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Abstract

This paper deals with the nonlinear modeling and forecasting of the dollingte
real exchange rate using a long span of data. Our contribution is tlde&fost, we
provide significant evidence of smooth transition dynamics in the series bipinmp
a battery of recently developed in-sample statistical tests. Second, wigateshe
small sample properties of several evaluation measures for comparingivedore-
casts when one of the competing models is nonlinear. Finally, we run a $tirega
race for the post-Bretton Woods era between the nonlinear real eyehaie model,
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nonlinear model, against the odds.
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1 Introduction

Despite the overwhelming evidence supporting the presehoenlinearites in real ex-

change rates (e.g., Taylor et al., 2001; Pavlidis et al. 9ap0the empirical literature on
the out-of-sample performance of Smooth Transition Agmessive (STAR) models is
scarce, and a bet that a nonlinear model beats a linear ond ®against the odds. One
of the few studies on nonlinear real exchange rate forewpistithat of Sarantis (1999). By
employing monthly real effective exchange rates for theQ&duntries from 1980 to 1996,
the author provides evidence in favor of the presence offgignt smooth-transition non-

linear dynamics for the majority of the processes. Moreaber estimated STAR models
provide more accurate forecasts, in terms of the root meaarscgrror criterion, against
the Random Walk (RW) and the Markov Switching model but not thedr autoregres-

sive (AR) model.

A recent study that utilizes more sophisticated forecaatuation techniques and a
longer data set for the post-Bretton Wood era is provided byaBapnd Wohar (2006).
The authors replicate the results of Obstfeld and TayloBT)%nd Taylor et al. (2001)
by fitting Threshold Autoregressive (TAR) and ExponentiaABT(ESTAR) models to
four monthly U.S. dollar real exchange rates. On the basmooft, interval and density
forecasts comparisons Rapach and Waohar (2006, p. 341) centany nonlinearities in
monthly real exchange rate data from the post-Bretton Waaded are quite “subtle”
for Band-TAR and exponential smooth autoregressive mpeeifscations”

These discouraging findings may but do not necessarily ity the nonlinearity
documented in the literature is a spurious artifact. Inceekalian (2005) illustrate that

for linear models in-sample tests tend to have, and in masgscaubstantially, higher



power than out-of-sample tests, which contradicts the eotiwnal view that forecasting
is the ultimate test of an econometric model. Rossi (200%) r@ises concerns regarding
the power of out-of-sample predictability tests.

Clark and McCracken (2005) build upon the work of Clark and Mc&eaq2001) and
McCracken (2004) and derive the asymptotic distributiomaf f'-type tests for the com-
parison of multi-step forecasts from nested linear modéie. tests account for parameter
uncertainty and exhibit better power properties than th&ype counterparts, namely the
tests of Diebold and Mariano (1995) and Harvey et al. (1988hough their application
in this context is appealing, it is not straightforward daetie fact that their derivation
is based on the assumption that the regression models agg im parameters and the
processes are stationgry.

Regarding the comparison of nonlinear with linear AR modalsnerous studies sug-
gest that in many cases the in-sample superiority of thedorsnot accompanied by bet-
ter predictive ability (see, e.g., Lundbergh andaBsirta, 2002; Stock and Watson, 1999).
In this framework, power issues turn out to be ser%u@.possible explanation is that
nonlinear models perform better only in specific statesifnregdependent) so that there
are windows of opportunity for substantial reduction ingicéion errors (Clements, 2005;
Boero and Marrocu, 2004). If these occasions are relativéheguent, then AR models
would provide robust forecasts even if the series underideration is nonlinear. Hence,
the results of Sarantis and Rapach and Wohar may well bew#tdlto the low power of

out-of-sample predictability tests.

We relax these assumptions and examine the finite propefttas tests in Sectidn 4.
The related literature has focused mainly on the compa$@ETAR and AR models. The results
presented in Section 4 illustrate that this is also the cais8 TAR models.



In this paper we give the nonlinear real exchange rate maod¢har chance. We depart
from the approach of previous studies and employ a long sp@amual data for the dollar-
sterling real exchange rate. By doing so, we extend the eatwiple period to the entire
post-Bretton Woods era.

Our modeling cycle consists of a battery of recently devetbpnit root tests, linearity
tests, as well as bootstrap methods, which enable us taxabfarsimonious specification
of the nonlinear real exchange rate model. Subsequentlgmydoy the chosen specifica-
tion and use Monte Carlo simulation techniques to examinenmgirical size and power
properties of several forecast accuracy and encompassitsy t

Our results indicate that most tests have good size pregerfihis is a particularly
important finding since the properties bttype tests have not been examined when one
of the competing models is nonlinear or nonstationary.tasrmore, we show thdt-type
tests have similar or substantially better power propeitian theirt-type counterparts.
Unfortunately, both appear to exhibit low power for the camgon of nonlinear with
linear AR models. Notwithstanding the above, our findinggg®st that for the actual data
the ESTAR model outperforms both the RW and AR benchmarkisaat korizons for the

majority of tests.



2 Smooth Transition Models

The basic STAR model representation for a univariate timeséy, } is given by

Y o= T+ T+ Ty + (20 +

+mo1Yi—1 + -+ TopYi—p) F (Y157, ¢) + &, t=1,...,T, (1)

or, equivalently,

Yo = @y + X F (Y13 y,0) &, t=1,...,T, (2)

wherex, = (1, ;) with &, = (yi—1, ..., y—p), andm; = (m0,...,7m,) forj =1,2. It
is assumed that the error term, is a martingale difference sequence.

