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Abstract

This paper deals with the nonlinear modeling and forecasting of the dollar-sterling

real exchange rate using a long span of data. Our contribution is threefold. First, we

provide significant evidence of smooth transition dynamics in the series by employing

a battery of recently developed in-sample statistical tests. Second, we investigate the

small sample properties of several evaluation measures for comparing recursive fore-

casts when one of the competing models is nonlinear. Finally, we run a forecasting

race for the post-Bretton Woods era between the nonlinear real exchange rate model,

the random walk, and the linear autoregressive model. The winner turns out to be the

nonlinear model, against the odds.
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1 Introduction

Despite the overwhelming evidence supporting the presenceof nonlinearites in real ex-

change rates (e.g., Taylor et al., 2001; Pavlidis et al., 2009a), the empirical literature on

the out-of-sample performance of Smooth Transition Autoregressive (STAR) models is

scarce, and a bet that a nonlinear model beats a linear one would be against the odds. One

of the few studies on nonlinear real exchange rate forecasting is that of Sarantis (1999). By

employing monthly real effective exchange rates for the G-10 countries from 1980 to 1996,

the author provides evidence in favor of the presence of significant smooth-transition non-

linear dynamics for the majority of the processes. Moreover, the estimated STAR models

provide more accurate forecasts, in terms of the root mean square error criterion, against

the Random Walk (RW) and the Markov Switching model but not the linear autoregres-

sive (AR) model.

A recent study that utilizes more sophisticated forecast evaluation techniques and a

longer data set for the post-Bretton Wood era is provided by Rapach and Wohar (2006).

The authors replicate the results of Obstfeld and Taylor (1997) and Taylor et al. (2001)

by fitting Threshold Autoregressive (TAR) and Exponential STAR (ESTAR) models to

four monthly U.S. dollar real exchange rates. On the basis ofpoint, interval and density

forecasts comparisons Rapach and Wohar (2006, p. 341) conclude: “any nonlinearities in

monthly real exchange rate data from the post-Bretton Woodsperiod are quite “subtle”

for Band-TAR and exponential smooth autoregressive model specifications”.

These discouraging findings may but do not necessarily implythat the nonlinearity

documented in the literature is a spurious artifact. Inoue and Kilian (2005) illustrate that

for linear models in-sample tests tend to have, and in many cases substantially, higher
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power than out-of-sample tests, which contradicts the conventional view that forecasting

is the ultimate test of an econometric model. Rossi (2005) also raises concerns regarding

the power of out-of-sample predictability tests.

Clark and McCracken (2005) build upon the work of Clark and McCracken (2001) and

McCracken (2004) and derive the asymptotic distribution of two F -type tests for the com-

parison of multi-step forecasts from nested linear models.The tests account for parameter

uncertainty and exhibit better power properties than theirt-type counterparts, namely the

tests of Diebold and Mariano (1995) and Harvey et al. (1998).Although their application

in this context is appealing, it is not straightforward due to the fact that their derivation

is based on the assumption that the regression models are linear in parameters and the

processes are stationary.1

Regarding the comparison of nonlinear with linear AR models,numerous studies sug-

gest that in many cases the in-sample superiority of the former is not accompanied by bet-

ter predictive ability (see, e.g., Lundbergh and Teräsvirta, 2002; Stock and Watson, 1999).

In this framework, power issues turn out to be serious.2 A possible explanation is that

nonlinear models perform better only in specific states (regime dependent) so that there

are windows of opportunity for substantial reduction in prediction errors (Clements, 2005;

Boero and Marrocu, 2004). If these occasions are relatively infrequent, then AR models

would provide robust forecasts even if the series under consideration is nonlinear. Hence,

the results of Sarantis and Rapach and Wohar may well be attributed to the low power of

out-of-sample predictability tests.

1We relax these assumptions and examine the finite propertiesof the tests in Section 4.
2The related literature has focused mainly on the comparisonof SETAR and AR models. The results

presented in Section 4 illustrate that this is also the case for STAR models.
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In this paper we give the nonlinear real exchange rate model another chance. We depart

from the approach of previous studies and employ a long span of annual data for the dollar-

sterling real exchange rate. By doing so, we extend the out-of-sample period to the entire

post-Bretton Woods era.

Our modeling cycle consists of a battery of recently developed unit root tests, linearity

tests, as well as bootstrap methods, which enable us to obtain a parsimonious specification

of the nonlinear real exchange rate model. Subsequently, weemploy the chosen specifica-

tion and use Monte Carlo simulation techniques to examine theempirical size and power

properties of several forecast accuracy and encompassing tests.

Our results indicate that most tests have good size properties. This is a particularly

important finding since the properties ofF -type tests have not been examined when one

of the competing models is nonlinear or nonstationary. Furthermore, we show thatF -type

tests have similar or substantially better power properties than theirt-type counterparts.

Unfortunately, both appear to exhibit low power for the comparison of nonlinear with

linear AR models. Notwithstanding the above, our findings suggest that for the actual data

the ESTAR model outperforms both the RW and AR benchmarks at short horizons for the

majority of tests.
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2 Smooth Transition Models

The basic STAR model representation for a univariate time series{yt} is given by

yt = π1,0 + π1,1yt−1 + · · · + π1,pyt−p + (π2,0 +

+π2,1yt−1 + · · · + π2,pyt−p)F (yt−1; γ, c) + ǫt, t = 1, . . . , T, (1)

or, equivalently,

yt = π′
1xt + π′

2xtF (yt−1; γ, c) + ǫt, t = 1, . . . , T, (2)

wherext = (1, x̃′
t)

′ with x̃t = (yt−1, . . . , yt−p)
′, andπj = (πj,0, . . . , πj,p)

′ for j = 1, 2. It

is assumed that the error term,ǫt, is a martingale difference sequence.

