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Abstract This paper considers the instrument selection problem in instrumental
variable (IV) regression model when there is a large set of instruments with poten-
tial invalidity. I derive higher-order mean square error (MSE) approximation of two-
stage least squares (2SLS), limited information maximum likelihood (LIML), Fuller
(FULL) and bias-adjusted 2SLS (B2SLS) estimators with allowing for local violation of
the instrument-exogeneity conditions. Based on the approximation to the higher-order
MSE, I propose instrument selection criteria that are robust to potential invalidity of
instruments. Furthermore, I also show the optimality results of instrument selection
criteria in Donald and Newey (2001, Econometrica) under faster than N−1/2 locally
invalid instruments specification.

Keywords: Instrument selection, Invalid instruments, Many instruments, 2SLS, LIML,
Fuller estimator, Bias-adjusted 2SLS

1. INTRODUCTION

The instrumental variable (IV) estimators are widely used in modern economics, and
some empirical applications involve a large set of potential instruments and debates about
the validity of instruments, which I refer to as an exogeneity condition, i.e., instruments
are uncorrelated with the error term in the structural equation. Although researchers
have been routinely used the Sargan-Hansen J-test, the validity of instruments is gener-
ally uncertain; instruments may have direct effects on the outcome variables, and model
misspecification can make instruments invalid.1 Furthermore, when there are many po-
tential instruments, the finite sample performance of the IV estimator can be sensitive
to the choice of instruments. To capture finite sample properties of the IV estimator,
higher-order approximation and the instrument selection criteria have been found useful
in the literature, e.g., Donald and Newey (2001), Hahn et al. (2004), Kuersteiner and
Okui (2010), assuming instruments are valid.

This paper develops Nagar (1959) type higher-order mean square error (MSE) approx-
imation of the k-class estimators (including two-stage least squares (2SLS) estimator,
limited information maximum likelihood (LIML), Fuller (FULL), and bias-adjusted ver-
sion of the 2SLS (B2SLS) estimator) in linear IV model with many instruments allow-
ing locally invalid instruments. Higher-order MSE approximation of k-class estimators

1For questionable IVs with potential invalidity in various empirical applications, see Section 2.1 of
Guggenberger (2012) and references therein. See also Kolesar et al. (2015) for an interesting empirical
application with invalid instruments even when the instruments are assigned randomly.

https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxkYXZpZGJoa2FuZ3xneDo1OGM3YTdhMWUyOTg3YTg3
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under the local violation of the instrument-exogeneity includes higher-order bias from
many/invalid instruments as well as higher-order variances, and this has not been avail-
able in the literature. MSE approximation in this paper not only depends on the number
of instruments but also on the degree of instruments invalidity and relative strength of
valid and invalid instruments. Our result is also useful to provide which estimator is more
robust to local violation of the validity of the instrument among the wide class of the
k-class estimators. Furthermore, this paper also generalizes the first-order asymptotic re-
sults in Hahn and Hausman (2005) as well as the higher-order expansions in Rothenberg
(1984) with invalid instruments, see Remarks 3.3 and 3.4 below.

Higher order approximation in this paper hinges on N−γ(γ ≥ 1/2) local-to-zero speci-
fication allowing locally invalid instruments, and the local-misspecification approach has
gained considerable new attention recently, e.g., Conley et al. (2012), Andrews et al.
(2017), Armstrong and Kolesar (2018), Bonhomme and Weidner (2018).2 This device
allows to develop useful approximation theory of IV estimators with invalid instruments
and it requires non-trivial extension of Donald and Newey (2001) because the dominating
higher-order terms not only depend on the order of invalid instrument (γ) but also the
rate of instruments (K) as well as the estimators considered.

First, I show that dominating terms (that depend on K) of MSE approximation in
this paper reduce to those of Donald and Newey (2001) with the knife-edge rate γ = 1/2
when (i) instruments are all valid or (ii) the direct effect of the instruments on the
outcome variable are orthogonal to their effect on the endogenous variable. The second
case is closely related to the identification assumption in the literature, e.g., Kolesar et
al. (2015). Based on the higher-order MSE approximation, I suggest instrument selection
criterion that is robust to locally invalid instruments. We require known to be valid
instruments and provide the asymptotic unbiasedness of the criterion function.3 In the
presence of invalid instruments, instruments selection criterion without additional terms
in the MSE may lead to a misleading balance of bias and efficiency; including invalid
instruments that are a strong predictor of the first-stage can lower MSE although it may
slightly increase bias.

Second, I show that instrument selection criteria in Donald and Newey (2001) are
robust to a small degree of invalid instruments as the dominating terms in MSE coincide
when γ > 1/2. Interestingly, results in this paper suggest that LIML, FULL, and B2SLS
are more robust than 2SLS with locally invalid instrument specifications. To be more
specific, we show the asymptotic optimality of Donald and Newey (2001) criterion for
LIML, FULL, and B2SLS for all γ > 1/2, and 2SLS for γ > 1 − α under the same rate
restriction of K = Nα(0 < α < 1/2) imposed in Donald and Newey (2001).

The literature on the higher order approximation of the k-class estimator with valid in-
struments has a long history such as Nagar (1959), Anderson and Sawa (1973), Morimune
(1983), Rothenberg (1984). Based on higher-order approximations, there are many pa-
pers about instrument (moment) and/or weight selections in the IV and GMM setup,
e.g., Donald and Newey (2001), Donald et al. (2009), Canay (2010), Kuersteiner and
Okui (2010), Okui (2011), Carrasco (2012), Kuersteiner (2012), Lee and Zhou (2015),
among others. Many papers also developed moment selection procedures to select valid

2There are several papers deal with estimation and inference issues with with local violation of ex-
ogeneity conditions, Newey (1985), Hahn and Hausman (2005), Berkowitz et al. (2008), Otsu (2011),
Berkowitz et al. (2012), Guggenberger (2012), Kraay (2012), Caner (2014), among many others.
3The existence of valid instruments is also used for identification and estimation purposes in recent

papers, e.g., Nevo and Rosen (2012), Cheng and Liao (2015), DiTraglia (2016).
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moments from the set of valid and invalid moment conditions, e.g., Andrews (1999), An-
drews and Lu (2001), Hall and Peixe (2003), Hong et al. (2003), Liao (2013). DiTraglia
(2016) developed moment selection criterion based on the first-order asymptotic MSE
with possible locally invalid moment conditions in GMM setups.

Although we require prior knowledge of the order of the instrument strengths in this
paper similar to Donald and Newey (2001), many recent papers developed estimation and
moment selection techniques (e.g., Lasso) in high-dimensional setup without requiring
order of the instruments such as Belloni et al. (2012), Cheng and Liao (2015), Caner
et al. (2018), for examples. Kang et al. (2016) propose Lasso-type methods to identify
and select valid instruments, and they do not a require small set of instruments that are
known to be valid. Windmeijer et al. (2018) investigate that Lasso procedures may not
consistently select the invalid instruments if these are relatively strong, and they propose
a median-type estimator that is consistent when more than 50% of the instruments are
valid.

