the next decade however, and this may inhibit full recovery to pre-depletion levels.

The research team’s findings have sparked a new debate on the threat posed to the ozone layer as the Montreal Protocol’s benefits are being offset by emissions of uncontrolled ozone-depleting substances.

Wind direction can boost solar panel efficiency
Research led by Dr Alona Armstrong, has shown that a southerly wind can increase the electricity output of a solar park by up to 43%. The increased output is caused by the cooling effect of the wind on the photovoltaic panels counteracting the negative impact of the solar panels warming up.

The work was conducted by LEC Masters student Damon Waterworth and established that, as expected, solar radiation has the greatest influence over electricity output with relative humidity also playing an important role. However, when isolated from the influence of other meteorological variables, wind direction can vary electricity output by 20% to 43%, with greater differences occurring when solar radiation and electricity output are higher.

Understanding the effect of different weather conditions on the output of renewable energy technology allows more accurate predictions of electricity generation. This is increasingly important as the proportion of renewables in our energy mix increases. Until now however, there have been limited field studies that investigate the impact of different weather conditions on solar panels in the real world and the impact of wind speed and direction on solar panel efficiency has been entirely overlooked.

Consequently, this research highlights the need to better understand wind impacts in the field and inform management of the electricity grid.

The research was undertaken at Westmill Solar Park (https://westmillsolar.coop), Oxfordshire, using meteorology data collected by Dr Armstrong and electricity output data provided by Westmill Solar Cooperative Limited.

New insights into Santorini, the restless Greek volcano
Research involving Dr Hugh Tuffen has shown that the catastrophic Minoan eruption of the Greek island volcano Santorini (around 1600 BC) followed remarkably swift ascent of a large volume of magma in the crust beneath. The eruption, which was hundreds of times larger than Eyjafjallajökull, Iceland, 2010, caused much of the island to collapse into the sea, heralding the end of the Minoan civilisation and possibly inspiring the legend of the lost island of Atlantis.

Millimetre-sized crystals found within the erupted rocks record how magma rose towards the surface before the eruption. The research team, involving Hugh and colleagues from Clermont-Ferrand (France), identified that a huge volume of magma, stored in the mid-crust (8-12 km depth), rose to within 4–6 km of the surface less than two years before the eruption. This information is key to understanding current unrest at Santorini, as much of the island uplifted by several centimetres in 2011–12, accompanied by a swarm of earthquakes.

Does this unrest herald an impending eruption? LEC graduate Dr John Browning, now a lecturer in Chile, has modelled the physics of chamber roof failure at Santorini, as eruptions can only occur once pressurised magma can break a pathway to the surface. Thankfully, John’s model shows that even a small eruption remains highly unlikely, and far greater unrest would precede a Minoan-scale eruption. Hugh and John’s work will help hazard mitigation at Santorini and other active volcanoes worldwide.

Research involving Dr Hugh Tuffen has shown that the catastrophic Minoan eruption of the Greek island volcano Santorini (around 1600 BC) followed remarkably swift ascent of a large volume of magma in the crust beneath. The eruption, which was hundreds of times larger than Eyjafjallajökull, Iceland, 2010, caused much of the island to collapse into the sea, heralding the end of the Minoan civilisation and possibly inspiring the legend of the lost island of Atlantis.

Millimetre-sized crystals found within the erupted rocks record how magma rose towards the surface before the eruption. The research team, involving Hugh and colleagues from Clermont-Ferrand (France), identified that a huge volume of magma, stored in the mid-crust (8-12 km depth), rose to within 4–6 km of the surface less than two years before the eruption. This information is key to understanding current unrest at Santorini, as much of the island uplifted by several centimetres in 2011–12, accompanied by a swarm of earthquakes.

Does this unrest herald an impending eruption? LEC graduate Dr John Browning, now a lecturer in Chile, has modelled the physics of chamber roof failure at Santorini, as eruptions can only occur once pressurised magma can break a pathway to the surface. Thankfully, John’s model shows that even a small eruption remains highly unlikely, and far greater unrest would precede a Minoan-scale eruption. Hugh and John’s work will help hazard mitigation at Santorini and other active volcanoes worldwide.
Your study

Our academics are leaders in their fields of research and deliver enthusiastic and engaging teaching through a range of methods.