There are two common forms of the STAR model. The one we will discuss here

in detail is the ESTAR model, in which transitions between a continuum of regimes are

assumed to occur smoothly and symmetrically. The transition functionF (·) of the ESTAR

model is

F (yt−1; γ, c) = [1 − exp(−γ(yt−1 − c)2)]. (3)

This transition function is symmetric around(yt−1 − c) and admits the limits 1 and 0

as |yt−1 − c| → +∞ and |yt−1 − c| → 0, respectively. Parameterγ can be seen as the

transition speed of the functionF (·) towards 1 (0) as the deviation grows larger (smaller).

We are particularly interested in the special case that there is a unit root in the linear

polynomial,
∑p

i=1
π1,i = 1, π2,i = −π1,i ∀ i ≥ 1, π1,0 = 0 andc = π2,0. Under these
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restrictions, Equation (1) becomes

yt = π2,0 + [π1,1(yt−1 − π2,0) + · · · + π1,p(yt−p − π2,0)] exp(−γ(yt−1 − π2,0)
2) + ǫt. (4)

The above formulation is very appealing for modeling real exchange rates (see, e.g.,

Kilian and Taylor, 2003; Paya et al., 2003). Unlike in a linear model, the process moves

between a white noise and a unit root depending on the size of the deviation from PPP,

|yt−1 − π2,0|. This type of adjustment is in accordance with the implications of theoret-

ical models, which demonstate how frictions in international trade can induce nonlinear

but mean reverting adjustment of the real exchange rate (see, e.g., Dumas, 1992; Berka,

2005). The rational is that small deviations are left uncorrected since they do not to cover

transactions costs or the sunk costs of international arbitrage. On the other hand, large

deviations are much less persistent. Therefore, the process exhibits strong persistence and

near unit root behavior.3

We point out that asγ → 0 or γ → ∞ the exponential transition function ap-

proaches a constant and the ESTAR model collapses to a linearAR model. The fact

that STAR models nest linear AR models has important implications regarding the asymp-

totic distribution of commonly used forecast accuracy and encompassing tests (see, e.g.,

Clements and Galṽao, 2004).

3The other common form of STAR models is the Logistic, LSTAR. The logistic function is

F (yt−1; γ, c) = [1 + exp(−γ(yt−1 − c))]−1.

LSTAR models have also been fitted to real exchange rates (seeSarantis, 1999). Even though the theoretical
argument is not as strongly supported as with the case of the ESTAR, there are some attempts to rationalize
the asymmetric adjustment in the real exchange rate (e.g., Campa and Goldberg, 2002).
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2.1 Linearity and Unit Root Tests

The uncertainty about the exact Data Generating Process (DGP) of real exchange rates

motivates the use of data driven methods for the specification of parsimonious empirical

models. In this study, we employ several testing proceduresso as to examine whether the

long-span real exchange rate series exhibits mean reversion and smooth transition dynam-

ics. Namely, we use the unit root tests of Kapetanios et al. (2003) and Kapetanios and Shin

(2008), and the linearity tests of Escribano and Jordá (1999) and Harvey and Leybourne

(2007). A description of all in-sample tests is provided in Appendix A (see also Pavlidis et al.,

2009a).

The appealing feature of the Harvey and Leybourne (2007) test is that it possesses

the same properties irrespective of the series being I(0) orI(1).4 While, the advantages

of the linearity test of Escribano and Jordá (1999) are: (i) it enables the selection be-

tween ESTAR and LSTAR models, and (ii) it can be easily modified to accommodate for

possibly conditional heteroskedastic errors by applying the Wild Bootstrap method (see

Pavlidis et al., 2009b).5 Due to the fact that Escribano and Jordá (1999) test is based on

the assumption of a stationary process, pretesting for a unit root is required.

Unit root testing is also useful for the selection of forecasting models. Diebold and Kilian

(2000) illustrate that the conventional view of employing models in first-differences when

the series under examination is highly persistent can lead to less accurate forecasts. On

this ground, the authors advocate the application of unit root tests for choosing between

levels and differences.
4A major concern in the PPP literature is that real exchange rates exhibits a unit root in which case the

asymptotic distribution of most linearity tests changes (Kiliç, 2004).
5Time-varying volatility may arise due to changes in exchange rate or monetary regime.
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We consider the null hypothesis of a unit root against a globally stationary ESTAR pro-

cess by using the tests of Kapetanios et al. (2003) and Kapetanios and Shin (2008). The

main difference between the two is that the Kapetanios et al.(2003) test uses OLS de-

meaning/detrending procedures, whilst, the Kapetanios and Shin (2008) test, in the spirit

of Elliott et al. (1996), employs GLS demeaning/detrendingprocedures. Further, we ro-

bustify the tests against heteroskedasticity of unknown form by using Heteroskedasticity

Consistent Covariance Matrix Estimators. Cook (2006) illustrates that in small samples

this practice can lead to moderate oversizing of the Augmented Dickey Fuller (ADF) and

the Kapetanios et al. (2003) tests. Pavlidis et al. (2007) draw a similar conclusion for the

test of Kapetanios and Shin (2008). We address this issue by constructing exact sample

critical values for the heteroskedasticity-robust test statistics via stochastic simulations.

3 Evaluating Forecasts

In this study, we restrict our attention to the comparison ofpoint forecasts on the basis of

forecast accuracy and forecast encompassing measures. Theformer measures include the

MSE-t of Diebold and Mariano (1995), the MSE-F of Clark and McCracken (2005) and

the Weighted MSE-t (W-MSE-t) proposed by van Dijk and Franses (2003). The latter are

the ENC-t of Harvey et al. (1998) and the ENC-F of Clark and McCracken (2005).