The outline of the paper is as follows. Section 2 introduces the basic model setup and
notation. Section 3 describes higher-order MSE approximations of the IV estimators.
Section 4 provides approximations under the different local sequence of invalid instru-
ments, and Section 5 discusses instrument selection criteria. Section 6 includes simulation
results in various Monte Carlo settings and Section 7 concludes. All proofs, additional
simulations, and results are provided in the Online Appendix.

2. THE MODEL AND ESTIMATORS

I consider a linear IV model allowing potentially invalid instruments,

yi = W ′i δ0 + εi = Y ′i θ0 + x′1iβ0 + εi (2.1)

Wi = f(xi) + ui =

(
E[Yi|xi]
x1i

)
+

(
ξi
0

)
, (2.2)

εi =
g(xi)√
N

+ vi, E[vi|xi] = 0, (2.3)

where yi is a scalar outcome variable, Wi is a p × 1 vector that includes endogenous
variables Yi and d×1 vector of exogenous variables x1i. δ0 = (θ′0, β

′
0)′ ∈ Rp is a parameter

of interest and x1i is a subset of the exogenous variables xi. The number of regressors (p)
and the number of exogenous regressors (d) are assumed fixed and they do not depend
on the sample size N .

(2.3) imposes local-to-zero specification allowing invalid instruments. Under this setup,
any potential instruments ψ(xi) are asymptotically valid as N →∞, but E[ψ(xi)εi] = 0
do not necessarily hold in finite samples. Note that the direct effect of the instruments
g(x) can be allowed to be large numbers for any finite N , and we do not restrict the
functional form of g(x).

Remark 2.1. With this knife-edge rate (N−1/2), the stochastic order of bias of IV
estimators from the invalid instrument is equal to the first-order asymptotic variance.
This rate provides the right-balance for a useful theory to understand the finite sample
behavior of IV estimators with possibly invalid instruments. We also consider the higher-
order MSE approximations under faster rates (N−γ , γ > 1/2) in Section 4 which requires
different analysis because of the dominating term changes.
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We may also consider γ = 0 (global misspecification) or 0 < γ < 1/2 where bias from
invalid instruments dominates. We can still provide MSE approximations centered with
pseudo-true value which is the probability limit of IV estimators (or sequence of pseudo-
true value depending on N), e.g., instruments specific LATE (Local Average Treatment
Effect) parameters for 2SLS in the presence of heterogeneous treatment effect. However,
different choice of instruments and estimators can lead to a different pseudo-true value,
and this makes MSE comparisons difficult. Thus, we focus on the δ0 and compare MSE
among different instruments as well as different IV estimators under our setup with
γ ≥ 1/2. Identification issues with globally invalid instruments in IV framework can be
found in Nevo and Rosen (2012), Kolesar et al. (2015), Kang et al. (2016).

Now, we consider several different k-class estimators which are widely used in the linear
IV model. We first consider the 2SLS estimator,

δ̂2SLS(K) = (W ′PKW )−1(W ′PKy), (2.4)

where y = (y1, · · · , yN )′,W = [Y,X1], Y = [Y1, · · · , YN ]′, X1 = [x11, · · · , x1N ]′ and PK =
ΨK(ΨK′ΨK)−ΨK′ is the projection matrix for the instrument vector ΨK = [ψK1 , ..., ψ

K
N ]′

with K × 1(K ≥ p) vector of instrumental variables (or basis functions) ψKi ≡ ψK(xi) =
(ψ1K(xi), ..., ψKK(xi))

′. I assume ψKi includes exogenous variables x1i, and K indicates
both the number of instruments and the index of the instrument sets following Donald
and Newey (2001).

Next, we consider LIML estimator

δ̂LIML(K) = (W ′PKW − Λ̂(K)W ′W )−1(W ′PKy − Λ̂(K)W ′y), (2.5)

where

Λ̂(K) = min
δ

(y −Wδ)′PK(y −Wδ)

(y −Wδ)′(y −Wδ)
.

We also consider the Fuller (1977) estimator (FULL),

δ̂FULL(K) = (W ′PKW − Λ̌(K)W ′W )−1(W ′PKy − Λ̌(K)W ′y), (2.6)

where

Λ̌(K) =
Λ̂(K)− C

N−K (1− Λ̂(K))

1− C
N−K (1− Λ̂(K))

for some constant C. Popular choices are C = 1 or C = 4 due to their higher-order unbi-
asedness or minimum MSE property. Finally, we consider bias-adjusted 2SLS estimator
(B2SLS) from Donald and Newey (2001) as a modification of the Nagar (1959) estimator
with Λ̄(K) = (K − d− 2)/N ,

δ̂B2SLS(K) = (W ′PKW − Λ̄(K)W ′W )−1(W ′PKy − Λ̄(K)W ′y). (2.7)

3. ASSUMPTIONS AND HIGHER-ORDER MSE RESULTS

I derive the Nagar (1959) type higher-order asymptotic MSE for the IV estimators with

locally invalid instruments setup. I will find a decomposition for IV estimators δ̂(K)
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above with the following form,

N(δ̂(K)− δ0)(δ̂(K)− δ0)′ = Q̂(K) + r̂(K),

E[Q̂(K)|X] = σ2
vH
−1 +H−1HgH

′
gH
−1 +G+ L(K) + T (K), (3.1)

[r̂(K) + T (K)]/tr(G+ L(K)) = op(1), K →∞, N →∞,

where H = f ′f/N,Hg = f ′g/N, f = [f1, · · · , fN ]′, fi = f(xi), g = [g1, · · · , gN ]′, gi =
g(xi), and X = [x1, ..., xN ]′. I also define σuv = E[uivi|xi], σ2

v = E[v2
i |xi], σ2

ε = E[ε2
i |xi]

and Σu = E[uiu
′
i|xi].

The dominating terms in the conditional MSE approximation (3.1) are σ2
vH
−1 and

H−1HgH
′
gH
−1 that correspond to the first-order asymptotic variance and the square of

the asymptotic bias from the locally invalid instrument, respectively. These are Op(1)
terms, but they do not depend on K in our large K approximation. Next leading terms
are G and L(K). They include the higher-order bias and variance due to many and invalid
instruments and have different forms for each IV estimator. G includes terms that do not
depend on K. r̂(K) and T (K) are the remainder terms converge to 0 faster than G and
L(K).

We impose the following assumptions similar to Donald and Newey (2001).

Assumption 3.1. (a) {yi, Yi, xi}Ni=1 are independent and identically distributed (i.i.d.);
(b) E[v2

i |xi] = σ2
v > 0, and E[‖ξi‖4|xi], E[|vi|4|xi] are bounded.

Assumption 3.2. (a) H̄ = E[fif
′
i ] exists and is nonsingular, H̄g = E[figi] exists; (b)

there exists πK , π
g
K such that E[‖f(x)−πKψK(x)‖2]→ 0 and E[|g(x)−πgKψK(x)|2]→ 0

as K →∞.

