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Abstract

We propose a generic method for solving infinite-horizon, discrete-time dynamic incen-

tive problems with hidden states. We first combine set-valued dynamic programming tech-

niques with Bayesian Gaussian mixture models to determine irregularly shaped equilib-

rium value correspondences. Second, we generate training data from those pre-computed

feasible sets to recursively solve the dynamic incentive problem by a massively parallelized

Gaussian process machine learning algorithm. This combination enables us to analyze

models of a complexity that was previously considered to be intractable. To demonstrate

the broad applicability of our framework, we compute solutions for models of repeated

agency with history dependence, many types, and varying preferences.
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1 Introduction

Dynamic incentive (DI) problems are of key importance in model-based economics. They occur

whenever two parties form a contract with asymmetric information, and encompass questions

such as manager remuneration, insurance contracts, and optimal taxation (see, e.g., Golosov et

al., (2016a) and references therein for a thorough review). Solving these models is a formidable

task, as standard recursive techniques (see, e.g., Stokey et al., (1989)) are often not directly

applicable. To this end, previous research both into discrete-time1 and into continuous-time

settings2 extensively studied methods, in various contexts, of recursively representing incentive-

compatible contracts in order to make them formally tractable. There are two types of obstacle

that arise in these models in general. First, unobservable continuous actions lead to incentive

constraints that are are themselves optimization problems. In the literature, they are com-

monly referred to as moral hazard problems. Second, in so-called adverse selection problems,

unobserved discrete states make it necessary to look at a high-dimensional dynamic program

with an unknown domain.

In this paper, we present a novel, generic method for dealing with DI problems. In partic-

ular, we focus on solving infinite-horizon, discrete-time DI models with hidden states and with

shocks that follow a Markov chain. Two major bottlenecks create substantial difficulties in solv-

ing such dynamic adverse selection problems3 numerically, namely, (i) the determination and

approximation of (possibly) high-dimensional and non-convex equilibrium correspondences—

that is, feasible sets of a dynamic program, and (ii) performing dynamic programming on them.

Thus, we also have to repeatedly and efficiently approximate functions on irregularly shaped

domains. To the best of our knowledge, there exists at present no solution framework in the

DI context that can cope with all these issues at once.

Complication (i) is a standard issue in models with repeated agency, since they require

full history dependence (see Lambert, (1983) and Rogerson, (1985)). This, in turn, leads

to time-inconsistent dynamic programs. A way of dealing with this issue is to introduce

promised utilities as a bookkeeping mechanism, which has led to several recursive formulations

for various types of hidden information (see, e.g., Spear and Srivastava, (1987), Fernandes and

Phelan, (2000), and Doepke and Townsend, (2006)). Once models with history dependence

are written in a recursive form, the set of feasible utility vectors is not known in advance

and can be of irregular—that is, non-hypercubic geometry. As complication (ii), a curse of

dimensionality (Bellman, 1961) arises in dynamic adverse selection problems, since for every

individual type of agent, the dimensionality of the state space increases. Hence, if standard,

Cartesian grid-based algorithms are applied in the solution process, the computational effort as

well as the storage requirements grow exponentially and render even models of only moderate

complexity computationally infeasible. The existing literature, therefore, is limited to at most

two-dimensional models (see, e.g., Broer et al., (2017), Doepke and Townsend, (2006), and

Abraham and Pavoni, (2008)), as in them the curse of dimensionality is avoided from the

outset, which can be suboptimal with regard to the ideal choice of model.

We propose to tackle (i) by pre-computing the time-invariant feasible set for the continu-

1For an incomplete list of references, see, e.g., Spear and Srivastava, (1987), Fernandes and Phelan, (2000),

Cole and Kocherlakota, (2001), Werning, (2002), Doepke and Townsend, (2006), Abraham and Pavoni, (2008),

and Pavoni et al., (2017).
2See, e.g., DeMarzo and Sannikov, (2006), Sannikov, (2008), Williams, (2009, 2011), and He et al., (2017),

among others.
3Note that while the focus of the work presented lies on solving dynamic adverse selection problems, the

method proposed here has a far broader scope: it can also be applied, for example, to moral hazard problems

or to dynamic games, where one of the major difficulties also lies in finding the equilibrium sets. For discrete

actions and lotteries over payoffs, they are convex. However, for other assumptions they are not, which demands

a more general approach such as the one proposed in this paper.
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ous state variables by combining ideas from Abreu et al., (1986, 1990) (henceforth APS4) with

Bayesian Gaussian mixture models (BGMMs) (see, e.g., Rasmussen, (2000)). Next, we deal

with (ii) by solving the recursively formulated DI problem on an irregularly shaped domain

by applying a massively parallelized dynamic programming (DP) algorithm that uses Gaus-

sian process regression (GPR) to approximate high-dimensional value and policy functions

(see Scheidegger and Bilionis, (2017), and references therein) on the entire feasible set. This

combination enables us to analyze DI models that were previously considered to be intractable.

The seminal work by APS introduced a constructive procedure for computing feasible sets.

In particular, the authors showed that there exists a set-valued contraction mapping whose fixed

point is the feasible set. In practical applications we therefore have to repeatedly approximate

potentially non-convex equilibrium correspondences. To do so, we apply BGMMs to construct

a classifier5 (see, e.g., Murphy, (2012)) to divide the computational domain into a feasible and

an infeasible region. This classification then leads to an outer approximation that iteratively

shrinks toward the feasible set. We terminate the iteration once two successive classifiers

become sufficiently close. Our approach has several desirable features. First, since sampling

achieves the approximation of feasible sets through BGMMs, it does not directly suffer from

the curse of dimensionality and thus can deal with problems involving many types. Second,

the numerical approximation of the feasible set is independent of solving the DI problem and

thus does not directly add to the computational complexity. Third, it can approximate both

convex and non-convex sets. Thus, the work presented here is a substantial improvement on

the previous literature. Judd et al., (2003) and Yeltekin et al., (2017), for example, provide

a numerical scheme for determining the feasible sets of discrete state supergames by using

polygons. Their approach however relies on the convexification of the payoff set and suffers

from the curse of dimensionality. Similarly, Sleet and Yeltekin, (2016) provide an extension

to this method for the case of continuous state variables, but their extension suffers from the

same issues.

After pre-computing the feasible sets, we have to solve the recursively formulated dynamic

adverse selection model on the irregularly shaped domains. For this purpose, we apply a

massively parallelized discrete-time DP algorithm that uses GPR in order to approximate the

value and policy functions. GPR is a form of supervised machine learning (see, e.g., Rasmussen

and Williams, (2005) and Murphy, (2012), and references therein) and has successfully been

applied to a variety of applications in data science, engineering, and other fields to perform

approximation and classification tasks. In economics, Scheidegger and Bilionis, (2017) recently

applied Gaussian processes (GPs) to solve very-high-dimensional dynamic stochastic models as

well as to perform uncertainty quantification. A defining feature of GPs is that they combine

the best of two worlds—namely, those of grid-free methods such as Monte Carlo (MC) (see,

e.g., Press et al., (2007), and references therein) and of smooth function approximation theory.

GPs learn a function based on the observations available at so-called design points, and do

so without any geometric restriction. Moreover, since the construction of GP surrogates6 is

achieved by sampling from a domain of interest such as a feasible set, they do not directly

suffer from the curse of dimensionality as do Cartesian grid-based algorithms. GPs, therefore,

stand in stark contrast to ordinary, grid-based approximation schemes for continuous, high-

dimensional state spaces such as Smolyak’s method (see, e.g., Malin et al., (2010) and Judd et

al., (2014)), adaptive sparse grids (see, e.g., Brumm and Scheidegger, (2017)), high-dimensional

model reduction (see Eftekhari et al., (2017)), or projection methods (see, e.g., Judd, (1992)).