There are two common forms of the STAR model. The one we wdtuss here
in detail is the ESTAR model, in which transitions betweeroatmuum of regimes are
assumed to occur smoothly and symmetrically. The tramsitioctionF'(-) of the ESTAR

model is

F(yi-1;7,0) = [1 — exp(—y (-1 — ¢)*)]. ®3)

This transition function is symmetric arourig;_; — ¢) and admits the limits 1 and O
as|y—1 — | — 400 and|y,_; — ¢| — 0, respectively. Parametercan be seen as the
transition speed of the functiafi(-) towards 1 (0) as the deviation grows larger (smaller).
We are particularly interested in the special case thaetier unit root in the linear

polynomial,zfg’:1 mi=1,m; =—-m;Vi>1mpy=0andc = mp. Under these



restrictions, Equation (1) becomes

Yr = o0 + [T11(Yem1 — T20) + -+ -+ T1p(Yi—p — T2,0)] €xp(—Y (Yoot — T20)?) + €. (4)

The above formulation is very appealing for modeling reath@nge rates (see, e.g.,
Kilian and Taylor, 2003; Paya et al., 2003). Unlike in a line@odel, the process moves
between a white noise and a unit root depending on the sizeeadi¢viation from PPP,
ly:—1 — mao|. This type of adjustment is in accordance with the implmagi of theoret-
ical models, which demonstate how frictions in internagioinade can induce nonlinear
but mean reverting adjustment of the real exchange rate é¢sge Dumas, 1992; Berka,
2005). The rational is that small deviations are left unected since they do not to cover
transactions costs or the sunk costs of internationalragst On the other hand, large
deviations are much less persistent. Therefore, the pseodsbits strong persistence and
near unit root behavior.

We point out that asy — 0 or v — oo the exponential transition function ap-
proaches a constant and the ESTAR model collapses to a lkiRanodel. The fact
that STAR models nest linear AR models has important impboa regarding the asymp-
totic distribution of commonly used forecast accuracy ancoenpassing tests (see, e.g.,

Clements and Ga#ao, 2004).

3The other common form of STAR models is the Logistic, LSTAReTogistic function is

Fye-1;7,¢) = 1 +exp(=y(ye—1 — )] "
LSTAR models have also been fitted to real exchange rateSégaatis, 1999). Even though the theoretical
argument is not as strongly supported as with the case of 5HAE, there are some attempts to rationalize
the asymmetric adjustment in the real exchange rate|(eagnp@ and Goldberg, 2002).



2.1 Linearity and Unit Root Tests

The uncertainty about the exact Data Generating Proces®)DGreal exchange rates
motivates the use of data driven methods for the specifitatigparsimonious empirical
models. In this study, we employ several testing procedsmess to examine whether the
long-span real exchange rate series exhibits mean remeastsmooth transition dynam-
ics. Namely, we use the unit root tests of Kapetanios et @0%Pand Kapetanios and Shin
(2008), and the linearity tests of Escribano and aqitP99) and Harvey and Leybourne
(2007). A description of all in-sample tests is provided pp&ndix A (see also Pavlidis et al.,
2009a).

The appealing feature of the Harvey and Leybourne (2007)igethat it possesses
the same properties irrespective of the series being 1(0)19r1 While, the advantages
of the linearity test of Escribano and Jard1999) are: (i) it enables the selection be-
tween ESTAR and LSTAR models, and (ii) it can be easily modifeeaccommodate for
possibly conditional heteroskedastic errors by applyhey \Wild Bootstrap method (see
Pavlidis et al., 2009[@. Due to the fact that Escribano and Jard 999) test is based on
the assumption of a stationary process, pretesting fortaawt is required.

Unitroot testing is also useful for the selection of forécasmodels. Diebold and Kilian
(2000) illustrate that the conventional view of employingdels in first-differences when
the series under examination is highly persistent can ledelss accurate forecasts. On
this ground, the authors advocate the application of umit tests for choosing between

levels and differences.

4A major concern in the PPP literature is that real exchantgs mxhibits a unit root in which case the
asymptotic distribution of most linearity tests changesi¢k2004).
STime-varying volatility may arise due to changes in exctearaje or monetary regime.



We consider the null hypothesis of a unit root against a dipktationary ESTAR pro-
cess by using the tests of Kapetanios et al. (2003) and Kaipstand Shin (2008). The
main difference between the two is that the Kapetanios €2803) test uses OLS de-
meaning/detrending procedures, whilst, the KapetanidsSain (2008) test, in the spirit
of Elliott et al. (1996), employs GLS demeaning/detrendangcedures. Further, we ro-
bustify the tests against heteroskedasticity of unknowmfby using Heteroskedasticity
Consistent Covariance Matrix Estimators. Cook (2006) ilhtes that in small samples
this practice can lead to moderate oversizing of the Augetebickey Fuller (ADF) and
the Kapetanios et al. (2003) tests. Pavlidis et al. (200ayvdx similar conclusion for the
test of Kapetanios and Shin (2008). We address this issuemstrticting exact sample

critical values for the heteroskedasticity-robust testistics via stochastic simulations.

3 Evaluating Forecasts

In this study, we restrict our attention to the comparisopaht forecasts on the basis of
forecast accuracy and forecast encompassing measureforiiie measures include the
MSE-t of Diebold and Mariano (1995), the MSE-of Clark and McCracken (2005) and
the Weighted MSE-(W-MSE-t) proposed by van Dijk and Franses (2003). The latter are
the ENC¢ of Harvey et al. (1998) and the ENE-of Clark and McCracken (2005).

