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Abstract

Economic growth models under uncertainty and rational agents with CRRA utility
have been shown to provide quite fragile explanations of consumers’choice as equlib-
rium comsumption paths (expected utility) are drastically dependant on distributional
assumptions. We show that assuming a SNP distribution for random consumption
provides stability to general equilibrium models as expected utility exists for any value
of the marginal rate of substitution over time.

JEL classification: D80.

Keywords: Bayesian learning; Rational expectations; Semi-nonparametric distribu-
tions.

1 Introduction

King et al. (1990) and Geweke (2001) highlight a number of diffi culties in the application of

rational expectations models to choice under uncertainty when the distribution of micro and

macro aggregates is heavy-tailed. They show that when a Student’s t distribution rather

than log normality is assumed, the constant relative risk aversion (CRRA) expected utility
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model (EU ) does not have a solution leading to operational problems in the theory of choice.

Further Geweke notes that even when log normality is assumed EU does not have a solution

regardless of the priors from which Bayesian learning begins. More generally, Geweke (2001)

shows that general equilibrium models which embody rational expectations are quite fragile

with respect to different distributional assumptions (which are often non distinguishable on

econometric grounds) and infinitesimal changes in over-time marginal rates of substitution

which can lead to different equilibrium paths with quite different properties (see also Pesaran

et al. 2007). Yoon (2004) also shows that similar fragility applies to a standard asset pricing

model when the endowment follows a stochastic unit root process. In this letter we propose

one solution to this problem. We assume that the logarithm of macroeconomic variables (e.g.

log-consumption) follow a semi-nonparametric (SNP) density . The assumption of a SNP

distribution for random log-consumption provides stability to general equilibrium models as

the expected CRRA utility exists under Bayesian learning for any value of the over-time

marginal rate of substitution. The rest of the letter is structured as follows. In Section one

we describe properties of the SNP probability distribution. In Section two we extend the

results on expected utility under CRRA assuming SNP densities, and also show that EU is

well-defined under Bayesian updating for this density. The final section is a brief conclusion.

2 The SNP distributions

This section describes properties of the SNP pdf which will be useful throughout the paper.

Proposition 1 (Cramér 1925)

Let x be a continuous random variable distributed according to a certain pdf f (x) which

has a continuous derivative such that∫ ∞
−∞

(
df(x)

dx

)2
e
1
2
x2dx <∞ and f(x) →

|x|→∞
0, (1)

then, f (x) can be expanded formally on a (infinite) series of derivatives of the standard

Normal density, denoted as φ(x), as follows

f (x) =

∞∑
s=0

κsHs(x)φ(x), (2)
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where κs = 1
s!

∫∞
−∞Hs(x)φ(x)dx, and Hs(x) is the sth order Chebyshev-Hermite polynomial,

which can be defined by the identity in equation (3),1

dsφ(x)

dxs
= (−1)sHs(x)φ(x), ∀s ≥ 1. (3)

Proposition 1 allows to define a general family of SNP distributions, g (x; δ),

δ ∈ Rn, δ =(δ1, ..., δn), which can approximate any probability density function (pdf

hereafter) to any degree of accuracy depending on the truncation order n.2

g (x; δ) =

[
1 +

n∑
s=1

δsHs(x)

]
φ(x) ' f (x) . (4)

The rationale behind this density expansion lies in the properties of the Chebyshev-Hermite

polynomials, which form an orthonormal basis with respect to the weight function φ(x) (see

Abramowitz and Stegun, 1972, or Kendall and Stuart, 1977, for further details).

∫ ∞
−∞

Hs(x)Hr(x)φ(x)dx =

 0,

s!,

s 6= r

s = r.
(5)

dHs(x)

dx
= sHs−1(x),∀s ≥ 1. (6)

Based on these properties other characterizations of the SNP distributions can be obtained

straightforwardly, for example equation (7) gives the cumulative distribution function (cdf

hereafter), and equation (8) is the moment generating function (mgf hereafter) (see Proofs

1 and 2 in the Appendix),

Gx(a) =

∫ a

−∞
g(x; δ)dx =

∫ a

−∞
φ(x)dx− φ(a)

n∑
s=1

δsHs−1(a), (7)

Mx(t) = E
[
etx
]
=

∫ ∞
−∞

etxg(x; δ)dx = et
2/2

[
1 +

n∑
s=1

δst
s

]
. (8)