Our setting is similar to the one adopted by Clark and McCracken(2005). The number

of in-sample and out-of-sample observations is denoted asR andP , respectively, so that

the total number of observations isT = R +P . We adopt a recursive scheme for forecast-

ing, where ast increases fromR to T − h the parameters of the models are re-estimated
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by employing data up to timet so as to generate forecasts for the followingh horizons.6 In

accordance with the notation used in the previous section,yt+h denotes the variable to be

predicted at timet = R, . . . , T − h with the number of forecasts corresponding to horizon

h being equal toP − h + 1. The forecast errors are defined asê1,t+h = yt+h − ŷ1,t+h|t for

the benchmark model and̂e2,t+h = yt+h − ŷ2,t+h|t for the competing model.

3.1 Tests of Forecast Accuracy

The first three tests examine forecast accuracy by setting the Mean Square Error (MSE) as

the measure of predictive ability. In this setting, the nullhypothesis is that the MSEs of

the two competing models are equal against the one-sided alternative that the MSE for the

second model is smaller. Diebold and Mariano (1995) developthe following widely used

t-type test

MSE − t = (P − h + 1)1/2
d̄

Ŝ
1/2

dd

, (5)

where d̂t+h = ê2
1,t+h − ê2

2,t+h, d̄ = (P − h + 1)−1
∑T−h

t=R d̂t+h = MSE1 − MSE2,

Γ̂dd(j) = (P − h + 1)−1
∑T−h

t=R+j d̂t+hd̂t+h−j for j > 0 and Γ̂dd(j) = Γ̂dd(−j), and

Ŝdd =
∑j̄

j=−j̄
K(j/M)Γ̂dd(j) denotes the long-run variance ofdt+h estimated using a

kernel-based estimator with functionK(·), bandwith parameterM and maximum number

of lagsj̄.7

6In general, closed-form solutions for multi-step forecasts from nonlinear models are not available. We
overcome this obstacle by employing bootstrap integrationtechniques. A discussion regarding methods
for constructing multi-step forecasts from nonlinear models is provided in Ter̈asvirta (2006). An attractive
feature of the bootstrap method is that it does not require distributional assumptions. The errors, however,
are presumed to be i.i.d.. The results of Clements and Smith (1997) support the use of bootstrap methods in
forecasting from nonlinear autoregressive models.

7The use of Heteroskedasticity and Autocorrelation Consistent (HAC) estimators for computing the vari-
ance ofdt+h is based on the fact thath-steps-ahead forecast errors will be serially correlated of orderh− 1.
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For non-nested models the long-run variance ofd̂t+h is positive and the MSE-t statistic

follows asymptotically the standard normal distribution.On the contrary, when the com-

peting models are nested their population errors are identical under the null and, therefore,

dt+h and its variance are equal to zero. In this case, the asymptotic distribution of the

statistic is non-standard and depends upon nuisance parameters forh ≥ 2 (McCracken,

2004).8

The degeneracy of the long-run variance ofdt+h motivates Clark and McCracken (2005)

to propose a variant of the above test for nested models. Inspired by the in-sampleF -test,

the authors suggest replacinĝS1/2

dd with the variance of the forecast error of the “unre-

stricted” model. The new test statistic is given by

MSE− F = (P − h + 1)1/2
d̄

MSE2

, (6)

and has better power properties.9 The limiting distribution of the MSE-F test statistic, like

the MSE-t, is free of nuisance parameters only forh = 1 and is non-standard.

The forecast accuracy tests examined so far attach equal importance to all forecasts

irrespectively of the available information set at timet. However, a researcher would

expect the superiority of the ESTAR model over the RW to become most apparent for

large deviations of the process from its equilibrium value.Whilst, for smaller deviations

the two models should perform similarly. van Dijk and Franses (2003) propose a forecast

The performance of the MSE-t test using different HAC estimators is examined in Clark (1999).
8The asymptotic distributions of all the test statistics formulti-step forecasts from nested models under

parameter uncertainty are derived in Clark and McCracken (2005). However, their derivation is based on the
sufficient but not necessary assumptions of stationarity and linearity of the parameters, which are clearly not
satisfied in our experiment.

9Clark and McCracken (2005) and Busetti et al. (2009) provideMonte Carlo evidence illustrating the
power advantage ofF -type tests overt-type when the models are linear.
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evaluation test (W − MSE − t) that employes a weighted average loss differential and

comprises a modification of the MSE-t of Diebold and Mariano (1995). Consequently,

more importance is attached to forecasts corresponding to deviations at the tails of the

distribution. van Dijk and Franses (2003) show that the modified test statistic follows the

same distribution with the MSE-t.

3.2 Forecast Encompassing

In this case, the null hypothesis is that the forecast of the benchmark model incorporates

all the relevant information in the forecast of the competing model. Or, equivalently, the

covariance between the forecast errors of the first model andthe difference of the forecasts

errors of the two models is equal to zero (see West, 2006). Under the alternative, the

covariance is positive indicating that the second model hasadditional predictive power.

Clearly, the forecast encompassing tests are also one-sidedto the right.

Let ĉt+h = ê1,t+h(ê1,t+h − ê2,t+h), c̄ = (P − h + 1)−1
∑T−h

t=R ĉt+h, Γ̂cc(j) = (P − h +

1)−1
∑T−h

t=R+j ĉt+hĉt+h−j for j > 0, Γ̂cc(j) = Γ̂cc(−j), and letŜcc =
∑j̄

j=−j̄
K(j/M)Γ̂cc(j)

denote the long-run variance ofct+h. Harvey et al. (1998), based on the work of of

Diebold and Mariano (1995), derive the following forecast-encompassing test statistic10

ENC − t = (P − h + 1)1/2
c̄

Ŝ
1/2
cc

. (7)

Clark and McCracken (2001) illustrate that the distribution of the ENC-t statistic con-

verges to the same type of distribution with the MSE-t statistic when the forecasts are

generated from linear nested models. By employing the same reasoning with the one used

10The authors employ the small sample correction of Harvey et al. (1997) for the MSE-t statistic.
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for the MSE-F test they propose the followingF -type test statistic

ENC − F = (P − h + 1)1/2
c̄

MSE2

. (8)

which again has a non-standard limiting distribution and depends on nuisance parameters

for h ≥ 2. Similarly to forecast accuracy measures, theF -type test has, asymptotically,

greater power than itst-type counterpart.