Our setting is similar to the one adopted by Clark and McCra¢k8a5). The number
of in-sample and out-of-sample observations is denotefd asd P, respectively, so that
the total number of observationsis= R + P. We adopt a recursive scheme for forecast-

ing, where ag increases fronkz to 7' — h the parameters of the models are re-estimated



by employing data up to timeso as to generate forecasts for the foIIowlnIgorizon In
accordance with the notation used in the previous secfign,denotes the variable to be
predicted attime = R, ..., T — h with the number of forecasts corresponding to horizon
h being equal ta® — h + 1. The forecast errors are definedéas,, = yi+n — Y1144 fOr

the benchmark model arid ., = yi+n — ¥2,¢+4: fOr the competing model.

3.1 Tests of Forecast Accuracy

The first three tests examine forecast accuracy by settelyldtan Square Error (MSE) as
the measure of predictive ability. In this setting, the mylpothesis is that the MSEs of
the two competing models are equal against the one-sidexshative that the MSE for the
second model is smaller. Diebold and Mariano (1995) deviiegollowing widely used
t-type test .

MSE—t:(P—hH)Wi (5)

a1/2°
Sad

wheredin = &,y — G d = (P —h+ )" diyy, = MSE; — MSE,,
Taa(j) = (P = h+ 1) 0 dindin; for j > 0andTu(j) = Taa(—j), and
Sa = YI__ K(j/M)T4(j) denotes the long-run variance @f,;, estimated using a

kernel-based estimator with functidty(-), bandwith paramete¥/ and maximum number

of lags;.’

6In general, closed-form solutions for multi-step foresdsbm nonlinear models are not available. We
overcome this obstacle by employing bootstrap integratiimhniques. A discussion regarding methods
for constructing multi-step forecasts from nonlinear mede provided in Tedsvirta (2006). An attractive
feature of the bootstrap method is that it does not requigildiitional assumptions. The errors, however,
are presumed to be i.i.d.. The results of Clements and Sa®®i7() support the use of bootstrap methods in
forecasting from nonlinear autoregressive models.

"The use of Heteroskedasticity and Autocorrelation Coest{HAC) estimators for computing the vari-
ance ofd, j, is based on the fact thatsteps-ahead forecast errors will be serially correlatextderh — 1.



For non-nested models the long-run variancét;pﬁ is positive and the MSE statistic
follows asymptotically the standard normal distributién the contrary, when the com-
peting models are nested their population errors are icininder the null and, therefore,
d;, and its variance are equal to zero. In this case, the asympulistribution of the
statistic is non-standard and depends upon nuisance pargnier ., > 2 (McCracken,
2004

The degeneracy of the long-run variancéof, motivates Clark and McCracken (2005)
to propose a variant of the above test for nested modelsiréaspy the in-samplé’-test,
the authors suggest replacinﬁjé2 with the variance of the forecast error of the “unre-

stricted” model. The new test statistic is given by

d

MSE—F = (P—h+ 1>1/2W’
2

(6)

and has better power proper&ﬁhe limiting distribution of the MSEF' test statistic, like
the MSE#, is free of nuisance parameters only foe 1 and is non-standard.

The forecast accuracy tests examined so far attach equattamge to all forecasts
irrespectively of the available information set at tirhe However, a researcher would
expect the superiority of the ESTAR model over the RW to bezonost apparent for
large deviations of the process from its equilibrium valMéhilst, for smaller deviations

the two models should perform similarly. van Dijk and Fran&003) propose a forecast

The performance of the MSEtest using different HAC estimators is examined in Clarko@p

8The asymptotic distributions of all the test statisticsfuulti-step forecasts from nested models under
parameter uncertainty are derived in Clark and McCrack8@%p However, their derivation is based on the
sufficient but not necessary assumptions of stationarityiararity of the parameters, which are clearly not
satisfied in our experiment.

Clark and McCracken (2005) and Busetti et al. (2009) prowtte Carlo evidence illustrating the
power advantage df'-type tests ovet-type when the models are linear.

10



evaluation test\WW — MSE — t) that employes a weighted average loss differential and
comprises a modification of the MSEef Diebold and Mariano (1995). Consequently,
more importance is attached to forecasts correspondin@\t@tibns at the tails of the
distribution. van Dijk and Franses (2003) show that the rinedlitest statistic follows the

same distribution with the MSE-

3.2 Forecast Encompassing

In this case, the null hypothesis is that the forecast of grecbmark model incorporates
all the relevant information in the forecast of the compgtimodel. Or, equivalently, the
covariance between the forecast errors of the first modetrendifference of the forecasts
errors of the two models is equal to zero (see West, 2006). etUtiek alternative, the
covariance is positive indicating that the second modelduhtional predictive power.
Clearly, the forecast encompassing tests are also onesidled right.

LetCpp, = Erurn(@riwn — Eourn) €= (P —h+ 1) S 28, Teely) = (P — b+
) S CenCesny fOr j > 0,Tee(j) = Loe(—j), and letS,e = 327 _ - K (j/M)Tee(j)
denote the long-run variance of,,. Harvey etal. (1998), based on the work of of
Diebold and Mariano (1995), derive the following forecastompassing test statisfic

ENC —t=(P—h+1)"/2-T . (7)

Clark and McCracken (2001) illustrate that the distributidrtree ENC+ statistic con-
verges to the same type of distribution with the MSEtatistic when the forecasts are

generated from linear nested models. By employing the saas®neng with the one used

10The authors employ the small sample correction of Harvey. ¢1897) for the MSE statistic.