Lectures
Lectures provide an introduction to the key issues and findings in each topic and are delivered by an expert in that particular field. They usually last either one or two hours, and should be complemented by further independent study including reading relevant literature on the topic. We provide online reading lists, suggesting suitable books and journals that are available either digitally or in print from our library.

Tutorials
Tutorials are usually one-hour sessions where you will be encouraged to discuss your learning with a small group of fellow students, under the guidance of a tutor. During these in depth study sessions, you will become used to speaking out, listening to others and learning to increasingly present yourself with confidence. You’ll become experienced in being part of a team and explore the topics under study together.

Practical classes
These are designed to help you discover the key principles underpinning the topic of study, whilst also developing your skills which you will be able to put to use throughout your degree and future career. Practical classes could range from computer-modelling sessions, through fieldwork, to the opportunity to conduct experiments in our laboratories.

Assessment
The assessment process varies across modules, but includes laboratory reports, essays, independent project reports, group presentations, multiple-choice tests and exams. Assessment is an on going process, rather than being left solely until the end of the degree. This means we are able to offer feedback to you throughout your degree and, equally as important, it relieves pressure on you when modules are examined at the end of each year.

Academic support
We foster a highly supportive learning environment, making sure that you are fully supported to achieve your full academic potential. This includes access to our Student Learning Developers, who offer workshops and advice on improving your academic skills, and also assigning you an Academic Tutor who you will meet with regularly throughout your degree to discuss your progress.
Lancaster Environment Centre is one of the University’s largest departments, with newly enhanced facilities, teaching rooms, laboratories and social spaces.

Equipped for achievement

Field and laboratory facilities

The final year dissertation provides you with the opportunity to work alongside our ongoing research projects or perhaps develop a project of your own. You may have the opportunity to work at research field sites in the UK or overseas. Your dissertation may also give you hands-on experience with cutting-edge analytical equipment and techniques, including mass spectrometers and ion chromatographs to analyse the chemical composition of water or soil samples, gas chromatographs to analyse greenhouse gases released to the atmosphere, or data science techniques to analyse satellite images of ice sheet melting.

Meteorological station

We run the Hazelrigg Meteorological Station, a unique field and weather station located just one kilometre from the University campus. Measurements from the site help the Met Office validate weather forecasts and climate models. You may have the opportunity to visit the station as part of your studies or as a volunteer taking measurements that contribute to official Met Office records.

An environmental community

The newly refurbished atrium at the heart of Lancaster Environment Centre forms a home for our community of students, environmental researchers, government scientists and enterprises, working together to address today’s biggest environmental challenges. The eco-friendly design of this space extends from the 100% recycled flooring, to the glazed roof, designed to reduce the need for lighting within this communal space.

State-of-the-art laboratories

Spread over two floors in a new £4m building, our teaching laboratories can house over 200 students and are the location for many practical classes. These will provide you with hands-on experience that puts theory into practice. You can also use this facility as part of your dissertation project, for example undertaking controlled experiments or processing field samples.

Geographic Information Systems

You will have access to the latest versions of GIS and image processing software, as well as a wide variety of digital data resources. We also have a dedicated GIS Officer who offers support if you are using GIS as part of your coursework or dissertation project.
Fieldwork is a fascinating way to develop your practical skills. You’ll gain hands-on experience of a wide range of environmental, ecological and geological situations that will place your studies in the context of real-world issues.

Local field excursions

Nested between the Lake District World Heritage Site, Yorkshire Dales National Park, Areas of Outstanding Natural Beauty and close to major cities such as Manchester, Lancaster is perfectly placed to study environmental, geographical and geological processes.

Isle of Mull

Study geologic and geomorphological processes, and develop your Earth science field skills, during our field trip to the Isle of Mull in Scotland. During this trip, you will learn how to collect field data in order to make a geologic map. You will also visit some of the oldest rock formations in the UK and will learn about a wide range of geologic terrains. You will gain excellent practical skills including mapping techniques, how to plot structural data and be able to learn about aspects of British geological history.

White Scar Caves

Put your knowledge of hydrology into practice in our first year visit to White Scar Caves in North Yorkshire, and learn how to measure water flow within karstic systems and the properties of rocks and soils as they influence the hydrological cycle.