3.3 Bootstrap Inference

Due to the fact that standard distribution theory may not apply in our setting, we conduct

statistical inference by employing a parametric bootstrapmethod similar to Kilian (1999)

and Kilian and Taylor (2003). The simulation exercise consists of the following steps.

1. Employ the original real exchange rate series and computethe above forecast eval-

uation measures for all forecast horizons.

2. Estimate the restricted model for the real exchange rate (the RW or the AR model)

using the whole sample, and obtain the fitted residuals and coefficients.

3. Set the estimated model as the Null DGP and randomly draw with replacement

from the residuals so as to create an artificial series for thereal exchange rate with

the same length as the actual series. The process is initialized by employing the

observed values of the series.

4. Repeat the forecasting exercise using the artificial data so as to computeh bootstrap

test statistics for each forecast evaluation measure.
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5. Repeat steps 3 and 4B times, whereB is a large number, so as to obtain the boot-

strap distributions of the test statistic under the null.

6. Compute the bootstrapp-value as the percentage of times the simulated statistic is

more extreme than the original statistic.

7. Reject the null if thep-value is smaller than the chosen significance level.

Clark and McCracken (2005) illustrate that when forecasts aregenerated from linear

nested models this method performs adequately in terms of size and power even when

the bootstrap model is not properly specified. However, the performance of the bootstrap

technique and the validity of theF -type tests have not been explored when one of the

competing models is nonlinear or the process is nonstationary. We contribute to the liter-

ature on nonlinear real exchange rates and forecasting evaluation by examining the finite

properties ofF -type tests as well as their implications in the following section.

4 Empirical Results

The data set consists of annual observations for the dollar-sterling real exchange rate

from 1791 to 2005. For the construction of the series we use the International Finan-

cial Statistics database to update the nominal exchange rate and price series analyzed in

Lothian and Taylor (1996). The number of in-sample observations,R, is set equal to 183,

which corresponds to the pre-Bretton Woods era (1791-1973),and the remaining 32 years,

P , comprise the out-of-sample period.
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4.1 In-Sample Tests

Starting with the in-sample tests, we present results for both the entire sample period and

the subperiod from 1791 to 1973. Table 1 reports the ADF,tNL andtGLS
NL tests statistics as

well as their heteroskedasticity-robust versions, ADF-HC,tNL-HC, tGLS
NL -HC, correspond-

ing to the demean and detrend cases (for a description of the in-sample tests see Appendix

A).11 For the demeaned real exchange rate, the unit root hypothesis is rejected by all tests at

the 5% significance level. The only exception is the test proposed by Kapetanios and Shin

(2008), which rejects the null at the 10% when data prior to the recent floating period are

used. Turning to the detrend case, we observe a small decrease in number of rejections.

Specifically, thetNL-HC statistic for the subperiod 1791-1973, and thetGLS
NL andtGLS

NL -HC

tests statistics for the whole period are larger than the corresponding 10% critical values.

Overall, the results presented in Table 1 suggest the rejection of the unit root hypothesis in

favor of both a linear and a nonlinear stationary process.

[ Table 1 ]

The finding of mean reverting behavior of the long-span real exchange rate is consistent

with the empirical literature on PPP (see Frankel, 1990; Lothian and Taylor, 1996). Fur-

ther, given the stationarity of the series, we follow the recommendation of Diebold and Kilian

(2000) and choose to work with levels rather than first differences.

We proceed by examining the presence of STAR-type nonlinearities by applying the

Escribano and Jordá (1999) and Harvey and Leybourne (2007) testing procedures. The re-

sults are reported in Table 2. First, the wild bootstrapp-values for the Escribano and Jordá

11The lag length for the unit root and linearity tests is set to two on the basis of the Akaike Information
Criterion.
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(1999) tests (top panel) corresponding to the null of linearity is marginally lower than the

5% significance level for the whole sample and slightly higher than the 10% for the sub-

sample. Second, the test favors the use of the ESTAR model over the asymmetric LSTAR.

The Harvey and Leybourne (2007) test statistic is also greater than the 10% critical value

which provides further support for the smooth transition model. The magnitudes of the

p-values corresponding to the linearity tests indicate thatthe nonlinear mean-reverting

behavior of the series is more evident for the whole sample period than the pre-Bretton

Woods era. This finding can be attributed to the higher power of the tests for larger sample

sizes.

[ Table 2 ]

Next, we follow Kilian and Taylor (2003) and model the level of the real exchange rate

using the ESTAR parameterization (4).12 Table 3 shows the estimates of the ESTAR model

for the two periods examined, the standard error of the regressions, the correspondingt-

statistics, the Ljung-BoxQ-statistics for serial correlation in the residuals and theLM test

statistic (ARCH) for conditional heteroskedasticity up to lags 1 and 5, and the wild boot-

strapp-value for the transition parameterγ̂. TheQ and ARCH statistics do not indicate the

presence of serial correlation or ARCH effects in the regression residuals. Moreover, the

p-value is virtually zero in both cases suggesting that the estimated transition parameters

are significant at all conventional levels. In line with the linearity tests results, thep-value

for the transition parameter is lower for the whole sample illustrating that the degree of

nonlinearity is more pronounced when longer spans of data are examined.