11



for the MSE+' test they propose the following-type test statistic

R (p_ 2 ¢
ENC—F=(P—h+1) TR (8)

which again has a non-standard limiting distribution anpleshels on nuisance parameters
for h > 2. Similarly to forecast accuracy measures, fwtype test has, asymptotically,

greater power than itstype counterpart.

3.3 Bootstrap Inference

Due to the fact that standard distribution theory may notyappour setting, we conduct
statistical inference by employing a parametric bootstngphod similar to Kilian (1999)

and Kilian and Taylor (2003). The simulation exercise cstssdf the following steps.

1. Employ the original real exchange rate series and conthatabove forecast eval-

uation measures for all forecast horizons.

2. Estimate the restricted model for the real exchange tlaéeRW or the AR model)

using the whole sample, and obtain the fitted residuals aefficients.

3. Set the estimated model as the Null DGP and randomly dratv rieplacement
from the residuals so as to create an artificial series foredhbexchange rate with
the same length as the actual series. The process is @etlaby employing the

observed values of the series.

4. Repeat the forecasting exercise using the artificial dass $0 computé bootstrap

test statistics for each forecast evaluation measure.

12



5. Repeat steps 3 andBttimes, whereB is a large number, so as to obtain the boot-

strap distributions of the test statistic under the null.

6. Compute the bootstrgpvalue as the percentage of times the simulated statistic is

more extreme than the original statistic.

7. Reject the null if the-value is smaller than the chosen significance level.

Clark and McCracken (2005) illustrate that when forecastgareerated from linear
nested models this method performs adequately in termszefasd power even when
the bootstrap model is not properly specified. However, gréopmance of the bootstrap
technique and the validity of thé'-type tests have not been explored when one of the
competing models is nonlinear or the process is nonstaioi¥e contribute to the liter-
ature on nonlinear real exchange rates and forecastingati@i by examining the finite

properties ofF'-type tests as well as their implications in the followingtsen.

4 Empirical Results

The data set consists of annual observations for the dstibaling real exchange rate
from 1791 to 2005. For the construction of the series we usdriternational Finan-
cial Statistics database to update the nominal exchangearat price series analyzed in
Lothian and Taylor (1996). The number of in-sample obséaat R, is set equal to 183,
which corresponds to the pre-Bretton Woods era (1791-19n8)the remaining 32 years,

P, comprise the out-of-sample period.

13



4.1 In-Sample Tests

Starting with the in-sample tests, we present results ftr thee entire sample period and
the subperiod from 1791 to 1973. Table 1 reports the ARFand¢SLS tests statistics as
well as their heteroskedasticity-robust versions, ADF-H{sHC, t5-5-HC, correspond-

ing to the demean and detrend cases (for a description afitb@mple tests see Appendix
e

the 5% significance level. The only exception is the test psepd by Kapetanios and Shin

1 For the demeaned real exchange rate, the unit root hypsetisesjected by all tests at

(2008), which rejects the null at the 10% when data prior ¢orétent floating period are
used. Turning to the detrend case, we observe a small dedreasmber of rejections.
Specifically, thety -HC statistic for the subperiod 1791-1973, and tfe andtS-S-HC

tests statistics for the whole period are larger than theesponding 10% critical values.
Overall, the results presented in Table 1 suggest the i@jeat the unit root hypothesis in

favor of both a linear and a nonlinear stationary process.
[ Table 1]

The finding of mean reverting behavior of the long-span reethange rate is consistent
with the empirical literature on PPP (see Frankel, 1990hiamt and Taylor, 1996). Fur-
ther, given the stationarity of the series, we follow theoramendation of Diebold and Kilian
(2000) and choose to work with levels rather than first défees.

We proceed by examining the presence of STAR-type nonlitiesitty applying the
Escribano and Jo&d(1999) and Harvey and Leybourne (2007) testing proceduitesre-

sults are reported in Table 2. First, the wild bootsiramlues for the Escribano and Jard

The lag length for the unit root and linearity tests is seto bn the basis of the Akaike Information
Criterion.

14



(1999) tests (top panel) corresponding to the null of litgas marginally lower than the

5% significance level for the whole sample and slightly highan the 10% for the sub-
sample. Second, the test favors the use of the ESTAR modettvasymmetric LSTAR.

The Harvey and Leybourne (2007) test statistic is also greahain the 10% critical value
which provides further support for the smooth transitiondelo The magnitudes of the
p-values corresponding to the linearity tests indicate thatnonlinear mean-reverting
behavior of the series is more evident for the whole samptogéehan the pre-Bretton
Woods era. This finding can be attributed to the higher povtreotests for larger sample

sizes.
[ Table[2 ]

Next, we follow Kilian and Taylor (2003) and model the levétloe real exchange rate
using the ESTAR parameterization (4)Table 3 shows the estimates of the ESTAR model
for the two periods examined, the standard error of the ssgwas, the correspondirig
statistics, the Ljung-Box)-statistics for serial correlation in the residuals andLiNktest
statistic (ARCH) for conditional heteroskedasticity up tgdal and 5, and the wild boot-
strapp-value for the transition parameter The() and ARCH statistics do not indicate the
presence of serial correlation or ARCH effects in the regoesssiduals. Moreover, the
p-value is virtually zero in both cases suggesting that thienased transition parameters
are significant at all conventional levels. In line with theekrity tests results, thevalue
for the transition parameter is lower for the whole samplssitating that the degree of

nonlinearity is more pronounced when longer spans of datax@amined.