4For the remainder of this paper, APS is used to refer both to Abreu et al., (1986, 1990) and to the method

introduced by these authors.
5Note that in the machine learning literature, classification can—loosely speaking—be considered to be the

problem of identifying to which of a set of categories a new data observation belongs.
6We use the terms “interpolator” and “surrogate” interchangeably.
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Those grid-based approximators are restricted to hyper-rectangular state spaces and thus are

not a natural modeling choice in the context of solving dynamic adverse selection models.

To demonstrate the capabilities of the framework proposed in this paper, we solve a dynamic

adverse selection model similar to those discussed, for example, in Fernandes and Phelan,

(2000) and Broer et al., (2017). It consists of a risk-averse agent who has unobserved income

shocks, and a risk-neutral planner who wants to provide optimal incentive-compatible insurance

against income shocks. The agent reports his income shock to the principal, who then transfers

consumption or charges a fee to the agent dependent on the reported shock. Since the principal

can only see the reports, the observed shock process is fully history dependent.7 The reason

for this history dependence is that the principal has to condition his actions with respect to

the agent’s reports and not with respect to the actual shocks. While this model is relatively

easy to explain, its dimensionality and complexity can be scaled up in a straightforward and

meaningful way, as they just depend linearly on the number of types considered. This feature

of the model allows us to focus on the problem of handling irregularly shaped, high-dimensional

state spaces in the DI context. Note that much of the existing literature has focused on the

stylized analysis of such contracts rather than on their numerical implementation.

The remainder of this paper is organized as follows: In Section 2, we specify the baseline

DI environment we are targeting with our framework. In Section 3, we outline the solution

method. We first discuss how we construct an APS-style algorithm by using BGMMs; then,

we provide a short review of DP and summarize the workings of GP machine learning. Finally,

we show how to embed APS and BGMMs into a massively parallel DP algorithm that is based

on GPR. In Section 4, we discuss the performance of our method via a variety of illustrative

test cases. Section 5 concludes.

2 A baseline dynamic incentive model

To demonstrate the scalability and flexibility of the method we introduce in this paper, we

consider an infinitely repeated, dynamic adverse selection problem in discrete time as described

in Fernandes and Phelan, (2000).8

Time is indexed by t = 1, 2, . . . ∈ N. In every period t, an agent observes his9 taste shock

θt ∈ Θ, where Θ is a finite set of cardinality N . He then reports his shock to the principal.

Subsequently, the principal offers a contract ct, which depends on the entire history of reports,

to the agent. Since we need to keep track of the history of types (see Fernandes and Phelan,

(2000)), we define the type history at time t to be the (t)-tuple—that is, an ordered list

ht = (θ0, θ1, . . . , θt−1) for t ≥ 1. Next, we define the set of possible histories at time t by

Ht = Θt = Θ × Θ × . . . × Θ and set h1 ∈ Θ to be the initial history at time 1. We assume

without loss of generality that the initial history is public knowledge. An optimal solution

to the problem is a transfer scheme that maximizes the principal’s utility while delivering a

predetermined lifetime utility to the agent. This scheme will be a sequence of conditional

transfers that depend on all past realizations of types. Furthermore, we impose the following

assumptions on the primitives of the model:

Assumption 1.

1. The set of types Θ = {1, . . . , N} is of cardinality N ∈ N.

2. The set C ⊂ R of compensations is a non-empty and compact interval.

7Previous research suggests that private information in the economic environments we are interested in is

highly persistent (see, e.g., Meghir and Pistaferri, (2004)).
8We follow the formalism of Golosov et al., (2016a) to describe the model.
9In this paper, for the sake of brevity, both the agent and the principal are male.

4



3. The transition probabilities π(θt|θt−1) are defined by a probability matrix Π ∈ RN×N .

4. The principal’s utility function is given by v : C×Θ→ R and the agent’s utility function

by u : C ×Θ→ R. They are both twice continuously differentiable in C.

5. The principal and the agent have a common discount factor β ∈ (0, 1).10

For each period t and history ht ∈ Ht the probability distribution on the set Ht of histories

is given by

π
(
(ht, i)|ht

)
= Πθt−1,i, ∀i ∈ {1, . . . , N} (1)

and by recursion for τ ≥ 1,

π
((
ht+τ , i

)
|ht
)

= Πθt−1,i · µ
(
ht+τ−1|ht

)
. (2)

The principal’s compensation strategy is a function of the history of reports up to period t.

His strategy, therefore, is a function ct : Ht → C. We denote the principal’s infinite horizon

strategies by the sequences of strategy functions c = (c1, c2, . . .).

At time t, the agent has to decide what to report to the principal; his strategy is, thus a

function on the domain Ht—that is, at : Ht → Θ. A strategy a is called incentive compatible

iff

E

[ ∞∑
t=1

βt−1u
(
ct(h

t, at(h
t, Xt)), Xt

)∣∣∣∣h1

]
≥ E

[ ∞∑
t=1

βt−1u
(
ct(h

t, ãt(h
t, Xt)), Xt

)∣∣∣∣h1

]
, ∀ã, (3)

where Xt is a random variable with values in Θ and distribution π. We can get rid of the

reporting strategy of the agent by applying the following theorem:

Theorem 1 (Revelation principle). (Golosov et al., 2016a, Th. 1) For every contract c and

incentive compatible strategy â, there is a ĉ with the same payoff to the principal such that

truth-telling is incentive compatible.

The revelation principle allows us to only look at compensation schemes that induce truth-

telling and thus to define the dynamic adverse selection problem. Given an initial history

h1 = {θ0}, the principal faces the following infinite horizon utility maximization problem:

max
c

E

[ ∞∑
t=1

βt−1v
(
ct(h

t, Xt), Xt

)∣∣∣∣h1

]
(4)

subject to the truth-telling constraint

E

[ ∞∑
t=1

βt−1u
(
ct(h

t, Xt), Xt

)∣∣∣∣h1

]
≥ E

[ ∞∑
t=1

βt−1u
(
ct(h

t, at(Xt, h
t)), Xt

)∣∣∣∣h1

]
, ∀a (5)

and the reservation utility

w̃θ ≤ E

[ ∞∑
t=1

βt−1u
(
ct(h

t, Xt), Xt

)∣∣∣∣h1

]
, ∀θ ∈ Θ. (6)

As a next step, we simplify the incentive constraints by applying a classic theorem.

Theorem 2 (One-shot deviation principle). (Golosov et al., 2016a, Lem. 3) The incentive

constraint (5) holds iff

E

[ ∞∑
t=1

βt−1u
(
ct(h

t, Xt), Xt

)∣∣∣∣h1

]
≥

E

u (cs(h
s, a(Xs)), Xs) +

∞∑
t=1,t6=s

βt−1u
(
ct(h

t, Xt), Xt

)∣∣∣∣h1

 , ∀s ∈ N,∀a : Θ→ Θ.

(7)

10This last assumption, while being standard, is not necessary for our computational framework.
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Figure 1: The sequence of events in period t.

Note that in the one-shot deviation constraint (see Eq. (7)) we do not allow for all reporting

strategies. Instead, only strategies that remain feasible for the agent are admissible. As

a concrete example, assume that an agent over-reports his income when filling out his tax

declaration. In such a case, he would be charged income tax that he might be unable to pay.

All such reports are excluded from Eq. (7).