12Equation (4) imposes that the autoregressive coefficients sum to unity so that the process has a unit
root in the inner regime. We test this restriction by runninga WaldF -test. The correspondingp-value is
substantially larger than 10% implying that the restrictedversion is also supported by the data.
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[ Table 3 ]

4.2 Out-of-Sample Tests

The in-sample test results provide strong support for a nonlinear adjustment mechanism

of the real exchange rate. We now turn to the investigation ofthe performance of the

ESTAR model in forecasting. As we highlighted in the previous sections: (i) out-of-sample

tests are likely to exhibit lower power than in-sample tests, and (ii) there is uncertainty

regarding the behavior ofF -type tests when one of the competing model is nonlinear or

nonstationary. These motivate us to examine the small sample properties of the forecast

evaluation measures by conducting a set of Monte Carlo simulation experiments. The

nominal significance level is set equal to 5% for all experiments, the maximum forecast

horizon equal to 4 and the number of bootstrap replication,B, equal to 1,000.

4.2.1 Empirical Size of Forecast Evaluation Tests

Initially, we focus on the empirical size of the tests, whichis computed by the following

procedure

1. Fit the benchmark model (the RW or the linear AR) to the wholesample.

2. Set the the fitted model as the Null DGP and generate 1,000 artificial series of size

equal to the size of the actual real exchange rate series.13

3. For each series adopt the same setting as for the actual data and generate forecasts

from the benchmark and the competing model(s).

13Fake series are generated by drawing from the normal distribution with variance equal to variance of
the actual residuals. The first observations of the actual data are employed as initial values.
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4. Apply the bootstrap methodology outlined in Section 3 so as to compute a vector of

bootstrapp-values.

5. The empirical size of the test is defined as the percentage of times the bootstrap

p-value is smaller than the 5 % significance level.

The results for the case of the RW against the ESTAR (RW-ESTAR), the RW against

the AR (RW-AR) and the AR against the ESTAR (AR-ESTAR) are presented in Table 4.

A broad conclusion that emerges is that the empirical size ofall tests, but the W-MSE-

t, is close to the nominal level with no test consistently outperforming the others. The

(absolute) error in rejection probabilities reaches a maximum of just 1.7 percentage points

(for the MSE-F at the one year horizon). Most importantly, these results indicate that

F -type tests are valid in our nonlinear context.

[ Table 4 ]

As far as the W-MSE-t is concerned, the test exhibits moderate size distortions of up

to 5 percentage points. For the RW-ESTAR and the RW-AR cases the test is oversized at

short horizons with the empirical size taking values close to 10%. On the other hand, for

the AR-ESTAR case the weighted MSE-t statistic becomes undersized with the empirical

size reaching a minimum value equal to 0.023 ath = 2.

4.2.2 Empirical Power of Forecast Evaluation Tests

We turn to the empirical power of the tests. The procedure adopted is identical to that for

the size with the exception that the DGP is given by the estimated ESTAR model. Table

5 shows the results for the RW-ESTAR and AR-ESTAR cases. Overall, we observe that
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despite the fact that there are major differences across tests and pairs of competing models,

the empirical power of all tests tends to decrease with the forecast horizon. Starting with

the RW-ESTAR,t-type tests perform substantially worse thanF -type tests. Specifically,

the MSE-t ranks last with the empirical power ranging from about 15% for h = 1 to about

8% for h = 4. TheW -MSE-t and ENC-t tests follow with the latter being marginally

superior than the former but again with very low empirical power.14 An increase by a

factor of two or greater (depending on the horizon) in the frequency of rejecting the null

occurs as we move to the MSE-F . The empirical power of the test exceeds 50%. Finally,

the ENC-F test exhibits the highest power, which ranges from 68 to about 75%.

[ Table 5 ]

Regarding the AR-ESTAR pair, the performance of theF -type tests deteriorates while

t-type tests exhibit similar empirical power to the RW-ESTARcase. The maximum power,

which is achieved ath = 1 in all cases, ranges from about 16 (W-MSE-t) to about 27%

(MSE-F ). In other words, there is a small likelihood of identifyingthe forecasting gains

from adopting an ESTAR rather than a linear AR model even though the true DGP pro-

cess is nonlinear.These results are qualitatively similarto those of Clements and Smith

(1999) for SETAR models, and complement the findings of Inoueand Kilian (2005) for

linear models. The low power of the tests suggests that superior in-sample but not out-

of-sample performance of nonlinear models should not be documented as conclusive evi-

dence against nonlinearity.

14The results for the W-MSE-t test should be interpreted with caution due to the poor size properties of
the test.
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4.2.3 Forecasting the Dollar-Sterling Real Exchange Rate

Table 6 presents the results regarding the comparison of forecasts for the actual real ex-

change rate series. The first three panels reportt-type test statistics, while the last two

panels show theF -type tests statistics. The corresponding bootstrapp-values are reported

in parentheses.

[ Table 6 ]

A broad conclusion that emerges is that as the forecast horizon increases thep-values

for all tests tend to increase indicating that long-horizonpredictability depends upon short-

horizon predictability. This observation is consistent with the behavior of the empirical

power of the tests reported in Table 5. Furthermore, the forecasting gains from using our

nonlinear model specification are particularly evident at short forecast horizons.15 To this

end, we mainly focus on one step ahead forecasts.