Assumption 3.3. (a) E[(vi, ξ
′
i)
′(vi, ξ

′
i)|xi] is constant; (b) ΨK ′ΨK is nonsingular with

probability approaching one; (c) maxi≤NP
K
ii

p→ 0. (iv) fi and gi are bounded.

Assumption 3.1 imposes boundedness of the fourth conditional moments of the error
terms. Assumption 3.2(a) is imposed for a usual identification assumption and for the
existence of the first-order bias from invalid instruments. Assumption 3.2(b) requires the
mean square approximation error of the f(x) and g(x) by the linear combination of in-
struments ψK(x) goes to 0 as the number of instrument increases. Assumption 3.3 also
imposes homoskedasticity and restricts the growth rate of K. For example, K = O(N)
is not allowed under 3.3(c), see van Hasselt (2010), Anatolyev and Yaskov (2017), and
references therein.

Our first result gives the MSE approximation for the 2SLS estimator. Proposition 3.1
is a generalization of the result in Donald and Newey (2001) allowing possibly invalid
instruments.

Proposition 3.1. If Assumptions 3.1, 3.2, 3.3 are satisfied, σuv 6= 0, Hgσ
′
uv 6= 0, Hg 6=

0, and K2/N → 0, then the approximate MSE for the 2SLS estimator satisfies decompo-
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sition (3.1) with G = 0 and the following terms

L(K) = H−1
[ K

N1/2
(Hgσ

′
uv + σuvH

′
g) + σuvσ

′
uv

K2

N
+ σ2

v

f ′(I − PK)f

N

+HgH
′
gH
−1 f

′(I − PK)f

N
+
f ′(I − PK)f

N
H−1HgH

′
g

−f
′(I − PK)g

N
H ′g −Hg

g′(I − PK)f

N

]
H−1. (3.2)

Moreover, ignoring terms of order Op(K
2/N) = op(K/

√
N),

L(K) = H−1
[ K

N1/2
(Hgσ

′
uv + σuvH

′
g) + σ2

v

f ′(I − PK)f

N
+HgH

′
gH
−1 f

′(I − PK)f

N

+
f ′(I − PK)f

N
H−1HgH

′
g −

f ′(I − PK)g

N
H ′g −Hg

g′(I − PK)f

N

]
H−1. (3.3)

Remark 3.1. When Hg = 0, L(K) in Proposition 3.1 reduces to Proposition 1 in Donald
and Newey (2001),

H−1[σuvσ
′
uv

K2

N
+ σ2

v

f ′(I − PK)f

N
]H−1.

MSE approximation results in Proposition 3.1 includes higher-order terms from many
instruments as well as additional terms due to invalid instruments.

Interestingly, Hg = 0 not only holds when g(x) = 0 (i.e., exclusion restriction holds)
but also holds when the direct effect of the instruments to the outcome variable (g) are
orthogonal to the effect of the instruments on the endogenous variable (f) allowing g(x) 6=
0. Suppose f = Ψπ, g = Ψτ , then Hg = 0 holds when π′Ψ′Ψτ/N = 0 and this is closely
related to the identification assumption (Assumption 5) in Kolesar et al. (2015) for the
consistency of k-class estimator under many invalid instruments setup. This observation
suggests that the robustness of MSE approximation results (thus, instrument selection
criteria) of Donald and Newey (2001) to the possibly invalid instruments provided that
the direct effects of instruments are uncorrelated with the effects on the first-stage. See
also discussions in Kolesar et al. (2015) with empirical examples such as Chetty et al.
(2011) where Hg = 0 may be a reasonable assumption.

Remark 3.2. The first three terms of L(K) in (3.2) and H−1HgH
′
gH
−1 correspond

to the square and cross-product of the two sources of bias we consider: bias from many
instruments and invalid instruments. With invalid instruments, the dominating terms
in MSE approximation are order Op(K/

√
N) as in (3.3). This dominates the bias from

many instruments Op(K
2/N) in Donald and Newey (2001). The remaining terms in

L(K) regarding f ′(I − PK)f/N represent higher order variance term and it decreases
as K increases. Note that locally invalid instrument specifications change not only the
order of the bias from many instruments but also weights on the higher order variance
f ′(I − PK)f/N . If the chosen instruments K are independent with the direct effect
of invalid instruments g, then PKg/N = 0 and the last two terms in L(K) reduce to
−2HgH

′
g. Therefore excluding invalid instruments can help to reduce MSE. However,

including (locally) invalid instruments that are a strong predictor of the first-stage also
can lower MSE. Proposition 3.1 provides robust bias and variance trade-off in the presence
of invalid instruments



Higher-order approximation of IV with invalid instruments 7

Remark 3.3. In an online appendix (Section S2.1), I provide MSE approximation of
2SLS under K = O(

√
N) and this generalizes the first-order asymptotic MSE results of

the Hahn and Hausman (2005).4 For a linear specification of f = Ψπ, g = Ψτ with a
scalar endogenous variable Yi and no included exogenous variables, dominating bias term
in MSE approximation becomes

H−1HgH
′
gH
−1 +H−1

[ K√
N

(Hgσ
′
uv + σuvH

′
g) + σuvσ

′
uv

K2

N

]
H−1 = (

Hg + ασuv
H

)2

where Hg = π′Ψ′Ψτ/N, α = K/
√
N , and this corresponds to Theorem 3 of Hahn and

Hausman (2005). Our results imply that the normal distribution of the error terms and
linearity assumption of f and g are not essential for results in Hahn and Hausman (2005).

Remark 3.4. In an online appendix (Section S2.2), I also provide bias and variance
approximation of 2SLS with invalid instruments similar to approaches in Rothenberg
(1984). Consider a model y = Wδ0 +Ψτ/µ+v,W = Ψπ+u, where µ2 = π′Ψ′Ψπ/σ2

u is a
concentration parameter and δ0 is a scalar. Under conventional asymptotics (µ is large,
K is small), the bias of the 2SLS estimator can be approximated by

E(δ̂2SLS(K)− δ0) ≈ σuv
σ2
u

(
K − 2

µ2
) +

σv
σu

µ̃2

µ3

where µ̃2 = π′Ψ′Ψτ/(σuσv). The 2SLS bias depends on the strength (µ2) and the number
of instruments (K) as well as the invalidity of instruments (µ̃2). Although our theory does
not rely on the weak instrument or many-weak instrument asymptotics, approximation
above is useful to understand relative magnitude of bias due to many instruments and
invalid instruments. For example, when K/µ � µ̃2/µ2, then the first term dominates,
and vice-versa.

Next, I give the MSE approximation for the LIML and FULL estimator. Unlike 2SLS,
the order of dominating terms that depend on K for the LIML and FULL (Op(K/N))
remain same as in Donald and Newey (2001). Note that the LIML and FULL estimator
has the same approximate MSE to the order we consider here.