However, even after all these simplifications the dynamic adverse selection problem is still

unsolvable in its present form. To address this, we follow Fernandes and Phelan, (2000) and

introduce the utility promise wθ as a continuous state variable.

Theorem 3. (Golosov et al., 2016a, Eqs. (44–47)) There exists W (θ) ⊂ RN , the feasible sets

of utility promises for type θ, such that the problem defined by Eqs. 4,6, and 7 can be written

recursively as

V (w, θ) = max
c,w+

∑
θ̃∈Θ

Πθ,θ̃(v(cθ̃, θ̃) + βV +(w+

θ̃
, θ̃)) (8)

s.t. wν =
∑
θ̃∈Θ

Πν,θ̃(u(cθ̃, θ̃) + βw+

θ̃,θ̃
) ∀ν ∈ Θ,

u(cθ̃, θ̃) + βw+

θ̃,θ̃
≥ u(cν , θ̃) + βw+

ν,θ̃
∀θ̃ ∈ Θ, ∀ν ∈ Θ \ {θ̃},

c ∈ [0, c]N ,

w+

θ̃
∈W (θ̃) with w+

θ̃,ν
= (w+

θ̃
)ν ∀θ̃ ∈ Θ, ∀ν ∈ Θ.

Note that we arranged w+ as an N × N matrix where the θ-th row of the matrix represents

next period’s utility promise conditional that θ happens. The first constraint is called promise

keeping constraint. It ensures that the principal follows up on his utility promises w+
θ . The

second constraint is the truth telling constraint.

This measure allows us at the same time to keep track of the full history and to obtain

a recursive formulation. The latter point is critical in making the model tractable for the

computational method we propose in Sec. 3. Fig. 1 depicts the timeline for the recursively

formulated problem. At period t, the principal “learns” last period’s report θ and the utility

promises w. He then offers the agent a consumption menu c for each possible report, which

satisfy the truth-telling and promise-keeping constraints. Next, the agent chooses the truth-

telling reporting strategy. Finally, the shock θtrue is realized, the agent reports θ̃ according to

his strategy, and both the principal and the agent receive their respective utilities, v(cθ̃, θ̃) and

u(cθ̃, θtrue).

3 Dynamic programming on irregularly shaped domains

Solving dynamic adverse selection models as described in Sec. 2 numerically is a formidable

task, since we have to deal with a variety of complex issues at the same time: i) The feasible sets

W (θ) ⊂ RN of utility promises for type θ are not known in advance and have to be determined
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numerically (see Theorem 3). In most of the interesting cases, such sets have a non-trivial—that

is, a non–hypercubic geometry (see, e.g., Fernandes and Phelan, (2000), Broer et al., (2017)).

ii) For solving a DI problem recursively, for example with value function iteration (VFI; see,

e.g., Judd, (1998) and Ljungqvist and Sargent, (2000)), we need to repeatedly approximate and

evaluate high-dimensional functions at arbitrary coordinates within domains of interest—that

is to say, the irregularly shaped feasible sets. To meet all these challenging modeling demands

we therefore apply set-valued dynamic programming techniques in combination with BGMMs

to determine irregularly shaped equilibrium value correspondences. Subsequently, we use a

massively parallel VFI algorithm that applies GPR in each iteration step to learn the value

function and, if needed, the policy functions on the pre-computed, time-invariant feasible sets

globally.11

In this section we therefore proceed in four steps. In Sec. 3.1, we characterize the general

structure of the models we aim to solve by DP. In Sec. 3.2, we present a novel way of efficiently

computing equilibrium correspondences by combining ideas from Abreu et al., (1986, 1990)

with BGMMs (see Rasmussen, (2000)). Subsequently, we summarize–in Sec. 3.3–how value

and policy functions can be approximated by GP machine learning. Sec. 3.4 finally combines

all these components into a generic VFI framework for DI problems.

3.1 Background on dynamic programming

Throughout this paper, the abstract class of models we consider are discrete-time, infinite-

horizon stochastic optimal decision-making problems. Following Scheidegger and Bilionis,

(2017), we briefly characterize them here by the following general description: let xt ∈W ⊂ Rdx
denote the state of the economy at time t ∈ N+ of dimensionality dx ∈ N. Controls (actions)

are represented by a policy function c : W → ζ, where ζ is the space of possible controls. The

discrete-time transition function of the economy from one period to the next is given by the

distribution of xt+1, which depends on the current state and policies

xt+1 ∼ f (·|xt, c(xt)) . (9)

The transition function f that stochastically maps a state-action pair to a successor state

is assumed to be given, whereas the policy function c needs to be determined from equilib-

rium or optimality conditions. The standard way to do so is to use DP (see, e.g., Bellman,

(1961), Stokey et al., (1989), Judd, (1998), Ljungqvist and Sargent, (2000)), where the task

is to find an infinite sequence of controls {χt}∞t=0 to maximize the value function

V (x0) := E

[ ∞∑
t=0

βtr(xt, χt)

]
(10)

for an initial state x0 ∈ W , r(·, ·) is the so-called return function, and χt ∈ Γ(xt) with Γ(xt)

being the set of feasible choices given xt. The discount factor β ∈ (0, 1) weights future returns.

DP seeks a time-invariant policy function c mapping the state xt into the action χt, such that

for all t ∈ N

χt = c(xt) ∈ Γ(xt), (11)

11Below, we follow Brumm and Scheidegger, (2017) and use the term “global solution” for a solution that

is computed using equilibrium conditions at many points in the state space of a dynamic model—in contrast

to a “local solution”, which rests on a local approximation around a steady state of the model. For a method

that computes such a global solution, we use the term “global solution method”. This use of the word “global”

is not to be confused with its use in the phrase “global optimization method”, which refers to a method that

aims to find a global optimum.
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and {χt}∞t=0 solves the original problem. The principle of optimality states that we can find

such a solution by solving the Bellman equation

V (x) = max
χ
{r(x, χ) + βE [V (x̃)]}, (12)

where the successor state is distributed as x̃ ∼ f (·|x, χ). The solution is a fixed point of the

Bellman operator T , defined by

(TV )(x) = max
χ
{r(x, χ) + βE [V (x̃)]}. (13)

Under appropriate conditions (see, e.g., Stokey et al., (1989)) the Bellman operator is a con-

traction mapping. In this case, iteratively applying T provides a sequence of value functions

that converges to a unique fixed point. This procedure is called value function iteration (see,

e.g. Bertsekas, (2000), Judd, (1998), or Ljungqvist and Sargent, (2000)) and is motivated

by this theoretical justification and numerically implements the iterative application of the

Bellman operator to successive approximations of the value function. The corresponding DP

recursion thus starts from any bounded and continuous guess for the value function, and the

solution is approached in the limit as j →∞ by iterations on

Vj+1(x) = T (Vj)(x) := max
χj+1

{r(x, c) + βE [Vj(x̃)]}. (14)

In practice, we say that VFI has converged if numerical convergence in some norm, for example

‖Vτ − Vτ−1‖2 ≤ ε, ε ∈ R+, (15)

and some at some iteration step τ , is reached. The (approximate) equilibrium value function

shall be denoted as V∗ = Vτ and the corresponding policy functions as χ∗ = χτ . From Eq. (14),

it becomes apparent that we need to repeatedly approximate and evaluate (potentially multi-

dimensional) value functions. An additional complication stems from the fact that domain W

for the models we are targeting (cf. Sec. 2) is often highly complex—that is, irregularly shaped

and not known a priori (see, e.g., Fernandes and Phelan, (2000) and Broer et al., (2017)). We

therefore describe in Sec. 3.2 how we determine W numerically, whereas in Sec. 3.3 we show

how we approximate value and policy functions on irregularly shaped feasible sets.