Hazelrigg

Visit Hazelrigg, our very own field and weather station, in your second year to make your own weather observations, or in your third year to study the radiative balance of the atmosphere.

Heysham Head

Unravel the geological history of the area and learn geoscience techniques as part of a second year module at the Heysham coastline of Morecambe Bay.

Carrock Fell

Spend a week in the nearby Lake District World Heritage Site, learning key field and laboratory skills needed to succeed in the environmental and Earth sciences. Based at Carrock Fell, you will collect primary data from a disused tungsten mine, and analyse and interpret these data to assess the present and future impacts the mine will have on stream water quality.

Please note: Field options available are subject to pre-requisites.
Croatia
Visit Croatia with us and explore the Istrian Peninsula, an idyllic landscape of olive groves, forests, wineries and beaches. This environment is strongly governed by its geology, biodiversity and position between differing climates, whilst Istria is also the setting of dramatic socio-economic, political and environmental changes. During this trip, you will focus on the challenges of environmental management, particularly of water resources, in this unique landscape.

Italy
Visit Mount Etna, Europe’s largest active volcano, and study the complex processes that take place both on the surface and beneath volcanoes. During this intensive week-long field trip, you will explore a number of physical volcanic processes, including lava flow emplacement, explosive events and the evolution of a basaltic volcano. In addition, you will also evaluate methods of managing volcanic hazards on heavily populated active volcanoes.

Switzerland
Gain an in-depth understanding of Alpine environments during our intensive week-long residential field course in south-west Switzerland. During the course you will collect significant amounts of field data focused on one of four interconnected study themes spanning glaciology, soils, ecology and hydrology. The experience provides an inspiring foundation into the science and understanding of how these globally sensitive ecosystems are responding to change.
Ben Ireland
BSc Earth and Environmental Science

What was it like coming to Lancaster for the first time?
I got a good feel for Lancaster when I visited an Open Day. It was clear to me that students were really behind their university and passionate about showing visitors their home. I could tell that the University had a supportive community of students and tutors, and this definitely rings true as a student who decided to study at Lancaster.

What have you enjoyed most about your course?
My favourite topic I’ve studied is geology, and I have had many opportunities to take my learning beyond the University and out into the field. We went to White Scar Caves to check out the different rock types and see for ourselves various rock formations. I found the experience really insightful, especially being able to see how the rock formed in sequence over time, it helped me to contextualise what we learn in lectures and relate it back to real environments.

How does your degree differ from others?
The breadth of my degree means that I am able to study so many aspects of the natural world. My tutors are also academic researchers, which means that our learning is tailored around discoveries made at the forefront of science and innovation. I am able to study real, relevant subjects and learn about new developments in topics such as climate change and the effects on our ecosystems almost as they happen. I have developed my knowledge of how volcanoes are formed, and my course has enabled me to take a fieldtrip to Mount Etna – with so many opportunities to get hands on with my learning, I know this degree can take me wherever I want it to.

A place for Ben

What was it like coming to Lancaster for the first time?
I got a good feel for Lancaster when I visited an Open Day. It was clear to me that students were really behind their university and passionate about showing visitors their home. I could tell that the University had a supportive community of students and tutors, and this definitely rings true as a student who decided to study at Lancaster.

What have you enjoyed most about your course?
My favourite topic I’ve studied is geology, and I have had many opportunities to take my learning beyond the University and out into the field. We went to White Scar Caves to check out the different rock types and see for ourselves various rock formations. I found the experience really insightful, especially being able to see how the rock formed in sequence over time, it helped me to contextualise what we learn in lectures and relate it back to real environments.

How does your degree differ from others?
The breadth of my degree means that I am able to study so many aspects of the natural world. My tutors are also academic researchers, which means that our learning is tailored around discoveries made at the forefront of science and innovation. I am able to study real, relevant subjects and learn about new developments in topics such as climate change and the effects on our ecosystems almost as they happen. I have developed my knowledge of how volcanoes are formed, and my course has enabled me to take a fieldtrip to Mount Etna – with so many opportunities to get hands on with my learning, I know this degree can take me wherever I want it to.
Volunteering
Our Green Lancaster scheme provides you with plenty of opportunities to become more sustainable and promote positive environmental choices. The many nature reserves near to Lancaster also offer numerous volunteering opportunities. Within Lancaster Environment Centre, we offer you volunteering opportunities either with external partners specifically in the environment sector, or as a research assistant in our own laboratories or research groups.