Let ηi = ui − viσuv/σ2
v and Ση = E[ηiη

′
i].

Proposition 3.2. If Assumptions 3.1, 3.2, 3.3 are satisfied, E[v2
i ηi|xi] = 0, K/N → 0,

Ση 6= 0, Hg 6= 0 and E[‖ξi‖5|xi], E[|vi|5|xi] are bounded, then the approximate MSE for
the LIML and FULL estimator satisfies decomposition (3.1) with

L(K) = H−1
[
σ2
vΣη

K

N
+ σ2

v

f ′(I − PK)f

N
+HgH

′
gH
−1 f

′(I − PK)f

N

+
f ′(I − PK)f

N
H−1HgH

′
g −

f ′(I − PK)g

N
H ′g −Hg

g′(I − PK)f

N

]
H−1 (3.4)

4A version of similar result can be also found in Lee and Okui (2012) where they derive the first-order
asymptotic bias and variance of 2SLS under K = O(N) with locally invalid IV in the proof of Theorem
4.
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and

G = H−1
[
(Hgσ

′
uv + σuvH

′
g)(

1√
N
−
∑
i f
′
iH
−1fi

2N3/2
)− 1√

N
(HH ′gH

−1σuv + σ′uvH
−1HgH)

−
∑
i

[fiH
′
gH
−1fiσ

′
uv + σuvf

′
iH
−1Hgf

′
i + fiσ

′
uvH

−1fiH
′
g +Hgf

′
iH
−1σuvf

′
i ]/N

3/2
]
H−1.

Remark 3.5. It is important to note that G = Op(1/
√
N) do not depend on K, thus

it will not be used for instrument selection criterion although it can be easily estimated.
With possibly invalid instruments, the dominating term in MSE approximation (that
depends on K) is order Op(K/N) which is same as those of Donald and Newey (2001).
For the LIML or FULL, L(K) does not include higher order bias from many instruments
estimator, and the terms in L(K) show higher-order variance trade-off with many invalid
instruments. The third-moment condition E[v2

i ηi|xi] = 0 holds when (vi, η
′
i)
′ is normally

distributed, and this is imposed for the simplification similar to Donald and Newey
(2001). Without this condition, L(K) will have additional terms which are provided in
proof of Proposition 3.2.

Finally, I provide a result for B2SLS estimator.

Proposition 3.3. If Assumptions 3.1, 3.2, 3.3 are satisfied, σuv 6= 0, Hg 6= 0, E[v2
i ui|xi] =

0, K/N → 0, then the approximate MSE for the B2SLS estimator satisfies decomposition
(3.1) with

L(K) = H−1
[
(σ2
vΣη + 2σuvσ

′
uv)

K

N
+ σ2

v

f ′(I − PK)f

N
+HgH

′
gH
−1 f

′(I − PK)f

N

+
f ′(I − PK)f

N
H−1HgH

′
g −

f ′(I − PK)g

N
H ′g −Hg

g′(I − PK)f

N

]
H−1, (3.5)

and

G = H−1
[
(Hgσ

′
uv + σuvH

′
g)(

d+ 3√
N
−
∑
i f
′
iH
−1fi

N3/2
)− 1√

N
(HH ′gH

−1σuv + σ′uvH
−1HgH)

−
∑
i

[fiH
′
gH
−1fiσ

′
uv + σuvf

′
iH
−1Hgf

′
i + fiσ

′
uvH

−1fiH
′
g +Hgf

′
iH
−1σuvf

′
i ]/N

3/2
]
H−1.

Remark 3.6. Although L(K) in MSE approximations for B2SLS is larger than those
of LIML and FULL, it seems difficult to show the higher order efficiency of LIML or
FULL estimator with locally invalid instruments because of different dominating term G
in Propositions 3.2 and 3.3.

4. HIGHER-ORDER MSE RESULTS UNDER DIFFERENT RATES OF LOCALLY
INVALID INSTRUMENTS

In this section, we consider faster rates of local-to-zero specification (i.e., a smaller degree
of invalidity) than N−1/2 rates considered in Sections 2 and 3. Under the rate we consider
in this section, 2SLS, LIML, FULL, and B2SLS estimators are all consistent, but higher-
order theory is still useful to capture changes in the order of the bias and variance that
the first-order asymptotics cannot capture.
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Although, we expect the stochastic order of higher-order bias and variance from invalid
instruments become smaller than the terms due to the many instruments, the results
generally depend not only on the drifting sequences but also on the specific rate of
K. The key insight from the main results in this section (Propositions 4.1-4.3) is that
the changes in the order of invalid instruments affect the finite sample behavior of IV
estimators differently.

Specifically, I consider the following model with γ > 1/2

yi = W ′i δ0 +
g(xi)

Nγ
+ vi, E[vi|xi] = 0, (4.1)

Wi = f(xi) + ui, (4.2)

where all variables are defined same as in Section 2. Under the model (4.1)-(4.2) with

γ > 1/2, I will find the following decomposition for IV estimator δ̂(K),

N(δ̂(K)− δ0)(δ̂(K)− δ0)′ = Q̂(K) + r̂(K),

E[Q̂(K)|X] = σ2
vH
−1 +G+ L(K) + T (K), (4.3)

[r̂(K) + T (K)]/tr(G+ L(K)) = op(1), K →∞, N →∞.

We note that the first-order variance (σ2
vH
−1) is the only Op(1) term in conditional MSE

approximations, and the bias from invalid instruments (i.e., H−1HgH
′
gH
−1 in (3.1)) be-

comes the higher-order term. Moreover, the leading higher-order terms, G and L(K), are
different than in previous sections, and this requires separate analysis with modifications
of the results in Propositions 3.1-3.3.

Following proposition provides a higher-order MSE approximation result for 2SLS
estimators.

Proposition 4.1. Suppose Assumptions 3.1, 3.2 and 3.3 are satisfied with the model
(4.1)-(4.2). If K2/N → 0, σuv 6= 0, Hgσ

′
uv 6= 0, and Hg 6= 0, then the approximate MSE

for the 2SLS estimator satisfies decomposition (4.3) with G = 1
N2γ−1H

−1HgH
′
gH
−1 and

L(K) = H−1
[ K
Nγ

(Hgσ
′
uv + σuvH

′
g) + σuvσ

′
uv

K2

N
+ σ2

v

f ′(I − PK)f

N

]
H−1. (4.4)

If we further assume K
N1−γ →∞, then (4.3) holds with G = 0 and

L(K) = H−1
[
σuvσ

′
uv

K2

N
+ σ2

v

f ′(I − PK)f

N

]
H−1. (4.5)

Remark 4.1. In (4.4), G and L(K) contain all four higher-order bias terms due to many
and invalid instruments as well as a higher-order variance from many instruments. If we
restrict the rate ofK, the second result of Proposition 4.1 shows that the higher-order bias
from many instruments dominates all other bias terms due to the invalid instruments,
and L(K) in (4.5) has the same form in Donald and Newey (2001). The assumption of
the second result holds when γ > 1− α (K = Nα). This always holds when γ ≥ 1, thus
MSE approximations in Donald and Newey (2001) are still valid under the same rate
conditions (K2/N → 0).