2Equation [(4) imposes that the autoregressive coefficiantste unity so that the process has a unit
root in the inner regime. We test this restriction by runningvald F'-test. The correspondingvalue is
substantially larger than 10% implying that the restriotetsion is also supported by the data.

15



[ Table 3]

4.2 Out-of-Sample Tests

The in-sample test results provide strong support for aineal adjustment mechanism
of the real exchange rate. We now turn to the investigatiothefperformance of the
ESTAR model in forecasting. As we highlighted in the pregsections: (i) out-of-sample
tests are likely to exhibit lower power than in-sample teate (ii) there is uncertainty
regarding the behavior df'-type tests when one of the competing model is nonlinear or
nonstationary. These motivate us to examine the small saprpperties of the forecast
evaluation measures by conducting a set of Monte Carlo stronl@xperiments. The
nominal significance level is set equal to 5% for all expentsgethe maximum forecast

horizon equal to 4 and the number of bootstrap replicatiyrequal to 1,000.

4.2.1 Empirical Size of Forecast Evaluation Tests

Initially, we focus on the empirical size of the tests, whisttomputed by the following

procedure
1. Fit the benchmark model (the RW or the linear AR) to the wisal@ple.

2. Set the the fitted model as the Null DGP and generate 1,Qidi@ial series of size

equal to the size of the actual real exchange rate series.

3. For each series adopt the same setting as for the actaahddtgenerate forecasts

from the benchmark and the competing model(s).

BFake series are generated by drawing from the normal disiitb with variance equal to variance of
the actual residuals. The first observations of the actualal@ employed as initial values.

16



4. Apply the bootstrap methodology outlined in Section 3stoacompute a vector of

bootstrap-values.

5. The empirical size of the test is defined as the percenthgemes the bootstrap

p-value is smaller than the 5 % significance level.

The results for the case of the RW against the ESTAR (RW-ESTH&R)RW against
the AR (RW-AR) and the AR against the ESTAR (AR-ESTAR) are presiin Table 4.
A broad conclusion that emerges is that the empirical sizalldests, but the W-MSE-
t, is close to the nominal level with no test consistently euiprming the others. The
(absolute) error in rejection probabilities reaches a maxn of just 1.7 percentage points
(for the MSE{" at the one year horizon). Most importantly, these resultiscate that

F-type tests are valid in our nonlinear context.
[ Table'4 ]

As far as the W-MSH-is concerned, the test exhibits moderate size distortibnp o
to 5 percentage points. For the RW-ESTAR and the RW-AR cémetest is oversized at
short horizons with the empirical size taking values clas&@%. On the other hand, for
the AR-ESTAR case the weighted MSEtatistic becomes undersized with the empirical

size reaching a minimum value equal to 0.023 at 2.

4.2.2 Empirical Power of Forecast Evaluation Tests

We turn to the empirical power of the tests. The procedurg@tdbis identical to that for
the size with the exception that the DGP is given by the es&thBSTAR model. Table
5 shows the results for the RW-ESTAR and AR-ESTAR cases. Oyvem observe that

17



despite the fact that there are major differences acrotssaed pairs of competing models,
the empirical power of all tests tends to decrease with thecast horizon. Starting with
the RW-ESTARt-type tests perform substantially worse thartype tests. Specifically,
the MSE¢# ranks last with the empirical power ranging from about 15%#fe- 1 to about
8% for h = 4. The W-MSE- and ENC# tests follow with the latter being marginally
superior than the former but again with very low empiricaWp An increase by a
factor of two or greater (depending on the horizon) in thgdiency of rejecting the null
occurs as we move to the MSE- The empirical power of the test exceeds 50%. Finally,

the ENC#’ test exhibits the highest power, which ranges from 68 to ab5%.
[ Table’5]

Regarding the AR-ESTAR pair, the performance of Hyype tests deteriorates while
t-type tests exhibit similar empirical power to the RW-ESTédse. The maximum power,
which is achieved at = 1 in all cases, ranges from about 16 (W-M$Ee about 27%
(MSE-F). In other words, there is a small likelihood of identifyitige forecasting gains
from adopting an ESTAR rather than a linear AR model evenghate true DGP pro-
cess is nonlinear.These results are qualitatively simdahose of Clements and Smith
(1999) for SETAR models, and complement the findings of IrnenetKilian (2005) for
linear models. The low power of the tests suggests that swgarsample but not out-
of-sample performance of nonlinear models should not bemeated as conclusive evi-

dence against nonlinearity.

1The results for the W-MSE-est should be interpreted with caution due to the poor siapesties of
the test.

18



4.2.3 Forecasting the Dollar-Sterling Real Exchange Rate

Table 6 presents the results regarding the comparison etdsts for the actual real ex-
change rate series. The first three panels reptype test statistics, while the last two
panels show thé-type tests statistics. The corresponding bootstraplues are reported

in parentheses.
[ Table 6]

A broad conclusion that emerges is that as the forecastdmiirreases thg-values
for all tests tend to increase indicating that long-horipoedictability depends upon short-
horizon predictability. This observation is consistenthathe behavior of the empirical
power of the tests reported in Table 5. Furthermore, thec&miing gains from using our
nonlinear model specification are particularly evidentatrsforecast horizoré. To this
end, we mainly focus on one step ahead forecasts.