Beyond LEC seminar series
We run a series of fortnightly seminars throughout the year in which graduate employers and recent graduates offer insights into sectors in which our students often take up careers. These include information and advice on what these careers entail, how to identify opportunities, and how to make the most of your skills and experiences.

Eco-innovation
Eco-innovation is the development of new products, processes or services that support business growth with a positive environmental impact. We offer a second year module in eco-innovation that will not only provide you with knowledge of this area and how the concept relates to business opportunities, but will also give you the insights to understand how organisations apply eco-innovation into their business planning. As part of the module, you will learn how to create proposals for eco-innovation and prepare presentations for a panel of experts.

Placement year
Taking our placement degree provides the opportunity to spend your third year working in a paid, professional role as a full-time employee in the type of organisation that you might aspire to join when you graduate. Being able to demonstrate professional experience of working on a range of important and interesting projects, where you potentially get to apply the theory you’ve learned in your first and second year, is invaluable when competing in the job market. It’s also a great way to work out what you do, or don’t, want to do once you complete your studies!

Finding and securing a placement opportunity is down to you, just as it would be when applying for a graduate vacancy. However, we will provide you with plenty of support and guidance in writing your CV, applying for positions, preparing you for interviews and even taking part in assessment centres.

We also have well established and long-standing links with many potential employers which means that we have a number of placement opportunities just for Lancaster students.

Internships
Students have the opportunity to gain important work experience by applying to do paid summer internships. Post LEC students have been employed on projects as diverse as applying ‘Internet of Things’ technologies to the agricultural sector and upcycling old bathroom fixtures into garden planters.

Gain real-world experience
Discover your world beyond borders

Enhance your studies, boost your self-confidence and immerse yourself in the culture of another country as part of our exciting opportunities to study overseas.

Study Abroad
Broaden your academic horizons by spending your second year studying in either North America, Australasia or Iceland**. You’ll study similar modules to those available at Lancaster whilst gaining an understanding of a different culture and society. Importantly, the year abroad at Lancaster is not an addition to your degree, but instead fully integrated into the standard timeframe of three years for your BSc or four years for your MSci.

Europe scheme
Through the Europe scheme**, you can spend three months abroad at the end of your second year, undertaking a research project in Switzerland, Croatia or the Czech Republic. Alternatively, you could study modules taught in English for four months at a university in the Netherlands at the start of your third year. Whatever you choose, it will be an unforgettable experience and a unique addition to your degree.

Student support
Studying on the other side of the world can be a daunting prospect. In addition to having a dedicated advisor, who will help you decide where to go and what to study, you’ll also have the opportunity to network with students who have studied abroad previously and can provide you with a wealth of practical tips. Additionally, our International Office is on hand to help you with application forms and the financial and legal aspects of studying abroad.

Fees and funding
Studying abroad might be cheaper than you think! Those undertaking a Europe placement will continue paying tuition fees to Lancaster and will not have to pay any tuition costs to the host university. If you are studying overseas for a year, we will waive 85%*** of your tuition fees for your year abroad and you may also receive an increased maintenance loan.

* A year in Iceland is only available to Environmental and Earth Science students
** Subject to continuation of the Europe scheme beyond academic year 2020/21
***Subject to change. For more information about studying abroad, please visit www.lancaster.ac.uk/study-abroad
What is it about Lancaster that you particularly love?

Lancaster has a wide range of qualities beyond having amazing degree subjects; the sense of community and belonging is really strong. I have connections with people in my halls, my course, my college and societies - I feel as though I’m part of something special, which is definitely unique to Lancaster. When walking around the campus to my next lecture, everyone is so friendly, there’s just a really positive vibe and a good sense of community.

Do you have opportunities to expand your learning beyond the campus?

Putting our learning into practice in the field gives me a well-rounded understanding of my degree, and undertaking fieldwork is great for this! It’s an opportunity to really put my learning into practice. I’ve been to Carrock Fell in the Lake District, which we’re really lucky to be next door to, where I explored a disused tungsten mine and observed its impacts on stream water quality. I have plenty of fond memories of that field trip, developing my skills and equally having a great time with my course mates.