3.2 On the iterative approximation of irregularly shaped feasible sets

One major complication we are facing is the fact that the feasible set—that is, the state space

for dynamic adverse selection problems is unknown and potentially of irregular geometry. If

the problem is simple enough, then it can be possible to find an analytical solution. However,

we are usually at most able to give an estimate of the hypercubic domain that contains it,

namely–

wθ = min
c∈C

u(c, θ)

1− β
, wθ = max

c∈C

u(c, θ)

1− β
, (16)

where wθ and wθ are the lower and upper bounds on promised utilities, respectively. Hence,

in most of the interesting settings, a numerical procedure for approximating the equilibrium

correspondences is required.

One possible way of getting around this issue is to relax the recursive model formulation

(see Eq. (8)) by introducing slack variables on the constraints. Whenever they are nonzero,

one adds a penalty term to the objective function.12 Since the penalty quickly becomes large

12Note that in Appendix A, we will apply this procedure in combination with a highly-tuned adaptive sparse

grid code (Brumm and Scheidegger, (2017)) to verify the method we propose in this paper.
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outside the original feasible region, the actual solution can be found by restricting the relaxed

problem to the feasible set (see, e.g., Judd et al., (2016), and references therein). The advantage

of this procedure is that one can apply highly tuned DP algorithms for hypercubic domains

(see, e.g., Brumm and Scheidegger, (2017)) to solve DI models. The major disadvantage of this

brute-force approach, however, lies in the fact that we need to approximate a computational

domain of which large parts might be infeasible, which in turn can result in a massive waste

of resources (see, e.g., Scheidegger and Bilionis, (2017) for a detailed discussion).

We therefore propose a novel, simulation-based method for determining irregularly shaped

feasible sets. This approach will enable us to concentrate the computational resources where

they are needed and thus be highly efficient (cf., Secs. 3.4 and 4). To this end, we follow the

classical work by APS, who provide set-valued DP techniques for determining feasible sets.

In particular, they show that the feasible sets W (θ) can found by repeatedly applying a set

operator B to an initial “candidate” set until the resulting sequence of sets converges in some

metric. In our case (see Sec. 2), this means that we can define the set-valued operator as

B(X) =

{
w |wν =

∑
θ̃∈Θ

Πν,θ̃(u(cθ̃, θ̃) + βw+

θ̃,θ̃
) ∀ν ∈ Θ,

u(cθ̃, θ̃) + βw+

θ̃,θ̃
≥ u(cν , θ̃) + βw+

ν,θ̃
∀θ̃ ∈ Θ, ∀ν ∈ Θ \ {θ̃},

c ∈ [0, c]N ,

w+

θ̃
∈ X with w+

θ̃,ν
= (w+

θ̃
)ν ∀θ̃ ∈ Θ, ∀ν ∈ Θ

}
, (17)

where X ⊂ RN , and where the operator B(X) contains the constraints of the original problem

stated in Eq. (8). This is a monotone operator—that is to say, B(X) ⊂ X, and its fixed point

will be the feasible set for type θ—namely B(W (θ)) = W (θ).

A numerical implementation of the APS method requires the repeated approximation of

candidate equilibrium value correspondences—that is, a finite collection of sets. To do so, we

propose applying BGMMs13 to construct a classifier to divide the computational domain into

a feasible and an infeasible region. This classification then leads to an outer approximation

that iteratively shrinks toward the feasible set. We terminate the iteration once two successive

classifiers become sufficiently close.

In practice, we start off the APS iteration by uniformly drawing, for every type, m sample

points

Xtest =
{
w(1), . . . , w(m)

}
(19)

from a hypercube that contains the feasible set (see Eq. (16)) and fit a BGMM to the points

Xfeas ⊂ Xtest that were deemed to be feasible. We denote the log-likelihood that corresponds

to the BGMM as fθ. Then, we start with the set-valued DP procedure. To do so, we define

f+
θ as the log-likelihood from the BGMM in iteration i−1, and denote `+θ to be the smallest log-

likelihood that corresponded to a feasible point—that is, `+θ = min
{
f+
θ (w(j)) | w(j) ∈ (Xfeas)θ

}
,

and generate another m sample points X̃ from inside the updated feasible set via the respective

BGMMs. At a sample point w(k) ∈ X̃ that satisfies f+
θ (w(k)) ≥ `+θ within an iteration step i,

13 Mixture of Gaussians are usually used to approximate probability distributions from observed data. Sup-

pose that we have n data samples X = {x+
i : 1 ≤ i ≤ n}. We then can approximate ρestimated as a mixture of

Gaussians:

ρestimated(x) =

M∑
m=1

πmN (x|µm,Σm), (18)

where the mean vectors µm ∈ RD, the covariance matrices Σm ∈ RD×D, the weights πm with
∑M
m=1 πm = 1,

and the number of components M are fitted to X (see, e.g., Rasmussen, (2000) and Blei and Jordan, (2005)).
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we solve a slight modification of Eq. (17)14, namely—

ϕ = max
c,w+

∑
θ∈Θ

− log(exp(−α(f+
θ (w+

θ )− `+θ )) + 1)/α,

s.t. wν =
∑
θ̃∈Θ

Πν,θ̃(u(cθ̃, θ̃) + βw+

θ̃,θ̃
) ∀ν ∈ Θ,

u(cθ̃, θ̃) + βw+

θ̃,θ̃
≥ u(cν , θ̃) + βw+

ν,θ̃
∀θ̃ ∈ Θ, ∀ν ∈ Θ \ {θ̃},

c ∈ [0, c]N ,

w+

θ̃,ν
= (w+

θ̃
)ν ∀θ̃ ∈ Θ, ∀ν ∈ Θ.

(20)

The objective function F (w+
θ , θ, f

+
θ , `

+
θ ) of the constrained optimization problem stated above

in Eq. (20) is a smooth relaxation of a classifier that returns 0 for feasible points and a large

negative number for infeasible ones. Furthermore, the constraints are the same ones as those

in the description of the operator B in Eq. (17). The parameter α controls how strict the

relaxation is: the smaller α is, the quicker the objective in Eq. (20) will go to −∞ when

leaving the feasible set.15 If ϕ is above `+θ , we label the point w(j) as feasible and add it to a

set of feasible points Xfeas. We repeat this until the set Xfeas has sufficiently large cardinality.16

Subsequently, we fit another BGMM to Xfeas to obtain updated values for fθ and `θ. This

procedure is repeated until convergence. Alg. 1 summarizes the detailed steps of the set-valued

DP for determining the feasible sets W (θ) in a more formal way.

Note that it is non-trivial to measure whether the set-valued DP procedure has converged.

To this end, we propose the following procedure: In every iteration step i and every state θ, we

construct a binary classifier Ci,θ (see, e.g., Murphy, (2012)) by labelling infeasible sample points

as 0, and feasible ones by 1, and compute the average L1-error across subsequent candidate

equilibrium correspondences. In practice, this amounts to drawing a uniform sample of points

from a hypercube that contains the feasible set. Subsequently, we use the classifiers from steps

i− 1 and i to find the label of each sample point. We then determine the percentage of points

that get different labels from the classifiers at i− 1 and i, resulting in an approximation of the

error.

The approach presented here has three highly desirable features that yield a substantial

improvement over the previous literature. First, since sampling achieves the approximation

of feasible sets through BGMMs, it does not directly suffer from the curse of dimensionality

and thus can deal with problems involving many types of agents. Second, our scheme of

approximating equilibrium correspondences is independent of solving the DI problem and thus

does not directly add to the computational complexity of solving the actual model. Finally, it

can approximate both convex and non-convex sets.