By examining the RW-ESTAR pair (second column), we observe that all five forecast

encompassing and forecast accuracy test statistics are statistically significant at the 10%

significance level. By changing the significance level to 5%, the null hypothesis is rejected

by the twoF -type tests and the MSE-t test (three out of the five cases). We note that for

theF -type tests,p-values are close to zero for all forecast horizons, which isnot true for

the t-type tests. The fact thatF -type tests are associated with much lowerp-values than

their t-type counterparts when the benchmark model is the RW is not surprising given

the higher empirical power of the former. Turning to the RW-AR pair (third column), we

generally observe higherp-values than for the RW-ESTAR pair. However, the number of

15This result is also intuitive given that both the ESTAR and ARmodels are mean reverting processes,
hence the series are expected to approach their conditionalmean when projected further ahead in the horizon.
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rejections at the 10% level reduces marginally from five to four for h = 1.16 Summarizing

the above results, both AR and ESTAR models appear to have predictive ability regarding

the behavior of the dollar-sterling real exchange rate.

The final column of Table 6 presents the results for the comparison of the AR-ESTAR

models. Despite the low empirical power of the forecast evaluation measures, ath = 1

all test statistics are significant at the 5% with the exception of the ENC-F , which has a

p-value marginally higher than 10%. The number of rejectionssubstantially reduces with

the forecast horizon and ath = 2 only the MSE-t test rejects the null hypothesis. This

may be due to the fact that both models share the prediction that the series will eventually

mean revert to its equilibrium value.

Overall, the out-of-sample results complement those of thein-sample tests and provide

strong support for the ESTAR model. In contrast to previous studies, which employ data

of higher frequency, our findings illustrate that nonlinearreal exchange rate models are

useful for forecasting the behavior of the real exchange rate.

5 Conclusion

This paper utilizes long-spans of data in order to investigate the ability of the ESTAR

model to forecast the dollar-sterling real exchange rate. We pay special attention to model

specification by employing several recently proposed linearity and unit root tests as well

as bootstrap techniques. In turn, we investigate the small sample properties of several

forecast evaluation measures. Our results, in line with theliterature on forecasting from

16Lothian and Taylor (1996) and Siddique and Sweeney (1998) also show that AR models provide supe-
rior forecasts (in terms of the RMSE criterion) to the RW for the recent float.
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nonlinear models, illustrate the difficulty of detecting the superiority of STAR models to

AR models. Despite the low power of out-of-sample evaluation tests, we find that recursive

ESTAR forecasts for the actual real exchange rate series outperform all rival forecasts.

Consequently, researchers and practitioners can extract forecasting gains regarding the

behavior of the long-span real exchange rate series by employing nonlinear models.

A Appendix

A.1 Linearity Tests

Testing for the nonlinear part of Equation (2) gives rise to anuisance parameter problem

(Davies, 1977). Consequently, classical Lagrange Multiplier (LM) and Wald statistics may

not follow standard distributions. In order to circumvent this problem, Luukkonen et al.

(1988) suggest replacing the transition function by a Taylor series approximation around

γ = 0. Escribano and Jordá (1999) build upon the work of Luukkonen et al. (1988) and

propose the following auxiliary regression

yt = δ′
0xt + δ′

1xtyt−1 + δ′
2xty

2

t−1 + δ′
3xty

3

t−1 + δ′
4xty

4

t−1 + ut (9)

for testing linearity and distinguishing between ESTAR andLSTAR processes. The null

hypothesis of linearity corresponds toH1
0 : δ′

1 = δ′
2 = δ′

3 = δ′
4 = 0 and the selection

procedure between ESTAR and LSTAR is

1. Test the null of LSTAR nonlinearity,HL
0 : δ′

2 = δ′
4 = 0, with anF test,(FL).

2. Test the null of ESTAR nonlinearity,HE
0 : δ′

1 = δ′
3 = 0, with anF test,(FE).
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3. If the p-value ofFL is lower thanFE then select an ESTAR. Otherwise, select an

LSTAR.

The use of theF -test is based on the assumptions that the process under examination

is stationary and the error term in Equation (2) is i.i.d. However, a major concern in the

PPP literature is that real exchange rates exhibits a unit root in which case the asymptotic

distribution of linearity tests changes (Kiliç, 2004). Therefore, in order to avoid false

inference one should first test for a unit root in the real exchange rate series. If the unit

root hypothesis is rejected, the i.i.d. assumption can be relaxed by employing the wild

bootstrap method (see Pavlidis et al., 2009b).

Harvey and Leybourne (2007) derive a more general linearitytest statistic which has

the same critical values under the null hypotheses of a linear I(0) and a linear I(1) pro-

cesses. Rejection of the null therefore is indicative of nonlinearity and cannot be attributed

to a linear I(1) DGP.

The Harvey and Leybourne test procedure consists of two steps. First is the test of

linearity. Second, the order of integration of the linear ornonlinear process is determined.

Consider the case of an I(0) process. By settingp = 1 and taking a second-order Taylor

series expansion of Equation (1) aroundγ = 0 we obtain

yt = β0 + β1yt−1 + β2y
2

t−1 + β3y
3

t−1 + ut. (10)

Whilst, in the case of an I(1) variable, the Taylor expansion yields

∆yt = ϕ0∆yt−1 + ϕ1(∆yt−1)
2 + ϕ1(∆yt−1)

3 + εt.
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In order to combine both possibilities, I(0) and I(1), Harvey and Leybourne (2007) propose

the following regression model

yt = α0 + α1yt−1 + α2y
2

t−1 + α3y
3

t−1 + α4∆yt−1 + α5(∆yt−1)
2 +

+α6(∆yt−1)
3 + ηt. (11)

In the presence of serial correlation, Equation (11) is augmented with lags of the first dif-

ference of the dependent variable. The null hypothesis of linearity isH0 : α2 = α3 = α5 =