Proposition 4.1 shows that Donald and Newey (2001)’s MSE approximation for 2SLS
estimator is robust to a small degree of invalid instruments. Moreover, without estimating
Hg and g(·), their instrument selection criterion based on (4.5) also satisfy optimality
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results (Proposition 4 in Donald and Newey (2001)) under γ ≥ 1. Nevertheless of these
intuitive results, I quantify the robustness of the MSE approximation of 2SLS estimator
in Donald and Newey (2001) and this is non-trivial as the dominating terms in L(K) not
only depend on the order of invalid instrument γ, but also the rates of K.

Next two results are for LIML/FULL and B2SLS estimators.

Proposition 4.2. Suppose Assumptions 3.1, 3.2 and 3.3 are satisfied with the model
(4.1)-(4.2). Assume K/N → 0,Ση 6= 0, Hg 6= 0, E[v2

i ηi|xi] = 0, and E[‖ξi‖5|xi], E[|vi|5|xi]
are bounded. Then the approximate MSE for the LIML or FULL estimator satisfies de-
composition (4.3) with G = 1

N2γ−1H
−1HgH

′
gH
−1, and the following terms

L(K) = H−1
[
σ2
vΣη

K

N
+ σ2

v

f ′(I − PK)f

N

]
H−1. (4.6)

Proposition 4.3. Suppose Assumptions 3.1, 3.2 and 3.3 are satisfied with the model
(4.1)-(4.2). Assume K/N → 0, σuv 6= 0, Hg 6= 0, and E[v2

i ui|xi] = 0. Then the approxi-
mate MSE for the B2SLS estimator satisfies (4.3) with G = 1

N2γ−1H
−1HgH

′
gH
−1,

L(K) = H−1
[
(σ2
vΣη + 2σuvσ

′
uv)

K

N
+ σ2

v

f ′(I − PK)f

N

]
H−1. (4.7)

Remark 4.2. Propositions 4.2 and 4.3 show that the leading term L(K) in MSE approx-
imation for LIML, FULL and B2SLS estimator is same as the leading term in Donald and
Newey (2001) for all γ > 1/2. Note that MSE approximation still includes higher-order
bias from locally invalid instruments G which do not depend on K.

Propositions 4.2 and 4.3 show that robustness of the MSE approximation (and instru-
ment selection criterion) of LIML, FULL, B2SLS estimator in Donald and Newey (2001)
under the presence of locally invalid instruments (γ > 1/2). With smaller higher-order
bias from many instruments, MSE approximation in Donald and Newey (2001) for LIML,
FULL, and B2SLS are robust to the wider range of γ than the 2SLS estimator.

5. INSTRUMENT SELECTION CRITERIA

In this section, I consider instrument selection criteria based on the MSE approximation
in Propositions 4.1-4.3 which coincide to Donald and Newey (2001)’s criteria and show
optimality property under N−γ (γ > 1/2) locally invalid instrument specification. Then,
I propose invalidity-robust instrument selection criteria based on Propositions 3.1-3.3
under γ = 1/2.

To simplify the results, we consider a simple case with scalar endogenous regressor
(i.e., Yi is scalar) where covariates have already been partialled out.5 For the general
vector endogenous variables Yi case, see the Online Appendix (Section S3).

We choose K to minimize L̂(K) which is an estimate of L(K) provided in MSE ap-
proximations, and this requires preliminary estimates of the model and goodness of fit
criterion for the first-stage reduced form equation. Let δ̃ be some preliminary estima-
tor, e.g., IV estimator where the instruments K̃ are chosen to minimize cross-validation

5Specifically, from the original data, (ỹ, Ỹ , X̃), let y = MX1
ỹ, Y = MX1

Ỹ , X = MX1
X̃ where MX1

=

I −X1(X′1X1)−X′1 is the orthogonal projection matrix of exogenous covariates x1i.
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(CV) or Mallows (1973) criteria for the reduced form equation. Let ε̃ = y − Wδ̃ as

residuals, and let Ĥ = W ′P K̃W/N as a preliminary estimator of H = f ′f/N . Also, let

ũ = (I − P K̃)W as a residual vector of the first-stage reduced-form regression, and all
preliminary estimates remain fixed while the criterion is calculated for different K.

We first consider following criteria based on L(K) provided in Propositions 4.1-4.3
which were considered in Donald and Newey (2001),

2SLS : L̂DN (K) = σ̂2
uv

K2

N
+ σ̂2

v(R̂(K)− σ̂2
u

K

N
), (5.1)

LIML,FULL : L̂DN (K) = σ̂2
v(R̂(K)− σ̂2

uv

σ̂2
v

K

N
), (5.2)

B2SLS : L̂DN (K) = σ̂2
v(R̂(K) +

σ̂2
uv

σ̂2
v

K

N
), (5.3)

where σ̂uv = ũ′ε̃/N, σ̂2
v = ε̃′ε̃/N, σ̂2

u = ũ′ũ/N , and the Mallows’ or CV criterion

R̂(K) =
ûK
′
ûK

N
+ 2σ̂2

u

K

N
, R̂(K) =

1

N

N∑
i=1

(ûKi )2

(1− PKii )2

with residual vectors ûK = (I − PK)W .
To provide optimality of above criteria under locally invalid instruments, I impose

following assumptions as in Donald and Newey (2001).

Assumption 5.1. Wi is scalar, σ̂2
v − σ2

v = op(1), σ̂2
u − σ2

u = op(1), σ̂uv − σuv = op(1),

Ĥ − H = op(1), H̄−1σuv 6= 0, and var(H−1ηi) > 0. Also assume, supK supi P
K
ii

p→ 0,
E[u8

i |xi] <∞, infK NR(K)→∞ where R(K) = σ2
u(K/N) +H−1[f ′(I −PK)f/N ]H−1.

Proposition 5.1. Suppose Assumption 5.1 holds and the same assumptions as in Propo-
sition 4.1 hold. For 2SLS estimator with K̂ = arg minK∈K L̂DN (K), following holds for
all γ ≥ 1,

L(K̂)

infK L(K)

p−→ 1 (5.4)

where L(K) defined in (4.5).
For LIML (FULL) and B2SLS estimators, (5.4) holds for all γ > 1/2 under the same

assumptions as in Proposition 4.2 and Proposition 4.3, respectively.

Proposition 5.1 provides optimality of instrument selection criteria in Donald and
Newey (2001) under γ > 1/2 allowing same rates of K. While LIML (FULL) and B2SLS
criteria are robust to all γ > 1/2, 2SLS criterion is only robust to γ ≥ 1 and it requires
restrictive rates of K to be robust to 1/2 < γ < 1 by Proposition 4.1. This result suggests
that instrument selection criteria in Donald and Newey (2001) are robust to a small de-
gree of invalid instruments, but LIML (FULL) and B2SLS are more robust than 2SLS.