Modules like this really enhance my learning, so instead of being given data to analyse and work on in a seminar room, I am able to gather my own data out in the field, analyse the results and report on my own research.

How is your course enabling you to achieve your career goals?

There’s lots of modules which feedback to industry, one of which is on Geographic Information Systems (GIS), which is a useful tool and skill to have, allowing me to map out a range of things such as planning applications, chemical data, and much more. Having skills like these set me apart, as I am equipped with specialist understanding.

My course also has opportunities to volunteer at our Hazlerigg Meteorological Station, where I can work on the weather station and learn first-hand about collating information about different weather systems.

What are your plans for the future?

I’ve applied to study a Masters course in Sustainable Water Management at Lancaster. Putting aside the fact that I don’t want to leave Lancaster Uni as I’ve enjoyed my undergraduate degree so much over the years, the postgraduate course is a really good transition and perfect for the career path I’m aiming for.

My academic tutor has been so supportive throughout my undergraduate degree, and we’ve talked extensively about my post-degree options, ensuring that I made an informed decision. I’m really looking forward to taking my studies to the next level and learning more about a subject I have enjoyed so much over the last three years.

A place for Rachael
Hello Future

From environmental consultancy through the water industry to the Met Office, a degree in the environmental and Earth sciences provides a platform to enter a wide range of different professions spanning the private, public and third sectors.

100% of our graduates were in full-time employment and/or undertaking further study six months after finishing their degree (DLHE 2014-2017)

When you graduate from Lancaster, you will take with you not only the subject knowledge from your degree but also the skills and experiences valued by employers across a wide range of different sectors. We also provide many opportunities that focus on the development of your career aspirations and your preparation for life after Lancaster, ranging from networking with recent alumni to training for job interviews.

Examples of the types of career path that our recent graduates have followed include:

+ Air Quality Consultant
+ Chemical Analyst
+ Environmental Engineer
+ Environmental Regulator
+ Geotechnical Engineer
+ Hydrogeophysics Technician
+ Meteorologist
+ Nuclear Waste Scientist
+ PhD Researcher
+ Recycling Site Chemist
+ Sustainability Consultant
+ Waste Water Engineer
+ Graduate scheme, for example in the Water Industry

Whatever your career aspirations may be, or even if you’re still not quite sure, we’re here to support you to reach your goals.

You will undertake a module in employability skills during your degree, giving you excellent preparation for applying to graduate-level jobs and graduate schemes, and our dedicated Careers Service in the University is here to assist you every step of the way. From helping you make a lasting impression with your CV to ensuring you are well prepared for interviews and assessment centres, they are able to offer you tailored and personalised support. What’s more, they provide lifelong careers support to our graduates so, if you need us, we will always be here to help.
Earth and Environmental Science

Entry requirements for BSc Hons Earth and Environmental Science and BSc Hons Earth and Environmental Science (Placement Year)

A levels
ABB
BTEC
DDM
International Baccalaureate
32 points overall with 16 points from the best three Higher Level courses.

Entry requirements for MSc Hons Earth and Environmental Science and Study Abroad courses

A levels
AAB
BTEC
DDD
International Baccalaureate
35 points overall with 16 points from the best three Higher Level courses.

Required subjects
+ One science A level from the following: Biology, Chemistry, Computing, Environmental Science, Geography, Geology, Human Biology, Mathematics, Physics or Psychology

Please note, for students who do not have A level Chemistry or an equivalent qualification, we require you to take our Introduction to Environmental Chemistry module in the first year.

For students who do not have A level Mathematics (or equivalent), we require you to take numerical skills modules in the first year. If you have GCSE Mathematics at grade 5 or 6, you will take Numerical Skills I and Numerical Skills II. If you have GCSE Mathematics at grade 7 or above then you take only Numerical Skills II.
+ GCSE Mathematics grade B or 5
+ GCSE English Language grade C or 4

We welcome applications from students with combined or other internationally recognised qualifications. For more information, please contact the Admissions Office directly on +44 (0)1524 592028 or ugadmissions@lancaster.ac.uk

1Must include sufficient science and we require Distinctions in the majority of relevant science units. Please contact the Admissions Office for further advice.