α6 = 0 against the alternative hypothesis (nonlinearity)H1 : at least one ofα2, α3, α5, α6

is different from zero. The corresponding Wald statistic is

WT =
RSS1 − RSS0

RSS0/T
,

where the restricted residual sum of squares (RSS1) comes from an OLS regression of

yt on a constant,yt−1, and∆yt−1. As Harvey and Leybourne point out, the distribution

of WT under the null differs depending on whether the process followed byyt is I(0) or

I(1). In order to make the limiting distribution ofWT homogeneous under the null, they

multiply it with a correction that is the exponential of a weighted inverse of the absolute

value of the Augmented Dickey Fuller (ADF) statistic,17

W ∗
T = exp(−b |ADFT |

−1)WT . (12)

17This approach is suggested by Vogelsang (1998).
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An expression for the value ofb is provided such that, for a given significance level, the

critical value ofW ∗
T coincides with that from aχ2(4). They also prove that, underH1, W ∗

T

is consistent at the rateOp(T ). The second step is to test whether the series is an I(0) or

an I(1) process.

A.2 Unit Root Tests

Kapetanios et al. (2003) develop a test of a unit root null against the alternative of a glob-

ally stationary ESTAR. Their test is also based on a Taylor approximation of the nonlinear

autoregressive model. For simplicity, assumingp = 1, d = 1, π1,1 = 1, π2,1 = −π1,1, and

c = 0, then (1) becomes

yt = yt−1 +
[
1 − exp

(
−γy2

t−1

)]
(−yt−1) + ut. (13)

Using the first-order Taylor expansion and rearranging yields

∆yt = δy3

t−1 + ut. (14)

Hence, the null and alternative hypotheses areH0 : δ = 0 andH1 : δ < 0, respectively.

The correspondingt-statistic is given by

tNL =
δ̂

s.e.(δ̂)
, (15)

where s.e.(δ̂) denotes the standard error ofδ̂. The asymptotic distribution oftNL converges

weakly to a functional of Brownian motions.
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The issue of possible residual autocorrelation can be addressed by augmenting Equa-

tion (14) with lags of the dependent variable. Further, in the presence of deterministic

components, the authors suggest replacingyt in Equation (14) with the residuals from the

regression ofy on an intercept (demean case) or an intercept and a time trend(detrend

case).

Kapetanios and Shin (2008) proceed in the spirit of Elliott et al. (1996) by employing

a GLS procedure in order to increase the power of the nonlinear unit root test. In the

case of a mean and a time trend in the data, the first step of the testing procedure includes

computing the GLS estimate ofθ in

yt = θ̃′zt + ỹt, (16)

by regressingyρ̄ = (y1, y2−ρ̄y1, . . . , yT −ρ̄yT−1)
′ onzρ̄ = (z1,z2−ρ̄z1, . . . ,zT −ρ̄zT−1)

′

wherezt = (1, t)′ andρ̄ = 1 − c̄/T so as to obtain the estimated residuals,ỹt.18 For the

demean casezt is replaced byzt = 1. Subsequently, Equation (14) is fitted to the GLS

demeaned or detrended series and thet-statistic,tGLS
NL , corresponding toH0 : δ = 0 is

obtained. Kapetanios and Shin (2008) illustrate that thetGLS
NL statistic, like thetNL, has a

non-standard distribution.

18Kapetanios and Shin (2008) setc̄ equal to -17.5 so that the asymptotic power of the test under the local
alternative is 0.5.
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Table 1: Unit Root Tests

Sample Period: 1791-1973

Case ADF ADF-HC tNL tNL-HC tGLS
NL tGLS

NL -HC

Demean −3.082∗∗ −3.321∗∗ −3.488∗∗ −4.687∗∗∗ −2.211∗ −2.866∗∗

Detrend −4.985∗∗∗ −5.192∗∗∗ −3.707∗∗ −3.469 −3.824∗∗∗ −3.648∗∗

Sample Period: 1791-2005

Case ADF ADF-HC tNL tNL-HC tGLS
NL tGLS

NL -HC

Demean −3.794∗∗∗ −3.991∗∗ −4.522∗∗∗ −5.314∗∗∗ −2.873∗∗ −3.258∗∗

Detrend −4.327∗∗∗ −4.532∗∗∗ −4.406∗∗∗ −5.013∗∗∗ −2.293 −2.598

Notes: ADF, tNL and tNL are the Augmented Dickey Fuller, the Kapetanios et al. (2003) and the
Kapetanios and Shin (2008) unit root tests statistics. HC indicates heteroskedasticity-robust versions.
∗ ∗ ∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10% significance level,respectively. Critical values
are constructed via Monte Carlo simulations.

Table 2: Linearity Tests

Escribano and Jordá (1999)
Period F FL FE

1791-1973 1.192 (0.114) 0.458 (0.610) 0.368 (0.695)
1791-2005 1.582 (0.043) 1.050 (0.244) 0.886 (0.329)

Harvey and Leybourne (2007)
Period W ∗

T

1791-1973 8.494 (0.078)
1791-2005 10.478 (0.033)

Notes:p-values are reported in parentheses. For the Escribano and Jordá (1999) testp-values are obtained
through the wild bootstrap procedure described in Pavlidiset al. (2009b).
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Table 3: Estimated Nonlinear Real Exchange Rate Model

Sample Period: 1791-1973

ŷt − 1.586
(63.598)

= ( 1.122
(13.834)

(yt−1 − 1.586
(63.598)

) + (1 − 1.122
(13.834)

)(yt−2 − 1.586
(63.598)

))

× exp(− 2.076
(3.508)
[0.005]

(yt−1 − 1.586
(63.598)

)2).

s = 0.067; Q1 = 0.005 [0.942]; Q5 = 3.941 [0.558]; ARCH1 = 0.059 [0.809];
ARCH5 = 0.220 [0.953].