By examining the RW-ESTAR pair (second column), we obseragdti five forecast
encompassing and forecast accuracy test statistics aigistdly significant at the 10%
significance level. By changing the significance level to 9% ,rtull hypothesis is rejected
by the two F'-type tests and the MSEtest (three out of the five cases). We note that for
the F'-type testsp-values are close to zero for all forecast horizons, whiahoistrue for
thet-type tests. The fact that-type tests are associated with much loweralues than
their t-type counterparts when the benchmark model is the RW is umpirising given
the higher empirical power of the former. Turning to the RW-pair (third column), we

generally observe highervalues than for the RW-ESTAR pair. However, the number of

15This result is also intuitive given that both the ESTAR and miRdels are mean reverting processes,
hence the series are expected to approach their conditiesat when projected further ahead in the horizon.
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rejections at the 10% level reduces marginally from five ta for h = 1 Summarizing
the above results, both AR and ESTAR models appear to hadepve ability regarding
the behavior of the dollar-sterling real exchange rate.

The final column of Table|6 presents the results for the coispaiof the AR-ESTAR
models. Despite the low empirical power of the forecastueai@n measures, at = 1
all test statistics are significant at the 5% with the exaeptf the ENC#', which has a
p-value marginally higher than 10%. The number of rejectisuisstantially reduces with
the forecast horizon and at= 2 only the MSE¢ test rejects the null hypothesis. This
may be due to the fact that both models share the predictairthth series will eventually
mean revert to its equilibrium value.

Overall, the out-of-sample results complement those ofttsample tests and provide
strong support for the ESTAR model. In contrast to previdudiss, which employ data
of higher frequency, our findings illustrate that nonlineaal exchange rate models are

useful for forecasting the behavior of the real exchange rat

5 Conclusion

This paper utilizes long-spans of data in order to invegtighe ability of the ESTAR

model to forecast the dollar-sterling real exchange rate pdy special attention to model
specification by employing several recently proposed hieand unit root tests as well
as bootstrap techniques. In turn, we investigate the sraalpte properties of several

forecast evaluation measures. Our results, in line withiteeture on forecasting from

18| othian and Taylor (1996) and Siddique and Sweeney (19%8) stiow that AR models provide supe-
rior forecasts (in terms of the RMSE criterion) to the RW foe tecent float.
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nonlinear models, illustrate the difficulty of detecting tbuperiority of STAR models to
AR models. Despite the low power of out-of-sample evalust@sts, we find that recursive
ESTAR forecasts for the actual real exchange rate seriggedatm all rival forecasts.

Consequently, researchers and practitioners can extrestafsting gains regarding the

behavior of the long-span real exchange rate series by gmglaonlinear models.

A Appendix

A.1 Linearity Tests

Testing for the nonlinear part of Equation (2) gives rise tw&ance parameter problem
(Davies, 1977). Consequently, classical Lagrange MudtigliM) and Wald statistics may
not follow standard distributions. In order to circumvehistproblem, Luukkonen et al.
(1988) suggest replacing the transition function by a Tiagéries approximation around
~ = 0. Escribano and Jo&d(1999) build upon the work of Luukkonen et al. (1988) and

propose the following auxiliary regression
Y, = 6pxy + O @y, + Ohxyl | + syl |+ Syl | + (9)

for testing linearity and distinguishing between ESTAR &STAR processes. The null
hypothesis of linearity corresponds i} : §; = 8, = d; = §; = 0 and the selection

procedure between ESTAR and LSTAR is
1. Test the null of LSTAR nonlinearityfl : &, = §, = 0, with an F' test, (Fp).

2. Test the null of ESTAR nonlinearity/” : &) = 85 = 0, with an F test,(Fg).
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3. If the p-value of F, is lower thanF then select an ESTAR. Otherwise, select an

LSTAR.

The use of the'-test is based on the assumptions that the process undeimexim
is stationary and the error term in Equation (2) is i.i.d. l@er, a major concern in the
PPP literature is that real exchange rates exhibits a uatiimovhich case the asymptotic
distribution of linearity tests changes (Kilic, 2004). érbfore, in order to avoid false
inference one should first test for a unit root in the real exge rate series. If the unit
root hypothesis is rejected, the i.i.d. assumption can laxed by employing the wild
bootstrap method (see Pavlidis et al., 2009b).

Harvey and Leybourne (2007) derive a more general linegegy statistic which has
the same critical values under the null hypotheses of ari{@xand a linear 1(1) pro-
cesses. Rejection of the null therefore is indicative of maarity and cannot be attributed
to a linear 1(1) DGP.

The Harvey and Leybourne test procedure consists of twesstEpst is the test of
linearity. Second, the order of integration of the lineanonlinear process is determined.
Consider the case of an I(0) process. By setting 1 and taking a second-order Taylor

series expansion of Equation (1) aroune- 0 we obtain

Y = Bo + Bryi—1 + 52%2_1 + 53yf_1 + Uy (10)

Whilst, in the case of an I(1) variable, the Taylor expansimhigs

Ay = @oAy—1 + 901(Ayt71)2 + S01(Ayt71)3 + &¢.
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In order to combine both possibilities, 1(0) and (1), Hanaad Leybourne (2007) propose

the following regression model

Y¢ = oo+ oY1+ 042%24 + 0439371 + agAy; 1 + QB(Aytfl)Z +

+og(Ay-1)® + e (11)