In contrast, Judd et al., (2003) and Yeltekin et al., (2017), for example, approximate feasible

sets by linear hyperplanes. Their approach is limited to models with discrete states and convex

sets. Moreover, it suffers from the curse of dimensionality. Thus, it is not useful for models

with many types and potentially non-convex, state spaces. Similarly, Abreu and Sannikov,

(2014) provide a method for computing feasible sets in discrete state, two-player games that is

restricted to convex sets and also suffers from the curse of dimensionality. Sleet and Yeltekin,

(2016) provide an extension to Judd et al., (2003) for the case of continuous state variables,

but their method is also restricted to convex sets in low-dimensional spaces.

14In the present form, Eq. (17) is numerically un-tractable due to the constraint w+

θ̃
∈ W (θ̃)—there is no

explicit description of the set W (θ) that is given by inequalities. To circumvent this issue, we get rid of this

constraint by introducing a penalty function p. For any point in the feasible set, this function p will be 0 and

will tend to minus infinity when we leave the boundary of the set (see Eq. (20)).
15In practical applications (see, e.g., Sec. 4.1), we set α = 0.1.
16Note that in our computations (see Sec. 4), |(Xfeas)θ| ≈ 1, 000 led to satisfactory results.
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Data: For all θ: initial set of points {w(1), . . . , w(m)}, uniformly drawn from a domain

that contains the feasible set (see Eq. (16)). Approximation accuracy ε̄.

Result: The approximate feasible sets W (θ), determined by the log-likelihood fθ and

cut-off `θ that define the classifier Cθ, where Cθ(w
(j)) = 1 iff fθ(w

(j)) ≥ `θ.

Fit BGMM to Xfeas for all θ to get fθ and `θ = min
{
fθ(w

(j)) | w(j) ∈ (Xfeas)θ
}

.

f+
θ = fθ.

`+θ = `θ.

while ε > ε̄ do

for θ ∈ Θ do

Generate m sample points X̃ from the most recent “candidate” feasible set via

last iteration’s BGMM and set X = {w(k) ∈ X̃ : f+
θ (x) ≥ `+θ }.

Set n = |X|.
Set (Xfeas)θ = ∅.
while |(Xfeas)θ| < n do

Solve optimization problem given by Eq. (20) at point w(k) ∈ X and get

objective ϕ.

if ϕ ≥ `+θ then

(Xfeas)θ = (Xfeas)θ ∪ {w(j)}.
end

end

Fit a BGMM to (Xfeas)θ to obtain fθ and lθ = min
{
fθ(w) | w(j) ∈ (Xfeas)θ

}
.

end

f+
θ = fθ.

`+θ = `θ.

Compute the average L1-error ε.
end

Algorithm 1: Overview of the critical steps for computing the equilibrium correspondences.

Once the set-valued DP procedure for finding the equilibrium correspondences has con-

verged, we can use the equilibrium BGMMs to generate training data from within these feasible

sets W (θ) to train the GPs (see Secs. 3.3 and 3.4). This focuses the computational resources

where needed. Note that for the same reasons as in Eq. (20), we have to restate the original

recursive problem (see Eq. (8)) and replace the constraints on the future utility promises with

a penalty F , resulting in

V (w, θ) = max
c,w+

∑
θ̃∈Θ

Πθ,θ̃(v(cθ̃, θ̃) + βV +(w+

θ̃
, θ̃)) + F (w+

θ̃
, θ̃, fθ̃, `θ̃)) (21)

s.t. wν =
∑
θ̃∈Θ

Πν,θ̃(u(cθ̃, θ̃) + βw+

θ̃,θ̃
) ∀ν ∈ Θ,

u(cθ̃, θ̃) + βw+

θ̃,θ̃
≥ u(cν , θ̃) + βw+

ν,θ̃
∀θ̃ ∈ Θ, ∀ν ∈ Θ \ {θ̃},

c ∈ [0, c]N ,

w+

θ̃,ν
= (w+

θ̃
)ν ∀θ̃ ∈ Θ, ∀ν ∈ Θ,

where F is the objective function from the constrained optimization problem stated in Eq. (20).

It is easy to see that this penalty will be close to zero for fθ ≥ `θ, but will diverge to −∞ for

fθ < `θ. Moreover, it is smooth. Hence, we can easily use it in the optimization problem.
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3.3 Gaussian process regression

In the following, we provide a very brief introduction to GPR based on Rasmussen and

Williams, (2005) and Scheidegger and Bilionis, (2017), with references therein. GPR is a

nonparametric regression method from supervised machine learning, and addresses the prob-

lem of learning input–output mappings from observed data—the so-called training set. Ob-

servations can for example stem from a computer code (as in our case) or from empiri-

cal experiments. More abstractly, given a data set D = {
(
x(i), t(i)

)
|i = 1, ..., N} consist-

ing of N input vectors x(i) ∈ W ⊂ Rdx and corresponding, potentially noisy, observations

t(i) = V (x(i)) + ε, ε ∼ N
(
0, σ2

ε

)
, we want to deduce a model of the unknown function V that

generated the data such that we then can make predictions for new inputs x∗ that we have not

seen in the training set. In the literature, the matrix

X =
{

x(1), . . . ,x(N)
}

(22)

is commonly referred to as training inputs, whereas

t =
{
t(1), . . . , t(N)

}
(23)

is the vector of the corresponding training targets (observations). To enable predictions based

on information contained in D, we must make assumptions about the characteristics of the

underlying functions, as GPR is a Bayesian regression method. We start by defining a prob-

ability measure on the function space, where V (·) lives corresponding to our beliefs. Before

seeing any data, we model our state of knowledge about V (·) by assigning a GP prior to it.

We say that V (·) is a GP with mean function m(·;φ) and covariance function k(·, ·;φ), and

write

V (·)|φ ∼ GP(V (·)|m(·;φ), k(·, ·;φ)), (24)

where φ ∈ Θ ⊂ Rdθ and dθ ∈ N are the so-called hyper-parameters of the model. The prior

beliefs about the response are reflected in our choice of the mean and covariance functions. The

prior mean function is required to model any general trends of the response surface and can

have any functional form.17 The covariance function, also known as the covariance kernel, is

the most important part of GPR: it defines a measure of similarity on the input space. That is

to say, given two input points, their covariance models how close we expect the corresponding

outputs to be. A valid choice for a covariance function must be positive semi-definite and

symmetric. A very popular covariance function is the square exponential (SE)

kSE(x,x′;φ) = s2 exp

{
−1

2

D∑
i=1

(xi − x′i)
2

`2i

}
, (25)

where φ = {s, `1, . . . , `D}, with s > 0 being the variability of the latent function V , and `i > 0

the characteristic lengthscale of the i-th input.18 We will use the SE kernel in all our numerical

experiments below (see Sec. 4).

Given an arbitrary set of training inputs X, Eq. (24) induces a Gaussian prior on the

corresponding response outputs:

V =
{
V
(
x(1)

)
, . . . , V

(
x(N)

)}
. (26)

17We set the prior mean to 0 throughout this paper.
18Note that the hyper-parameters of the covariance function are typically estimated by maximizing the

likelihood, a topic that is beyond the scope of the present work. For more details, see Scheidegger and Bilionis,

(2017), and references therein.

12



In particular, V is distributed as

V|X,φ ∼ N (V|m,K) , (27)

where N (·|m,K) is the PDF of a multivariate Gaussian random variable with m := m(X;φ) ∈
RN being the mean function evaluated at all points in X, and K ∈ RN×N is the covariance

matrix with Kij = k(x(i),x(j);φ) (see, e.g., Eq. (25)).