Next, we provide instrument selection criteria robust to invalid instruments based on
Propositions 3.1-3.3 and show asymptotic unbiasedness of the criteria. Estimation of
L(K) requires some preliminary estimates of g(x). I assume that we have some known to
be valid instrument sets zi. Note that our derivation of the MSE approximation in earlier
sections does not require a valid instrument. The assumption of having a small number
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of valid instruments is also used in recent papers which address similar questions, e.g.,
Cheng and Liao (2015), DiTraglia (2016).

Instrument selection criteria robust to the validity of instruments are as follows;

2SLS : L̂IR(K) = 2Ĥgσ̂uv
K√
N

+ σ̂2
uv

K2

N

+(σ̂2
v +

2Ĥ2
g

Ĥ
)(R̂(K)− σ̂2

u

K

N
)− 2ĤgĜ(K) (5.5)

LIML : L̂IR(K) = (σ̂2
vσ̂

2
u − σ̂2

uv)
K

N
+ (σ̂2

v +
2Ĥ2

g

Ĥ
)(R̂(K)− σ̂2

u

K

N
)− 2ĤgĜ(K)(5.6)

B2SLS : L̂IR(K) = (σ̂2
vσ̂

2
u + σ̂2

uv)
K

N
+ (σ̂2

v +
2Ĥ2

g

Ĥ
)(R̂(K)− σ̂2

u

K

N
)− 2ĤgĜ(K)(5.7)

where Ĥg = W ′P K̃ ε̂/
√
N , Ĝ(K) = W ′(I −PK)ε̂/

√
N , ε̂ = y−Wδ̂, and δ̂ is preliminary

estimator using valid instruments zi. Note that L̂IR(K) reduce to L̂DN (K) in (5.1)-(5.3)
when Ĥg = 0.

Proposition 5.2. Suppose Assumptions 3.1, 3.2, 3.3, 5.1 are satisfied, σuv 6= 0, and
assume that we have vector of instruments zi ∈ Rq(q ≥ p) such that E[ziεi] = 0. Then

L̂IR(K) given in (5.5)-(5.7) for the 2SLS, LIML (FULL), and B2SLS estimator satisfies
following:

E[L̂IR(K)|X] = L(K) + Σ + op(1).

where L(K) defined in Proposition 3.1-3.3, and Σ do not depend on K.

Proposition 5.2 implies that invalidity-robust instrument selection criterion is an asymp-
totically unbiased estimators of higher order approximation L(K) in Propositions 3.1-3.3
up to a constant which does not depend on K, and op(1) terms. Preliminary estimator

δ̂ using valid instruments affects the finite sample behavior of the invalidity-robust cri-
terion as well as the choice of instruments. It would be desirable to justify L̂IR(K) in
terms of optimality in Proposition 5.1, but this is a difficult problem as it requires to deal
with estimation of g(·) which is not

√
n-estimable. However, simulation evidence suggests

that invalidity-robust instrument selection criterion combined with IV estimator that has
a small bias property under many instruments, such as LIML or Fuller estimator with
constant C = 1, works well.

6. MONTE CARLO SIMULATION

We investigate the finite sample performance of the 2SLS, LIML, FULL, and B2SLS esti-
mators based on instrument selection criteria in Donald and Newey (2001) and invalidity-
robust criteria proposed in this paper.

We use a simple linear IV regression with potentially invalid instruments. The model
to be estimated is

yi = xiβ0 + εi

E (ziεi) = 0 (6.8)

where xi and β0 are scalar and zi is a K×1 vector of instrumental variables. We estimate
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β0 by 2SLS, LIML, Fuller (FULL) and bias-adjusted 2SLS (B2SLS) estimator with K̂
chosen by instrument selection criteria considered in this paper.

Our data-generating process (DGP) is

yi = xiβ0 +
τ ′Zi
Nγ

+ vi, (6.9)

xi = π′Zi + ui,

Zi ∼ N (0, IK̄) ,(
vi
ui

)
∼ N

((
0
0

)
,

[
1 σuv − π′τ/Nγ

σuv − π′τ/Nγ 1

])
.

We set β0 = 0.1 and set the maximum number of instruments K̄ as 20 when the num-
ber of observations N = 100 and 30 for N = 500. As in Donald and Newey (2001), we
set the first-stage coefficient π = (π1, · · · , πK̄)′, πk = c(K̄)(1 − k/(K̄ + 1))4 where c(K̄)
is chosen so that the first-stage R2 = 0.2 or 0.02. We also set the endogeneity of xi
as Cov(xi, εi) = σuv = 0.5. The number of Monte Carlo simulation is 10,000. In addi-
tional simulation results reported in the Supplementary Appendix, we also investigate
the different specifications such as σuv = 0.2, 0.8, different π, τ , and a heteroskedastic
setup.

If we fix τ 6= 0, the key parameter is γ, and we vary γ = ∞, 1, 2/3 and 1/2. When
γ =∞, any instruments zi from the full set of instruments Zi are valid. For 0 < γ <∞,
we find E(ziεi) = τ/Nγ 6= 0, so the moment condition (6.8) fails to hold in any finite
samples. The DGP can also be written as a globally misspecified model such that γ = 0
and τ is not that large, but we use the locally misspecified setup to be consistent with
results in Sections 3 and 4.

We consider a following specification for τ = (τ1, · · · , τK̄)′,

τk = 0 for k = 1, 2, τk = 1 for k = 3, · · · , K̄/2, τk = 0 for k > K̄/2 + 1.

So we assume the first two instruments are known to be valid and it will be used for
preliminary estimates in the invalidity-robust instrument selection criteria. We also con-
sider the next “strong” IVs are invalid. This is empirically relevant as IV that is strongly
correlated with the endogenous regressor is more likely to be correlated with the de-
pendent variable, and there exists bias-variance trade-off of using invalid but relevant
instruments. Moreover, the last half of “weak” IVs are valid, so there also exists trade-off
of using valid, but weak instruments.

Median bias (Bias), interquartile range (IQR), and mean square error (MSE) of the
2SLS, LIML, FULL (with C = 1), B2SLS are reported in Tables 1 and 2. For all IV
estimators, we consider four different instrument choices; using all available instruments
(all), using the first two valid instruments (val), using instruments chosen by Donald
and Newey (2001)’s criterion (DN), and using instruments selected by invalidity-robust
criterion in this paper (IR). In addition, Table 3 reports a median of the selected number

of instruments K̂ and optimal K∗ that minimizes the true MSE of estimators.6

Table 1 shows that IV estimators based on Donald and Newey (2001) (DN) criterion
have smaller IQR and MSE than the estimators using only valid instrument sets even

6For MSE, we compute trimmed mean square, E[min{(β̂−β)2, 2}] as in Okui (2011) due to the concerns
on large outliers across the simulations. Results for MSE without trimming is available upon request,
but results are qualitatively similar, and MSE for Fuller estimator is same as trimmed MSE. Results for
Fuller estimator with constant C = 4 are similar with C = 1, thus omitted here.
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when instruments are slightly invalid as well as when instruments are all valid (γ =∞).
This is consistent with our theory that DN criterion is robust to ‘slightly invalid’ instru-
ments, and DN includes few more invalid but strong instruments. However, estimators
with DN criterion may have large bias and this bias increases as γ decreases (the degree
of invalidity increases) and does not disappear with larger sample sizes N = 500. Table
1 also shows estimators based on invalidity-robust criterion (IR) have lower median bias
than estimators with DN criterion, and it achieves similar or smaller MSE when the de-
gree of invalid instruments is large γ = 1/2. When γ = 1/2, DN criterion tends to choose
more invalid instruments than the optimal K∗. The results are qualitatively similar for
sample sizes of N = 500.