In the presence of serial correlation, Equation (11) is aermged with lags of the first dif-
ference of the dependent variable. The null hypothesiseéliity isH,, : ay = a3 = a5 =
ag = 0 against the alternative hypothesis (nonlinearftly): at least one ofv,, as, as, ag

is different from zero. The corresponding Wald statistic is

i, _ RSS — RSSy
T " RSS,/T

where the restricted residual sum of squa®s'§;) comes from an OLS regression of
Y, on a constanty, ;, andAy, ;. As Harvey and Leybourne point out, the distribution
of Wr under the null differs depending on whether the processvi@t byy;, is 1(0) or

[(1). In order to make the limiting distribution d#’ homogeneous under the null, they
multiply it with a correction that is the exponential of a ghkied inverse of the absolute

value of the Augmented Dickey Fuller (ADF) statis&c,

Wi = exp(—b |ADFp| Y Wr. (12)

This approach is suggested by Vogelsang (1998).
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An expression for the value éfis provided such that, for a given significance level, the
critical value ofiW; coincides with that from &2(4). They also prove that, undéf,, W
is consistent at the rat@,(7"). The second step is to test whether the series is an 1(0) or

an I(1) process.

A.2 Unit Root Tests

Kapetanios et al. (2003) develop a test of a unit root nullregjahe alternative of a glob-
ally stationary ESTAR. Their test is also based on a Taylor@pmation of the nonlinear
autoregressive model. For simplicity, assuming 1, d =1, 7,1 = 1, my; = —m1 1, and

¢ =0, then|(1) becomes

Yo = Y—1 + [1 — €xXp (—’Yyt{l)] (=Yi—1) + us. (13)

Using the first-order Taylor expansion and rearrangingigiel

Aye = 0y + uy. (14)

Hence, the null and alternative hypothesesHge 6 = 0 andH; : § < 0, respectively.

The correspondingstatistic is given by

5
s.e(d)

N = 7 (15)

where s.e(S) denotes the standard errordofThe asymptotic distribution df, converges

weakly to a functional of Brownian motions.
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The issue of possible residual autocorrelation can be adddeby augmenting Equa-
tion (14) with lags of the dependent variable. Further, ia pnesence of deterministic
components, the authors suggest replagirnig Equation|(14) with the residuals from the
regression ofy on an intercept (demean case) or an intercept and a time (detend
case).

Kapetanios and Shin (2008) proceed in the spirit of Elliotle(1996) by employing
a GLS procedure in order to increase the power of the nonlineg root test. In the
case of a mean and a time trend in the data, the first step afsting procedure includes

computing the GLS estimate éfin

yr = 0'z; + 7y, (16)
by regressin@; = (y1,Y2—pv1, - - ., Yr—pyr—1) ONz; = (21, 20— pz1, ..., 2r—pzr—1)’
wherez, = (1,t)’ andp = 1 — ¢/T so as to obtain the estimated residugjg For the
demean case; is replaced by, = 1. Subsequently, Equation (14) is fitted to the GLS
demeaned or detrended series andttstatistic, 5>, corresponding tdd, : 6 = 0 is
obtained. Kapetanios and Shin (2008) illustrate thatt§jxe statistic, like thety,, has a

non-standard distribution.

¥ apetanios and Shin (2008) setqual to -17.5 so that the asymptotic power of the test urteiocal
alternative is 0.5.
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Table 1: Unit Root Tests

Sample Period: 1791-1973
Case ADF ADF-HC tNL tn-HC t,(\‘;::s t,c\ﬂ:s-HC

Demean —-3.082** —3.321" —3.488* —4.687** —-2.211* —2.866"
Detrend —4.985*** —5.192"* —3.707** —3.469  —3.824™* —3.648""

Sample Period: 1791-2005

Case ADF  ADF-HC  tu tnL-HC t8Ls 4SS HC
Demean —3.794** —3.991% —4.522°* —5314"* —2.873" —3.258"
Detrend —4.327** —4.532"* —4.406** —5.013"* —2.203  —2.508

Notes: ADF, ¢ty and ¢y, are the Augmented Dickey Fuller, the Kapetanios et al. (G081 the
Kapetanios and Shin (2008) unit root tests statistics. Hficates heteroskedasticity-robust versions.
x % %, *xx, * denote significance at the 1%, 5%, and 10% significance Imsbectively. Critical values
are constructed via Monte Carlo simulations.

Table 2: Linearity Tests

Escribano and Jo&d(1999)

Period F Fr Iy
1791-1973 1.192 (0.114) 0.458 (0.610) 0.368 (0.695)
1791-2005 1.582 (0.043) 1.050 (0.244) 0.886 (0.329)

Harvey and Leybourne (2007)

Period Wi
1791-1973 8.494 (0.078)

1791-2005 10.478 (0.033)

Notes:p-values are reported in parentheses. Far the Escribancoadl(1999) tesp-values are obtained
through the wild bootstrap procedure described in Pavita. (2009b).
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Table 3: Estimated Nonlinear Real Exchange Rate Model

Sample Period: 1791-1973

G — 1.586 = ( 1.122 1586 1122 (g, — 1.586
YT (635598) ((13 834)(‘% L3 598; (1 (13.834?<yt ? (63.598)))
x exp(— 2.076 1586
p(= @3 508)(‘% G 598)> )
[0.005]

s = 0.067; Q1 = 0.005 [0.942]; Qs = 3.941 [0.558]; ARCH; = 0.059 [0.809];
ARCH; = 0.220 [0.953].