In the Bayesian framework we are operating in, we have to model explicitly the measurement

process that gives rise to the observations t. We do so by assuming that measurements are

independent of one another, and that they are normally distributed about V (·) with variance

s2
n:

t(i)|V
(
x(i)
)
, sn ∼ N

(
t(i)
∣∣∣V (x(i)

)
, s2
n

)
, (28)

where sn > 0 is an additional hyper-parameter that must be determined from the training

targets. Using the independence of the observations, we get

t|V, sn ∼ N
(
t
∣∣V, s2

nIN
)
. (29)

In direct consequence, the likelihood of the observations is, given the inputs,

t|X,φ, sn ∼ N
(
t
∣∣m,K + s2

nIN
)
. (30)

Bayes’s rule combines the prior GP (see Eq. (24)) with the likelihood (see Eq. (30)) and yields

the posterior GP

V (·)|X, t,φ, sn ∼ GP
(
V (·)

∣∣∣m̃(·), k̃(·, ·)
)
, (31)

where the posterior mean and covariance functions are given by

m̃(x) := m̃(x;φ) = m(x;φ) + K(x,X;φ)
(
K + s2

nIN
)−1

(t−m) (32)

and
k̃(x,x′) := k̃(x,x′;φ, sn)

= k(x,x′;φ)−K(x,X;φ)
(
K + s2

nIN
)−1

K(X,x;φ),
(33)

respectively. In order to carry out interpolation tasks when performing VFI (see Secs. 3.4

and 4), one has to operate with the predictive (marginal) distribution of the function value

V (x∗) for a single test input x∗ conditional on the hyper-parameters φ and sn—namely,

V (x∗)|X, t,φ, sn ∼ N (V (x∗)|m̃(x∗), σ̃(x∗)) , (34)

where m̃(x∗) = m̃(x∗;φ) is the predictive mean given by Eq. (32), and σ̃2(x∗) := k̃(x∗,x∗;φ, sn)

is the predictive variance. The predictive mean can be used as a point-wise surrogate of the

response surface—that is, the interpolation value.

3.4 A solution algorithm for dynamic incentive problems

Given the DP procedure described in Sec. 3.1 (see Eqs. (13) and (14)), we now outline how

to solve a dynamic adverse selection model (cf. Sec. 2) recursively by combining the pre-

computation of feasible sets with VFI and GPR.

The GP VFI algorithm that we propose for computing the optimal decision rules proceeds

as follows: For every discrete state present in the model (that is, every individual type θ), we

first determine the static—that is, time-invariant feasible set W (θ) (see Sec. 3.2) by BGMMs,

from which we then later can sample training inputs for the GPR. Next, we make an initial

guess for a value function V0(·, ·) from which we can instantiate the VFI procedure. Then,
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Data: Initial guess V0(·, ·) for the value function of every type θ. Approximation

accuracy ε̄.

Result: The M (approximate) equilibrium policy functions π∗(·, ·) and the

corresponding value functions V ∗(·, ·) for every type θ ∈ Θ, where |Θ| = D.

Determine for every type θ the respective feasible set W (θ) by iterating on Eq. (20).

Set iteration step j = 0.

while ε > ε̄ do

for θj+1 ∈ Θ do

Generate n training inputs X = {xj+1
i : 1 ≤ i ≤ nj+1} ∈W (θ).

for xj+1
i ∈ X do

Evaluate the Bellman operator T (Vj)(x
j+1
i ) (see. Eq. (21)).

Set the training targets for the value function: ti = T (Vj)(x
j+1
i ).

end

Set t = {ti : 1 ≤ i ≤ n}.
Given {X, t}, learn the surrogate V j+1.

Calculate (an approximation for) the error, e.g.: εθ = ‖Vj+1 − Vj‖2.

end

Set j = j + 1. ε = max(εθ1 , ..., εθD )

end

τ = j − 1

V ∗(·, ·) = Vτ (·, ·).
π∗(·, ·) = {π1(·, ·), · · · , πM (·, ·)}.

Algorithm 2: Overview of the critical steps of the VFI algorithm that operates on equilib-

rium correspondences W (·).

we generate at every iteration step j + 1 of the VFI and for every discrete state θ a set of

nj+1 training inputs from within the feasible set W (θ)–namely, xj+1
1:n , on which we evaluate

the Bellman operator (see Eqs. 13 and 21)19

tj+1
1:nj+1 = {tj+1

1 , . . . , tj+1
nj+1}, (35)

where

tj+1
i = T (Vj)(x

j+1, θj+1). (36)

We use this training data to learn the surrogate of the updated value function for type θ.

Note that every individual evaluation of the Bellman operator is carried out by using the

predictive mean of Vj(·, ·) as the interpolator. The VFI procedure is continued until numerical

convergence is reached (cf. Eq. (15)). Alg. 2 summarizes the detailed steps of the GP VFI

on multidimensional, irregularly shaped feasible sets W (θ) in a more formal way. Note that

at convergence, one can not only learn the approximate value functions V ∗(·, ·) = Vτ (·, ·) but

also, if desired, the equilibrium policy functions π∗(·, ·), using an individual GP per policy.

Note that one of the defining features of GPR is that it is a grid-free method of constructing

a surrogate—that is, it allows the modeler to closely steer the content of the training set {X, t}
(see Sec. 3.3) and thus to construct surrogates on irregularly shaped geometries. This has two

significant practical advantages when addressing DI models numerically. First, if an individual

19At every single training point, the individual optimization problems—given by Eq. (21) in our application—

are solved with Ipopt (see Waechter and Biegler, (2006)), which is a high-quality open-source software for solving

nonlinear programs (http://www.coin-or.org/Ipopt/).

14



optimization problem at some particular point xi does not converge, one does not need to deal

with tuning the optimizer until it converges at this location of the state space. Instead, this

training input (and the corresponding, nonsensical training target) can be discarded—that is

to say, it is not added to the training set. This is in stark contrast to grid-based methods

such as “Smolyak” (see, e.g., Krueger and Kubler, (2004) and Judd et al., (2014)) or “adaptive

sparse grids” (see, e.g., Brumm and Scheidegger, (2017) and Brumm et al., (2015)), where

the construction of the surrogate breaks down if not every optimization problem required by

the algorithm can be solved. Second, computing solutions solely on a domain of relevance—

that is, W (θ), allows one to carry out VFI on complex, high-dimensional geometries without

suffering from massive inefficiencies, as the computational resources are concentrated where

needed. Particularly in high-dimensional settings, this can potentially speed up the time-

to-solution process by orders of magnitude, as the feasible set might have a negligibly small

volume compared to the computational domain that standard approximation methods require

(see Scheidegger and Bilionis, (2017) for more details). Finally, note that to solve “large”

problems in a reasonably short time, we make use of parallel computation. For the details of

the parallelization, see Scheidegger and Bilionis, (2017).

4 Numerical experiments

To demonstrate the broad applicability and versatility of the framework introduced in this

paper, we solve three distinct versions of the dynamic adverse selection environment outlined in

Sec. 2. In Sec. 4.1, we solve the example by Fernandes and Phelan, (2000) as a basic verification

test for our method. In Sec. 4.2, we extend this model to alternative preferences. Third, we

solve in Sec. 4.3 the baseline model by Fernandes and Phelan, (2000) for increasingly many

types θ to show that we can handle dynamic adverse selection problems with state spaces of

irregular geometry and a dimensionality larger than two, which is the standard in the previous

literature.