<table>
<thead>
<tr>
<th>Degree</th>
<th>UCAS Code</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSc Hons Earth and Environmental Science</td>
<td>FF68</td>
<td>3 years</td>
</tr>
<tr>
<td>BSc Hons Earth and Environmental Science (Study Abroad)</td>
<td>FF6V</td>
<td>3 years with Year 2 spent overseas at a partner university</td>
</tr>
<tr>
<td>BSc Hons Earth and Environmental Science (Placement Year)</td>
<td>FF78</td>
<td>4 years with Year 3 spent on placement</td>
</tr>
<tr>
<td>MSc Hons Earth and Environmental Science</td>
<td>4R71</td>
<td>4 years</td>
</tr>
<tr>
<td>MSc Hons Earth and Environmental Science (Study Abroad)</td>
<td>FF86</td>
<td>4 years with Year 2 spent overseas at a partner university</td>
</tr>
</tbody>
</table>
Earth and Environmental Science

Degree overview

Geoscientists are increasingly recognised as playing a crucial role in meeting global challenges such as climate change, sustainable development, resource provision, and natural hazards. By placing your geoscience training within the broader context of the environment, you will gain knowledge of both the challenges and the potential solutions.

Covering both natural and man-made environments, you will explore the main factors and processes that control today’s environment, how the environment has evolved to its current state and how environmental conditions may change in the future.

In addition, the degree draws upon the expertise of a number of our staff who specialise in Earth science including volcanologists, geophysicists, hydrogeologists and glaciologists, who deliver an exciting range of specialist topics to choose from.

Your first year will address many of the fundamental themes of the Earth and environmental sciences, from understanding geology to learning about the atmosphere, weather and climate. Specialisation begins in the second year when we introduce Earth science-focused topics, and this degree gives you the flexibility to focus on a specific topic area, be it geological hazards, soil science, environmental radioactivity or glacial systems.

Core modules in the second year prepare you for your third year dissertation project, which is an opportunity to research a subject that really interests you. You may choose a project with a substantial fieldwork component or, alternatively, conduct laboratory-based research or computer modelling.

Second and third year modules build upon the themes in year one, and you will have the opportunity to take part in popular field courses, including to Mount Etna in Sicily. There, you will study volcanic processes and learn how the local population can manage the impacts of volcanic phenomena. You will also have the opportunity to engage in fieldwork at Carrock Fell in the scenic Lake District World Heritage Site and take further optional residential modules, from studying glacial processes in Switzerland to environmental challenges in Croatia.

Throughout your degree, considerable weight is placed upon the transferable skills that are highly valued by potential employers. For example, in addition to your subject knowledge, you will also gain communication and information technology skills and will become familiar with data handling and environmental sampling and analysis.

Year 1

Core modules
- Atmosphere, Weather and Climate
- Biogeochemical Cycles
- Environmental Processes and Systems
- Geology
- Global Environmental Challenges
- Hydrology: Water in the Environment
- Natural Hazards
- The Earth’s Interior
- Placement Preparation (Placement Year only)

Optional/skills modules (depending on existing qualifications)
- Introduction to Environmental Chemistry
- Numerical Skills I
- Numerical Skills II
- plus further modules from across Lancaster Environment Centre

Year 2

Core modules
- Aquatic Biogeochemistry
- Environmental Field Course
- Experimental Design and Analysis
- Geologic Mapping Field Course
- Geoscience in Practice
- Soil Science
- Work Based Learning Preparation (Placement Year only)

Year 3

Core modules
- Either Introduction to Geophysical Techniques OR The Dynamic Earth
- Dissertation Project or Dissertation with External Partner

Year 4

For Placement Year students
The core and optional modules described above for Year 3
- Work Based Learning Reflection
- For MSci students
- Core modules
 - Physical Volcanology
 - Research Dissertation Project
- Plus a selection of optional modules that may include
 - Contaminated Land and Remediation
 - Environmental Aspects of Renewable Energy
 - Flood Forecasting and Flood Risk Management
 - Groundwater Resources and Protection
 - Sustainable Soil Management

Field Course
- Issues in Conservation Biology
- The Causes and Consequences of Environmental Radioactivity
- Volcanic Processes
- Water Resources Management