There is no unique ranking of estimators which clearly dominates the others in terms
of bias, IQR, and MSE. However, Fuller estimator performs well in terms of lowest IQR
and MSE. For FULL, the selected K̂ based on DN or IR is also close to the optimal K∗.
LIML has the smallest median bias in many cases as LIML is known to be higher-order
median unbiased. However, LIML has larger IQR as it is also known not to have any finite
moments. Similar performances for LIML under valid instruments can be also found in
Hahn et al. (2004). B2SLS performs poorly with IR criteria when γ = 1/2.

Results for the weak instrument case are reported in Table 2. Bias and MSE approx-
imations, as well as instrument selection criteria may perform poorly in many weak
instrument situations. However, Fuller estimator combined with DN and IR criteria per-
forms surprisingly well; it has smaller MSE, IQR and median of selected K̂ is close to
optimal K∗ in many cases. Although it is highlighted in the literature that the Fuller es-
timator performs well under many weak instruments setup, our simulation suggests that
Fuller estimator combined with instrument selection criterion can still be useful when
instruments are potentially invalid.

7. CONCLUSIONS

This paper develops higher-order MSE approximation of the k-class estimators in the lin-
ear IV model with many and possibly invalid instruments. Based on the higher-order ap-
proximation, I propose instrument selection criteria that are robust to the locally invalid
instruments. I also show that the optimality of instrument selection criteria in Donald
and Newey (2001) robust to the certain type of locally invalid instrument specifications.
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Table 1. Monte Carlo Results: R2 = 0.2.

γ =∞ γ = 1 γ = 2/3 γ = 1/2

N = 100 Bias IQR MSE Bias IQR MSE Bias IQR MSE Bias IQR MSE
2SLS-all 0.217 0.356 0.066 0.233 0.356 0.074 0.280 0.366 0.099 0.355 0.390 0.150
2SLS-val 0.032 0.667 0.080 0.036 0.671 0.083 0.033 0.677 0.086 0.035 0.694 0.089
2SLS-DN 0.102 0.504 0.052 0.127 0.501 0.056 0.190 0.521 0.076 0.293 0.552 0.128
2SLS-IR 0.058 0.661 0.083 0.074 0.682 0.089 0.081 0.724 0.099 0.093 0.808 0.120

LIML-all -0.002 0.757 0.134 0.033 0.743 0.126 0.123 0.825 0.171 0.262 1.278 0.377
LIML-val 0.000 0.741 0.109 0.002 0.755 0.115 -0.002 0.766 0.118 0.004 0.775 0.120
LIML-DN 0.051 0.554 0.058 0.075 0.549 0.061 0.136 0.579 0.078 0.231 0.704 0.147
LIML-IR 0.001 0.715 0.101 0.013 0.733 0.103 0.037 0.774 0.115 0.052 0.895 0.156

FULL-all 0.018 0.687 0.092 0.051 0.679 0.092 0.137 0.747 0.130 0.270 1.102 0.292
FULL-val 0.033 0.639 0.069 0.035 0.653 0.072 0.033 0.653 0.073 0.037 0.669 0.077
FULL-DN 0.116 0.439 0.042 0.133 0.439 0.047 0.184 0.459 0.067 0.263 0.554 0.119
FULL-IR 0.105 0.479 0.046 0.116 0.486 0.050 0.138 0.521 0.062 0.158 0.631 0.094

B2SLS-all 0.025 0.803 0.144 0.063 0.765 0.133 0.159 0.745 0.145 0.306 0.753 0.215
B2SLS-val 0.032 0.667 0.080 0.036 0.671 0.083 0.033 0.677 0.086 0.035 0.694 0.089
B2SLS-DN 0.079 0.551 0.069 0.098 0.547 0.069 0.145 0.557 0.077 0.228 0.623 0.113
B2SLS-IR 0.022 0.629 0.076 0.044 0.631 0.079 0.122 0.639 0.084 0.238 0.669 0.129

γ =∞ γ = 1 γ = 2/3 γ = 1/2

N = 500 Bias IQR MSE Bias IQR MSE Bias IQR MSE Bias IQR MSE
2SLS-all 0.094 0.196 0.014 0.102 0.197 0.016 0.147 0.193 0.027 0.249 0.195 0.067
2SLS-val 0.009 0.335 0.018 0.007 0.338 0.018 0.007 0.337 0.018 0.007 0.345 0.019
2SLS-DN 0.040 0.228 0.009 0.045 0.230 0.010 0.092 0.230 0.016 0.207 0.241 0.050
2SLS-IR 0.005 0.327 0.017 0.008 0.333 0.018 0.019 0.352 0.019 0.015 0.394 0.024

LIML-all -0.000 0.252 0.010 0.009 0.253 0.010 0.066 0.246 0.014 0.182 0.266 0.043
LIML-val 0.001 0.344 0.019 -0.002 0.347 0.019 -0.001 0.348 0.019 -0.001 0.353 0.020
LIML-DN 0.012 0.236 0.009 0.019 0.238 0.009 0.071 0.233 0.013 0.180 0.245 0.041
LIML-IR -0.021 0.316 0.018 -0.018 0.324 0.018 0.003 0.336 0.018 0.009 0.383 0.024

FULL-all 0.004 0.248 0.010 0.013 0.249 0.010 0.070 0.244 0.014 0.184 0.263 0.043
FULL-val 0.010 0.333 0.018 0.007 0.337 0.018 0.007 0.338 0.018 0.009 0.342 0.019
FULL-DN 0.027 0.225 0.008 0.033 0.227 0.009 0.084 0.223 0.014 0.189 0.235 0.043
FULL-IR 0.007 0.286 0.013 0.010 0.290 0.013 0.031 0.300 0.015 0.040 0.342 0.020

B2SLS-all 0.004 0.260 0.011 0.014 0.264 0.011 0.073 0.252 0.015 0.204 0.246 0.050
B2SLS-val 0.009 0.335 0.018 0.007 0.338 0.018 0.007 0.337 0.018 0.007 0.345 0.019
B2SLS-DN 0.019 0.236 0.009 0.023 0.237 0.009 0.068 0.240 0.013 0.183 0.250 0.041
B2SLS-IR 0.004 0.252 0.010 0.012 0.255 0.010 0.071 0.247 0.014 0.201 0.240 0.048

Note: (i) all - IV estimators using all instruments; (ii) val - using known valid instruments; (iii) DN

- using instruments based on Donald and Newey (2001)’s criterion L̂DN (K); (iv) IR - based on the

invalidity-robust criterion L̂IR(K).
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Table 2. Monte Carlo Results: R2 = 0.02.