4.1 Baseline model

To gain a systematic understanding of how our framework behaves in real applications, we

apply it to a privately observed endowment model by Fernandes and Phelan, (2000), for which

numerical solutions are known. First, we briefly summarize the model and its parameterization.

Second, we report on the performance of our proposed set-valued DP method. Finally, we

discuss the solution to the DI problem that was obtained by performing VFI on the pre-

computed, irregularly shaped state spaces.

We consider an environment that consists of a risk-neutral principal and a risk-averse agent.

We choose the agent’s utility over consumption to be

u(c) =
√
c, (37)

where c is restricted to the finite range [c, c]. There are two types in the model—namely a

“low” (state 1) and “high” (state 2) one. The respective endowments are given by hlow and

hhigh. The agent receives a shock in each period and then reports it to the principal. The

agent learns his private type in each period and then reports it to the principal. Subsequently,

the principal then transfers consumption to agent dependent on what the agent reported (see

Fig. 1). Since the problem depends on the full history, we use the recursive reformulation that

we introduced in Theorem 3. The resulting state space of promised utilities in this model is

2-dimensional. Furthermore, we follow Fernandes and Phelan, (2000) and assume that the

agent cannot claim to be a higher type than he is. In particular, if the principal charges more
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Parameter Value

β 0.9

hhigh 0.35

hlow 0.1

[c, c] [0, 1]

Table 1: Parameterization of the privately observed endowment model by Fernandes and Phe-

lan, (2000).

than the lower type can afford, then we have to prevent the agent from over-reporting his type

(see Sec. 2). The Markov process governing the endowments in the model specification here

is such that the agent has a 90 percent chance of receiving the endowment he received in the

previous period. The remaining parametrization is reported in Tab. 1.

In Fig. 2, we display approximations of the equilibrium value correspondences for the low

state at various iteration steps when performing set-valued DP with BGMMs (see Alg. 1).

In particular, we show the candidate points that were generated from within the current ap-

proximation of the feasible set as well as the sample points that are deemed feasible in the

respective APS iteration step. This sequence of figures indicates that our proposed method—

that is, to merge the set-valued DP methods with BGMMs, leads to converging results. In
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Figure 2: The above four panels display the convergence of the (candidate) feasible set for

state 1 as a function of w1 and w2 (see Alg. 1). The top-left panel shows the first step in the

set-valued DP procedure; the top-right shows step 2. The lower-left panel is a result from step

15, and the lower-right is based on iteration 35.
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Fig. 3, we show the feasible sets for both the low and the high state once the set-valued DP

iteration has converged—that is, after about 50 iteration steps, where the approximation error

for the sets reaches O(10−3) percent.20 Having (approximately) determined the equilibrium
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Figure 3: The left panel shows the approximate feasible set for the low state at convergence as

a function of w1 and w2. The right panel shows the respective set for the high state.

value correspondences for the two states, we turn our attention now to the recursive solution

of the model. Fig. 4 depicts the decreasing, aggregated L1- and L2-errors (see Eq. (15)) for the

value functions when performing VFI with GPs on the feasible sets (see Alg. 2). The graph

indicates that our proposed solution framework—that is, the combination of APS, BGMMs,

and GPR—can successfully and efficiently solve DI problems.21 In Fig. 5, we show the value

functions for the low and high states at convergence.

To gain some economic insights into the optimal contracts computed, we now carry out a

collection of simulations and impulse–response experiments. In the left panel of Fig. 6, we show

simulation patterns for the principal’s optimal value in the low (V1) and high (V2) states. The

simulation was launched from the optimal value in the promised utility space. Furthermore,

we kept the shocks constant in the respective state. We find that in the low state, the optimal

value is increasing, whereas in the high state, the value remains constant. Analogously, the

right panel of Fig. 6 displays the utility promise in state i to type i. Fig. 7 displays the

corresponding utility transfer u in state i to type i. The left and right panels of Fig. 8 depict

the simulation paths within the respective feasible sets. In the low state, we almost start at

the steady state, whereas in the high state, we traverse almost the entire set. The reason for

this is that there is no incentive constraint for the low type (cf. footnote 3 in Fernandes and

Phelan, (2000)).

Next, we show several impulse–response experiments on the equilibrium policies. Starting

from the steady state, we induce the complementary state, and then return to the original one.

The left panel of Fig. 9 displays how the promised utility in the low state reacts to this shock,

whereas the right panel shows the same for the utility transfer. We can see that the perturbed

quantities quickly return to the steady state, since the discount factor β = 0.9 is relatively

small (see Tab. 1). Fig. 10 shows what happens if we change the type for one period, while

being in the steady state. As shown in this figure, the utility promises return after a few steps

back to the steady state for both the low and high types.

Summarizing, we note that the results shown in this section replicate those reported in Fer-

20We cross-validate the findings here by an alternative method that is based on adaptive sparse grids. The

affirmative results are summarized in Appendix A.
21In this application, generating 100 observations per state and iteration step from the approximate equilib-

rium correspondences to train the GPs led to satisfactory results.
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solved by training GP surrogates with 100 observations that were generated from within the

feasible sets. The errors were computed by randomly drawing 1, 000 points from the feasible

sets.
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Figure 5: Left panel—value function of the low state (V1) as a function of w1 and w2. Right

panel—value function of the high state (V2) as a function of w1 and w2. In both panels, we

evaluated the respective value functions at 180 equally spaced points for illustrative purposes.

nandes and Phelan, (2000).

4.2 Alternative preferences

To show that our framework is capable of operating on a broad variety of preferences, we turn

our attention now to a model specification that is slightly different to the one considered in

Sec. 4.1. In particular, the risk-averse agent’s utility over consumption is now given by

u(c) =
(c+ c)1−γ

1− γ
. (38)
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Figure 6: Left panel—optimal value at simulation step t in states 1 (V1) and 2 (V2). Right

panel—promised utility in the low (w1) and high states (w2) as a function of the simulation

step t.
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Figure 8: Left panel—simulation path in the feasible set for the low state, state 1. Right

panel—the same, for the high state, state 2.

As a concrete example, we choose γ = 2. Moreover, to ensure that the lower bound on utility

at c = 0 is 0, we set

u(c) = − 1

c+ c
+

1

c
, (39)
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Figure 10: Path of the utility promises after a shock to the steady state has occurred, depicted

in the left panel for state 1 and in the right panel for state 2. In both panels, the steady state

as well as the utility promises right after the shock are labeled by arrows.

with c = 1. We keep all other parameters as listed in Tab. 1. Since the upper bound on

consumption in this example is 1, the upper bound on utility in turn is given by

u(1)/(1− β) = 0.5/0.1 = 5. (40)

In Fig. 11, we show approximations for the feasible sets for both the low and the high state

once the set-valued DP iteration with BGMMs has converged (see Alg. 1). Comparing Fig. 11

with Fig. 3—that is, the feasible sets for the two respective utility functions, we can see

that the sets for both the low and high types are of similar shape, whereas the ranges are

substantially different: the preferences in this example yield substantially smaller equilibrium

value correspondences.

As in Sec. 4.1, we now carry out simulations and impulse–response experiments to gain

insights into the optimal contracts we compute in this section. The simulations were again

launched from the optimal value in the promised utility space. Furthermore, we kept the

shocks constant in the respective state.