Sample Period: 1791-2005

g — 1590 = ( 1.185 (y,—1 — 1.590 ))+(1— 185 ;(%—2— 1.590 )))

(81.518) '(16.053) (81518 (16.053 (81518
% exp(— 2.504 (4,1 — 1.590
p(= (. 357)(‘% (81 518; )
[0.000]

s = 0.068; Q; = 0.002 [0.963]; Q5 = 4.133 [0.530]; ARCH, = 0.079 [0.778];
ARCH; = 0.416 [0.837].

Notes: Figures in parentheses and square brackets desaletab-stafistics ang-values, respeciively.
The p-value for the transition parametiis obtained through a simulation exercise, where the baqtst
DGP is the unit root models is the standard error of the regressioi. and@s denote the Ljung-Box
Q-statistic for serial correlation up to order 1 and 5, retipely. ARCH,; and ARCH; denote the LM
test statistic for conditional heteroskedasticity up tdesrl and 5, respectively.

Table 4. Empirical Size of Forecast Evaluation Tests

RW-ESTAR
Horizon MSE# W-MSE+  ENC+ MSE-F' ENC-F
1 0.056 0.089 0.061 0.058 0.058
2 0.058 0.079 0.053 0.056 0.048
3 0.054 0.072 0.056 0.055 0.047
4 0.038 0.056 0.039 0.058 0.045
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RW-AR

Horizon MSE# W-MSE-+  ENC+ MSE-F ENC-F
1 0.055 0.104 0.055 0.052 0.051
2 0.046 0.087 0.044 0.045 0.042
3 0.046 0.071 0.040 0.051 0.044
4 0.041 0.063 0.041 0.053 0.041
AR-ESTAR
Horizon MSE# W-MSE-+  ENC+ MSE-F ENC-F
1 0.043 0.034 0.040 0.067 0.066
2 0.046 0.023 0.047 0.050 0.055
3 0.049 0.032 0.051 0.056 0.054
4 0.052 0.033 0.052 0.059 0.047

Notes: The table shows the empirical size of the MSB~MSE+, ENC+, MSE-F' and ENC{’ test
statistics for the RW-ESTAR, RW-AR and AR-ESTAR pairs. Tlemnal significance level is 5% and

the horizons considered ake= 1, ..., 4.

Table 5: Empirical Power of Forecast Evaluation Tests

RW-ESTAR
Horizon MSE¢# W-MSE+  ENC+ MSE-F ENC-F
1 0.152 0.170 0.239 0.577 0.752
2 0.094 0.124 0.133 0.588 0.730
3 0.078 0.096 0.111 0.566 0.709
4 0.079 0.095 0.114 0.528 0.680
AR-ESTAR
Horizon MSE¢# W-MSE+ ENC+ MSE-F ENC-F
1 0.237 0.163 0.203 0.269 0.220
2 0.209 0.121 0.170 0.176 0.124
3 0.163 0.103 0.142 0.106 0.064
4 0.137 0.071 0.108 0.060 0.025

Notes: The table shows the empirical power of the MSEYV-MSE+, ENC+, MSE-F' and ENC#
test statistics for the RW-ESTAR and AR-ESTAR pairs. The mainsignificance level is 5% and the
horizons considered ate=1, ..., 4.
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Table 6: Comparing Forecasts for the Dollar-Sterling Real
Exchange Rate, 1974-2005

Panel A — MSEt# test

Horizon

RW-ESTAR

RW-AR

AR-ESTAR

A WN P

1.827 (0.047)
1.790 (0.067)
1.664 (0.114)
1.670 (0.118)

1.441 (0.091)
1.514 (0.129)
1.600 (0.134)
1.702 (0.123)

1.702 (0.019)
1.281 (0.048)
0.836 (0.098)
0.357 (0.203)

Panel B — W-MSE test

Horizon

RW-ESTAR

RW-AR

AR-ESTAR

A WNBE

1.718 (0.053)
1.682 (0.069)
1.593 (0.095)
1.617 (0.097)

1.547 (0.066)
1.654 (0.083)
1.647 (0.099)
1.695 (0.104)

1.354 (0.032)
1.146 (0.062)
0.815 (0.121)
0.528 (0.190)

Panel C — ENCk-test

Horizon

RW-ESTAR

RW-AR

AR-ESTAR

A OWN P

2.016 (0.066)
1.979 (0.105)
1.942 (0.143)
2.054 (0.145)

1.794 (0.105)
1.929 (0.134)
2.077 (0.131)
2.276 (0.130)

1.942 (0.033)
1.607 (0.062)
1.157 (0.146)
0.641 (0.295)

Panel D — MSEF test

Horizon

RW-ESTAR

RW-AR

AR-ESTAR

A WN B

17.842 (0.000)
24.793 (0.000)
29.577 (0.002)
37.289 (0.007)

11.715 (0.002)
17.884 (0.008)
24.756 (0.016)
34.970 (0.017)

5.369 (0.046)
5.651 (0.108)
3.657 (0.181)
1.583 (0.254)

Panel E — ENCE' test

Horizon

RW-ESTAR

RW-AR

AR-ESTAR

A OWN P

22.449 (0.001)
30.060 (0.002)
36.531 (0.013)
47.439 (0.020)

15.616 (0.003)
23.754 (0.013)
32.791 (0.019)
46.750 (0.023)

6.361 (0.104)
6.934 (0.181)
4.729 (0.302)
2.528 (0.393)

Notes: The table shows the MSEW-MSE+, ENC+, MSE-F' and ENC#' evaluation measures for
the comparison of actual real exchange rate forecasts flerE$TAR, AR and RW models. Bootstrap

p-values are reported in parentheses. The horizons coadidegh = 1, ..., 4.
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