γ =∞ γ = 1 γ = 2/3 γ = 1/2

N = 100 Bias IQR MSE Bias IQR MSE Bias IQR MSE Bias IQR MSE
2SLS-all 0.453 0.490 0.245 0.459 0.496 0.250 0.485 0.515 0.279 0.529 0.583 0.335
2SLS-val 0.289 1.788 0.522 0.293 1.865 0.541 0.290 1.843 0.536 0.289 1.918 0.551
2SLS-DN 0.381 1.278 0.441 0.399 1.303 0.451 0.442 1.299 0.481 0.510 1.467 0.573
2SLS-IR 0.308 2.240 0.615 0.309 2.243 0.625 0.339 2.230 0.634 0.356 2.359 0.679

LIML-all 0.278 4.413 0.917 0.332 4.320 0.912 0.483 5.041 1.049 0.922 9.498 1.465
LIML-val 0.207 3.684 0.803 0.217 3.752 0.816 0.207 3.787 0.820 0.199 3.797 0.829
LIML-DN 0.311 2.278 0.620 0.313 2.283 0.631 0.374 2.349 0.670 0.447 2.680 0.777
LIML-IR 0.247 2.885 0.720 0.258 2.821 0.734 0.291 3.018 0.755 0.334 3.327 0.829

FULL-all 0.321 2.008 0.590 0.361 1.964 0.592 0.481 2.155 0.722 0.787 2.950 1.094
FULL-val 0.335 1.140 0.311 0.337 1.161 0.323 0.334 1.162 0.319 0.328 1.191 0.325
FULL-DN 0.436 0.551 0.229 0.436 0.555 0.232 0.452 0.563 0.252 0.475 0.681 0.308
FULL-IR 0.430 0.577 0.234 0.435 0.579 0.238 0.449 0.607 0.260 0.475 0.738 0.323

B2SLS-all 0.408 3.275 0.821 0.422 3.195 0.822 0.484 3.519 0.882 0.573 3.789 0.965
B2SLS-val 0.289 1.788 0.522 0.293 1.865 0.541 0.290 1.843 0.536 0.289 1.918 0.551
B2SLS-DN 0.400 1.076 0.364 0.406 1.070 0.365 0.429 1.132 0.400 0.461 1.224 0.456
B2SLS-IR 0.307 1.885 0.545 0.334 1.924 0.557 0.372 2.034 0.603 0.447 2.136 0.666

γ =∞ γ = 1 γ = 2/3 γ = 1/2

N = 500 Bias IQR MSE Bias IQR MSE Bias IQR MSE Bias IQR MSE
2SLS-all 0.370 0.371 0.158 0.382 0.365 0.167 0.429 0.368 0.204 0.542 0.404 0.317
2SLS-val 0.107 1.131 0.248 0.111 1.148 0.249 0.102 1.138 0.246 0.103 1.169 0.257
2SLS-DN 0.262 0.668 0.150 0.280 0.663 0.156 0.358 0.637 0.190 0.530 0.661 0.344
2SLS-IR 0.108 1.143 0.268 0.118 1.162 0.272 0.133 1.178 0.273 0.160 1.341 0.328

LIML-all 0.050 1.910 0.484 0.080 1.926 0.494 0.255 2.062 0.560 0.872 5.606 1.243
LIML-val 0.028 1.624 0.402 0.027 1.664 0.411 0.018 1.630 0.403 0.024 1.623 0.408
LIML-DN 0.128 0.966 0.217 0.145 0.978 0.227 0.219 0.991 0.251 0.398 1.346 0.453
LIML-IR 0.029 1.404 0.347 0.036 1.439 0.353 0.060 1.432 0.352 0.116 1.818 0.477

FULL-all 0.088 1.386 0.320 0.115 1.413 0.332 0.277 1.513 0.410 0.815 2.610 1.014
FULL-val 0.126 0.948 0.163 0.124 0.959 0.163 0.120 0.955 0.163 0.123 0.967 0.173
FULL-DN 0.255 0.554 0.113 0.265 0.554 0.118 0.315 0.551 0.148 0.432 0.713 0.277
FULL-IR 0.236 0.597 0.114 0.244 0.600 0.119 0.266 0.605 0.136 0.318 0.845 0.247

B2SLS-all 0.146 2.106 0.533 0.180 2.090 0.537 0.316 1.878 0.542 0.638 2.110 0.805
B2SLS-val 0.107 1.131 0.248 0.111 1.148 0.249 0.102 1.138 0.246 0.103 1.169 0.257
B2SLS-DN 0.172 1.040 0.248 0.192 1.027 0.246 0.252 0.919 0.229 0.385 1.009 0.314
B2SLS-IR 0.069 1.225 0.276 0.083 1.218 0.274 0.155 1.194 0.281 0.329 1.286 0.377

Note: (i) all - IV estimators using all instruments; (ii) val - using known valid instruments; (iii) DN

- using instruments based on Donald and Newey (2001)’s criterion L̂DN (K); (iv) IR - based on the

invalidity-robust criterion L̂IR(K).



Higher-order approximation of IV with invalid instruments 19

Table 3. Monte Carlo Results: Median of K̂.

γ =∞ γ = 1 γ = 2/3 γ = 1/2

N R2 K∗ DN IR K∗ DN IR K∗ DN IR K∗ DN IR
100 0.2 2SLS 7 5 3 6 5 3 4 5 3 3 6 2

LIML 5 5 3 9 5 3 3 5 3 2 5 2
FULL 5 5 4 6 5 4 4 5 3 2 5 3
B2SLS 2 3 6 2 3 6 3 4 5 2 4 5

500 0.2 2SLS 10 8 6 9 8 6 5 9 5 3 10 3
LIML 11 11 8 12 11 8 6 11 6 3 11 3
FULL 11 11 7 12 11 7 6 11 6 3 11 3
B2SLS 11 7 20 11 7 20 6 7 20 3 9 19

100 0.02 2SLS 20 3 1 20 3 1 20 3 1 20 3 1
LIML 19 1 1 15 1 1 5 1 1 4 2 1
FULL 1 1 2 1 1 2 1 1 2 1 1 2
B2SLS 1 1 3 1 1 3 1 1 3 1 1 3

500 0.02 2SLS 8 7 2 7 7 2 5 8 2 4 9 2
LIML 6 4 2 11 4 2 11 4 2 4 4 2
FULL 3 4 3 4 4 3 2 4 3 2 4 2
B2SLS 1 3 4 1 3 4 1 3 4 1 3 4
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