Students who do not have A level Chemistry or an equivalent qualification are required to take Introduction to Environmental Chemistry. Students who do not have A level Mathematics or equivalent are required to take Numerical Skills courses

* Dissertation with External Partner available to FY69 and FY71 students only
Environmental Science

<table>
<thead>
<tr>
<th>Degree</th>
<th>UCAS Code</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSc Hons Environmental Science</td>
<td>F750</td>
<td>3 years</td>
</tr>
<tr>
<td>BSc Hons Environmental Science (Study Abroad)</td>
<td>F754</td>
<td>3 years with Year 2 spent overseas at a partner university</td>
</tr>
<tr>
<td>BSc Environmental Science (Placement Year)</td>
<td>F752</td>
<td>4 years with Year 3 spent on placement</td>
</tr>
<tr>
<td>MSci Hons Environmental Science</td>
<td>F850</td>
<td>4 years</td>
</tr>
<tr>
<td>MSci Hons Environmental Science (Study Abroad)</td>
<td>F851</td>
<td>4 years with Year 2 spent overseas at a partner university</td>
</tr>
</tbody>
</table>

Entry requirements for BSc Hons Environmental Science and BSc Hons Environmental Science (Placement Year)

- A levels: ABB
- BTEC: DDM
- International Baccalaureate: 32 points overall with 16 points from the best three Higher Level courses.

Entry requirements for MSci Hons Environmental Science and Study Abroad courses

- A levels: AAB
- BTEC: DDD
- International Baccalaureate: 35 points overall with 16 points from the best three Higher Level courses.

Required subjects

- One science A level from the following: Biology, Chemistry, Computing, Environmental Science, Geography, Geology, Human Biology, Mathematics, Physics or Psychology.

- Please note, for students who do not have A level Chemistry or an equivalent qualification, we require you to take our Introduction to Environmental Chemistry module in the first year.

- For students who do not have A level Mathematics (or equivalent), we require you to take numerical skills modules in the first year. If you have GCSE Mathematics at grade 5 or 6, you will take Numerical Skills I and Numerical Skills II. If you have GCSE Mathematics at grade 7 or above then you take only Numerical Skills II.

- GCSE Mathematics grade B or 5
- GCSE English Language grade C or 4

We welcome applications from students with combined or other internationally recognised qualifications. For more information, please contact the Admissions Office directly on +44 (0)1524 592028 or ugadmissions@lancaster.ac.uk

*Must include sufficient science and we require Distinctions in the majority of relevant science units. Please contact the Admissions Office for further advice.
Environmental Science
Degree overview

This flexible programme draws from a wide range of scientific disciplines to build a degree that matches your interests and career aspirations. You will learn about the individual components of the Earth system, including the atmosphere, aquatic and terrestrial ecosystems and the role of living organisms within the biosphere, alongside how these individual components interact with each other. The degree focuses on natural environments and also on how human society has modified the Earth system. Throughout your degree you will be taught by internationally-renowned academics, and will have access to our state-of-the-art laboratories which offer excellent facilities for practical work.

Your first year will address many of the fundamental themes of environmental science, from understanding hydrology and flood risk to learning about weather and climate. Second year modules build on these themes introduced in Year 1, whilst allowing you to apply your knowledge in a residential fieldwork module at Carrock Fell in the Lake District World Heritage Site.

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Core modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 2</td>
<td>Core modules</td>
</tr>
<tr>
<td>Year 3</td>
<td>Optional/skills modules (depending on existing qualifications)</td>
</tr>
<tr>
<td>Year 4</td>
<td>Core modules</td>
</tr>
</tbody>
</table>

For MSci students
Core modules
* Research Dissertation Project
* Plus a selection of optional modules that may include
 + Alpine Environmental Processes Field Course
 + Climate and Society
 + Coastal Processes
 + Environmental Remote Sensing and Image Processing
 + Global Change Biology: Challenges and Solutions
 + Geological Hazards
 + Glacial Systems
 + Global Change and the Earth System
 + Hydrogeology
 + Hydrological Processes Field Course
 + Introduction to Geophysical Techniques
 + Issues in Conservation Biology

For Placement Year students
The core and optional modules described above for Year 3
* Work Based Learning Reflection