Sample Period: 1791-2005

ŷt − 1.590
(81.518)

= ( 1.185
(16.053)

(yt−1 − 1.590
(81.518)

) + (1 − 1.185
(16.053)

)(yt−2 − 1.590
(81.518)

))

× exp(− 2.504
(4.357)
[0.000]

(yt−1 − 1.590
(81.518)

)2).

s = 0.068; Q1 = 0.002 [0.963]; Q5 = 4.133 [0.530]; ARCH1 = 0.079 [0.778];
ARCH5 = 0.416 [0.837].
Notes: Figures in parentheses and square brackets denote absolutet-statistics andp-values, respectively.
Thep-value for the transition parameterγ̂ is obtained through a simulation exercise, where the bootstrap
DGP is the unit root model.s is the standard error of the regression.Q1 andQ5 denote the Ljung-Box
Q-statistic for serial correlation up to order 1 and 5, respectively. ARCH1 and ARCH5 denote the LM
test statistic for conditional heteroskedasticity up to order 1 and 5, respectively.

Table 4: Empirical Size of Forecast Evaluation Tests

RW-ESTAR

Horizon MSE-t W-MSE-t ENC-t MSE-F ENC-F

1 0.056 0.089 0.061 0.058 0.058
2 0.058 0.079 0.053 0.056 0.048
3 0.054 0.072 0.056 0.055 0.047
4 0.038 0.056 0.039 0.058 0.045
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RW-AR

Horizon MSE-t W-MSE-t ENC-t MSE-F ENC-F

1 0.055 0.104 0.055 0.052 0.051
2 0.046 0.087 0.044 0.045 0.042
3 0.046 0.071 0.040 0.051 0.044
4 0.041 0.063 0.041 0.053 0.041

AR-ESTAR

Horizon MSE-t W-MSE-t ENC-t MSE-F ENC-F

1 0.043 0.034 0.040 0.067 0.066
2 0.046 0.023 0.047 0.050 0.055
3 0.049 0.032 0.051 0.056 0.054
4 0.052 0.033 0.052 0.059 0.047

Notes: The table shows the empirical size of the MSE-t, W-MSE-t, ENC-t, MSE-F and ENC-F test
statistics for the RW-ESTAR, RW-AR and AR-ESTAR pairs. The nominal significance level is 5% and
the horizons considered areh = 1, . . . , 4.

Table 5: Empirical Power of Forecast Evaluation Tests

RW-ESTAR

Horizon MSE-t W-MSE-t ENC-t MSE-F ENC-F

1 0.152 0.170 0.239 0.577 0.752
2 0.094 0.124 0.133 0.588 0.730
3 0.078 0.096 0.111 0.566 0.709
4 0.079 0.095 0.114 0.528 0.680

AR-ESTAR

Horizon MSE-t W-MSE-t ENC-t MSE-F ENC-F

1 0.237 0.163 0.203 0.269 0.220
2 0.209 0.121 0.170 0.176 0.124
3 0.163 0.103 0.142 0.106 0.064
4 0.137 0.071 0.108 0.060 0.025

Notes: The table shows the empirical power of the MSE-t, W-MSE-t, ENC-t, MSE-F and ENC-F
test statistics for the RW-ESTAR and AR-ESTAR pairs. The nominal significance level is 5% and the
horizons considered areh = 1, . . . , 4.
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Table 6: Comparing Forecasts for the Dollar-Sterling Real
Exchange Rate, 1974-2005

Panel A — MSE-t test
Horizon RW-ESTAR RW-AR AR-ESTAR

1 1.827 (0.047) 1.441 (0.091) 1.702 (0.019)
2 1.790 (0.067) 1.514 (0.129) 1.281 (0.048)
3 1.664 (0.114) 1.600 (0.134) 0.836 (0.098)
4 1.670 (0.118) 1.702 (0.123) 0.357 (0.203)

Panel B — W-MSE-t test
Horizon RW-ESTAR RW-AR AR-ESTAR

1 1.718 (0.053) 1.547 (0.066) 1.354 (0.032)
2 1.682 (0.069) 1.654 (0.083) 1.146 (0.062)
3 1.593 (0.095) 1.647 (0.099) 0.815 (0.121)
4 1.617 (0.097) 1.695 (0.104) 0.528 (0.190)

Panel C — ENC-t test
Horizon RW-ESTAR RW-AR AR-ESTAR

1 2.016 (0.066) 1.794 (0.105) 1.942 (0.033)
2 1.979 (0.105) 1.929 (0.134) 1.607 (0.062)
3 1.942 (0.143) 2.077 (0.131) 1.157 (0.146)
4 2.054 (0.145) 2.276 (0.130) 0.641 (0.295)

Panel D — MSE-F test
Horizon RW-ESTAR RW-AR AR-ESTAR

1 17.842 (0.000) 11.715 (0.002) 5.369 (0.046)
2 24.793 (0.000) 17.884 (0.008) 5.651 (0.108)
3 29.577 (0.002) 24.756 (0.016) 3.657 (0.181)
4 37.289 (0.007) 34.970 (0.017) 1.583 (0.254)

Panel E — ENC-F test
Horizon RW-ESTAR RW-AR AR-ESTAR

1 22.449 (0.001) 15.616 (0.003) 6.361 (0.104)
2 30.060 (0.002) 23.754 (0.013) 6.934 (0.181)
3 36.531 (0.013) 32.791 (0.019) 4.729 (0.302)
4 47.439 (0.020) 46.750 (0.023) 2.528 (0.393)

Notes: The table shows the MSE-t, W-MSE-t, ENC-t, MSE-F and ENC-F evaluation measures for
the comparison of actual real exchange rate forecasts from the ESTAR, AR and RW models. Bootstrap
p-values are reported in parentheses. The horizons considered areh = 1, . . . , 4.
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