The left and the right panels of Fig. 12 show the simulation path within the respective

equilibrium value correspondences. In line with Sec. 4.1, we find that in the low state we
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as a function of w1 and w2. The right panel shows the respective set for the high state.

almost start at the steady state, whereas in the high state we traverse a large fraction of the

feasible set. The reason for this is again that in the present model setting, there is no incentive

constraint for the low type (cf. footnote 3 in Fernandes and Phelan, 2000). Next, we show
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Figure 12: Left panel—simulation path in the feasible set for the low state, state 1. Right

panel—the same, for the high state, state 2.

impulse–response experiments on the equilibrium policies. Starting from the steady state, we

induce the complementary state, and then return to the original one. In Fig. 13, we can see

that the perturbed quantities quickly return to the steady state both for the low and the high

types. The reason for this is that the discount factor β = 0.9 is relatively small (see Tab. 1).

4.3 Many types

In this section, we demonstrate the (dimensional) scalability of our method. To do so, we

exapand the baseline model (see Sec. 4) to three types, a “low” (state 1), a “middle” (state

2) and a “high” (state 3) one. An agent’s endowment is either hlow = 0.3, hmiddle = 0.6 or

hhigh = 0.9. Moreover, we choose the transition probabilities across the different types (see
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Figure 14: The left panel shows the approximate feasible set W (θ1) as a function of w1, w2,

and w3. The central panel displays W (θ2) as a function of the promised utilities. The right

panel finally depicts the approximate equilibrium correspondence W (θ3).

Theorem 3) to be

Πθ,θ̃ =

0.7 0.3 0.0

0.2 0.5 0.3

0.0 0.4 0.6

 . (41)

The choice of the Markov chain given by Eq. (41) is based on the following reasoning: Let us

assume that an agent works in a firm with a rigid hierarchy. He can be promoted, demoted,

or stay in his rank. If the agent moves inside the company’s hierarchy, it can only happen one

level at a time. Moreover, it is also more likely that the agent is on a lower rung than it is for

him to be of a hight type. The set discount factor to β = 0.96. All other settings are kept as

stated in Sec. 4.

The pre-computed equilibrium value correspondences for the three types θ1, θ2 and θ3 are

depicted in Fig. 14. Their three-dimensional geometry strongly resembles the one of a airplane

wing.

[TBD: discussion of results.]
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5 Conclusion

In this paper, we introduce a scalable and flexible framework for solving infinite-horizon, dis-

crete time DI problems with hidden states and of unprecedented complexity. Addressing such

dynamic adverse selection models is a formidable task, since two major computational bottle-

necks create difficulties in the solution process. Issue one is related to the fact that the feasible

sets of utility promises are not known in advance and have to be determined numerically. In

most of the interesting economic applications, such sets have a non-hypercubic geometry and

might even be non-convex. Issue two results from solving the dynamic adverse selection prob-

lem with VFI. To do so, we need to repeatedly approximate and evaluate high-dimensional

functions at arbitrary coordinates within the domain of interest—that is, the feasible sets.

We address the computation of the equilibrium value correspondences, combining the set-

valued dynamic programming techniques by APS with BGMMs. For the VFI, we use a mas-

sively parallel algorithm that applies GP machine learning in every iteration step to approxi-

mate the value functions on the pre-computed, time-invariant feasible sets.

Our approach provides several desirable features that yield a substantial improvement

over the previous literature. First, since sampling achieves the approximation of feasible sets

through BGMMs, it does not directly suffer from the curse of dimensionality and thus can

deal with problems involving many types of agents. Second, our scheme of approximating

equilibrium value correspondences is independent of solving the DI problem, and thus does

not directly add to the computational complexity of solving the actual model. Third, it can

approximate both convex and non-convex sets. Moreover, the equilibrium BGMMs can be used

to generate sample data from within the approximate equilibrium value correspondences. This

directly plays to the strength of GPR: a form of supervised machine learning that can—given

a training set that is generated from within the feasible region—be used to approximate and

interpolate functions on irregularly shaped state spaces. Furthermore, since the construction of

GP surrogates is achieved by sampling from a domain of interest such as a feasible set, they can

handle the curse of dimensionality to some extent. Thus, our proposed method—that is, using

APS and BGMMs in conjunction with GPs—has the potential of handling highly complex DI

models at a relatively low computational cost, as it focuses the resources where needed.

To demonstrate the capabilities of our framework, we compute solutions for models of

repeated agency with history dependence, varying preferences, and increasingly many types.

It is clear that while the focus of the work presented lies in solving dynamic adverse selection

problems, the method proposed here has a far broader scope: it can also be applied, for

example, to moral hazard problems, mechanism design, or to dynamic games, where one of the

significant difficulties also lies in finding the equilibrium sets.

This all suggests that our framework will enable researchers to think of DI problems of

greater richness than was possible prior to this work, as they no longer need to substantially

restrict their modeling choices from the outset.
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A Approximating feasible sets with adaptive sparse grids

To verify the functionality of the framework proposed in this paper for determining the

equilibrium correspondences (see Sec. 3.2), we cross-validate it by applying adaptive sparse

grids (see, e.g., Brumm and Scheidegger, (2017)). In particular, we solve—as briefly men-

tioned in Sec. 3.2—an auxiliary problem of Eq. (17) for which we know the true solution on

the feasible set. More precisely, we relax the feasibility via a penalty function such that the

resulting value function will be zero on the feasible set and less otherwise. Strictly speaking,

we are looking for the fixed point of the following dynamic program:

F (w, θ) = max
c,w+,ξ

√
ε−

√
ε+

∑
θ̃

ξ2
θ̃

+ β
∑
θ̃∈Θ

Πθ,θ̃F
+(w+

θ̃
, θ̃) (42)

s.t. wν = ξν +
∑
θ̃∈Θ

Πν,θ̃(u(cθ̃, θ̃) + βw+

θ̃,θ̃
) ∀ν ∈ Θ,

u(cθ̃, θ̃) + βw+

θ̃,θ̃
≥ u(cν , θ̃) + βw+

ν,θ̃
∀θ̃ ∈ Θ, ∀ν ∈ Θ \ {θ̃},

c ∈ [0, c]N ,

w+

θ̃
∈ RN with w+

θ̃,ν
= (w+

θ̃
)ν ∀θ̃ ∈ Θ, ∀ν ∈ Θ,

where ε > 0 is a relaxation parameter in

√
ε−

√
ε+

∑
θ̃

ξ2
θ̃
, (43)

and where Eq. (43) is a smooth approximation of the norm ‖ · ‖1. F (·, ·) is approximated by

piecewise linear basis functions on an adaptive sparse grid. Eq. (42) is an ordinary DP problem

with a fixed point and therefore can be solved by VFI. We know that for all feasible w, the

value function will be 0. To see this, note that the payoff of Eq. (42) in some iteration t is
√
ε −

√
ε+

∑
θ̃ ξ

2
θ̃
—that is to say, less than or equal to zero. Moreover, any feasible point

will have an optimal value of zero, since there we will not need to relax the bounds on the

equality constraints. Thus, the resulting value function has to be zero for feasible values and

less than zero otherwise (for more details, see Judd et al., (2016)). Once the VFI for Eq. (42)

has converged, we can go on and use a scaled version of F (·, ·) as a penalty for the dynamic

incentive problem.

We now recompute the test case outlined in Sec. 4.1. In Fig. 15, we display the equilibrium

correspondences for the low and high states, computed by applying adaptive sparse grids.

Comparing Fig. 15 to Fig. 3, it becomes apparent that the two methods yield similar results

and thus confirm each other.
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Figure 15: The left panel shows the approximate equilibrium correspondences for the low state

as a function of w1 and w2, whereas the right panel shows the respective set for the high

state. Both feasible sets were computed by applying adaptive sparse grids and set-valued DP

(see Eq. (42)).
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