+ Lakes, Rivers and Estuaries
+ Sustainable Agriculture
+ The Causes and Consequences of Environmental Radioactivity
+ The Dynamic Earth
+ Water Resources Management
+ Water, Society and the Istrian Landscape Field Course

+ Work Based Learning
+ Experimental Design and Analysis
+ Environmental Data Visualisation and Analysis
+ Environmental Field Course
+ Experimental Design and Analysis
+ Work Based Learning Preparation (Placement Year only)

+ Introduction to Environmental Chemistry
+ Numerical Skills I
+ Numerical Skills II
+ plus further modules from across Lancaster Environment Centre

+ Atmosphere, Weather and Climate
+ Biogeochemical Cycles
+ Environmental Processes and Systems
+ Geology
+ Global Environmental Challenges
+ Hydrology: Water in the Environment
+ Natural Hazards
+ The Earth’s Interior
+ Placement Preparation (Placement Year only)

For MSci students
Core modules
* Research Dissertation Project
* Plus a selection of optional modules that may include
 + Alpine Environmental Processes Field Course
 + Climate and Society
 + Coastal Processes
 + Environmental Remote Sensing and Image Processing
 + Global Change Biology: Challenges and Solutions
 + Geological Hazards
 + Glacial Systems
 + Global Change and the Earth System
 + Hydrogeology
 + Hydrological Processes Field Course
 + Introduction to Geophysical Techniques
 + Issues in Conservation Biology

+ Lakes, Rivers and Estuaries
+ Sustainable Agriculture
+ The Causes and Consequences of Environmental Radioactivity
+ The Dynamic Earth
+ Water Resources Management
+ Water, Society and the Istrian Landscape Field Course

* Students who do not have A level Chemistry or an equivalent qualification are required to take Introduction to Environmental Chemistry. Students who do not have A level Mathematics or an equivalent are required to take Numerical Skills courses.

+ Dissertation with External Partner available to F750 and F850 students only.
Impact of the Covid-19 pandemic

We’d obviously love to meet you face-to-face and show you Lancaster’s campus and the department. However, the Covid-19 pandemic has affected how we can meet people on our campus at the moment. As the pandemic declines, we hope that restrictions on access to campus can be reduced and that you’ll be able to come and meet us in Lancaster. However, if this isn’t possible then we will be offering digital events at which you can meet us and learn about our degrees and the University. More information will be made available at Lancaster University’s dedicated Covid-19 webpages: www.lancaster.ac.uk/coronavirus/applicants/

Open Days

Join us at one of our Open Days to experience what life as a student at Lancaster is like. You will have the opportunity to see what facilities are available and explore our beautiful 560 acre campus including our award-winning accommodation, newly refurbished library, the Students’ Union and sport facilities. You can also visit Lancaster Environment Centre where you have the opportunity to chat with current staff and students about studying the environmental and Earth sciences.

Campus Tours

We organise regular campus tours to give you a flavour of life at Lancaster. The tour is designed to acquaint you with our friendly campus, showing you our award-winning student accommodation, social venues, library and a lot more.

You can book onto Open Days and Campus Tours at www.lancaster.ac.uk/visitus

Applicant Visit Days

If you are offered a place on one of our degrees, you will be invited to visit us again in February or March. You’ll have the opportunity to tour our scenic campus, take part in interactive activities and spend the day with environmental and Earth science staff and students. Applicant Visit Days are lively and informative events, designed to give you a taste of what it is like to be a student here. Parents and other guests are also welcome to attend these events.

Visiting us

Lancaster is very well served by road, rail and air networks and is close to major cities such as Manchester and Liverpool. More information about visiting the University can be found at www.lancaster.ac.uk/travel

Disclaimer

The information provided in this brochure relates primarily to 2021/22 entry to the University and every effort has been taken to ensure the information is correct at the time of printing in June 2020. The University will use all reasonable effort to deliver the course as described but the University reserves the right to make changes after going to print. You are advised to consult our website at www.lancaster.ac.uk/study for up-to-date information before you submit your application.

Further legal information may be found at: www.lancaster.ac.uk/compliance/legalnotice

Image Credits

Many of the photographs in this brochure were taken during fieldwork or on campus. Thanks to our students and staff who took these photographs and appear in them.