1This is the so-called Gram-Charlier series of Type A. By convention it is usually assumed H0(x) = 1.
2The truncation of the expansion involves positivity issues, which can be addressed through either pdf

reformulations (Gallant and Nychka, 1987) or parametric constraints (Jondeau and Rockinger, 2001). In

most cases the use of maximum likelihood estimation techniques for empirical purposes does not require

any restriction to obtain well-defined densities at the optimal δs parameters. Also note that without loss of

generality we consider δ0 = 1.
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In addition, all order SNP distribution moments exist and are functions of the density

parameters. For example, the first four central moments of the SNP pdf are: E [x] = δ1,

E [x2] = 1 + 2δ2, E [x3] = 3δ1 + 6δ3 and E [x4] = 3 + 12δ2 + 24δ4, and the distribution has

zero mean and unit variance if δ1 = δ2 = 0 with δ3 and δ4 capturing the skewness and excess

kurtosis of the distribution, respectively (see Proof 3 in the Appendix).

3 The CRRA utility under SNP distributions

This section extends the EU results under CRRA by assuming SNP distributed micro and

macroeconomic variables. We show that in contrast with the Student’s t distribution, a

log-SNP pdf is valid for a wider range of possibilities thus providing consistency to rational

expectations models in regards to heavy-tailed distributional assumptions.

Definition 1

Let x = log(z) be a random variable with pdf f(x), and α a strictly positive parameter.

We define the EU of z > 0 under CRRA as

EU(z) =

 log(z)

(1− α)−1E [z1−α]

if α = 1,

if α 6= 1.
(9)

The EU function defined above is valid for any strictly nonnegative random variables,

e.g. consumption, provided that:

1. The function f(x) is known;

2. The mgf, Mx(t) = E [etx], exists for all t = 1− α and α 6= 1.

Then, under assumptions 1 and 2 it is clear to show that the EU(z) exists for all α 6= 1

and it is given by,

EU(z) = (1− α)−1E
[
e(1−α)x

]
= (1− α)−1Mx(1− α). (10)

The most common distributional assumption in the literature on choice theory for the

pdf of z is the lognormal, i.e. x ∼ N(µ, σ2), as it delivers estimates with almost surely

known properties. From a pragmatic viewpoint, improvements in model reliability and
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theory predictions can be achieved assuming alternative densities to the lognormal which

may better capture features of the data such as heavy tails. A straightforward way of

assuming a heavy-tailed distribution for x is by means of the Student’s t distribution with

ν degrees of freedom, i.e. x ∼ t(µ, σ2; ν). But under this assumption the CRRA utility

is shown not to be well-defined since the mgf of the Student’s t distribution fails to exist

for any t 6= 0. This case is examined in Geweke (2001) and points out the limitations of

the CRRA utility when the lognormal assumption is relaxed to incorporate a more realistic

heavy-tailed pdf, (see also Kendall and Stuart (1977) p. 60). If period utility is bounded

and expected utility guaranteed to exist, Geweke’s result would not apply. This is the case

for some classes of HARA utility function (e.g. Cogley, 2009). It is also possible to obtain

existence of expected utility even though period utility is unbounded. For instance, in the

case of a ‘finite-state’economy (see Cogley and Sargent, 2008).

Definition 2

We say that variable z > 0 is log-SNP distributed if the pdf of the variable x = log(z) is

that in equation (4) above, x ∼ SNP (δ). For that variable, and provided that α > 0, the

EU consistent with the CRRA hypothesis is defined as,

EU(z) =


log(z)

(1− α)−1e(1−α)2/2
[
1 +

n∑
s=1

δs(1− α)s
] if α = 1,

if α 6= 1.
(11)

The EU in equation (11) is well-defined as all order moments of the SNP distribution and

the mgf (equation (8)) exist. Consequently the log-SNP model appears useful as a method

of generating solutions in the EU model when disdtributions are assumed to exhibit heavy

tails.

We also note that assumption 1 does not seem to be consistent under CRRA if the EU is

accomplished by Bayesian updating. This fact makes rational expectations models dependent

not only on the distributional assumptions but also on the subjective distribution of its priors.

In this case Geweke (2001) argues that the EU fails to exist even in the lognormal case and

regardless of the priors from which Bayesian learning begins.3 Nevertheless, conditions can be

3See Examples 4 and 5 in Geweke (2001). It is worth mentioning that recent contributions in the area

of asset pricing have circumvented the problems with Bayesian learning highlighted by Geweke in different
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found for which the EU is well-defined under Bayesian updating. In particular, Definition 3

below describes the EU for log-SNP nonnegative random variables in a Bayesian framework.

Definition 3

Let x = log(z), z > 0, be a random variable with pdf g (x; δ) (equation (4)) where

the parameter vector δ is unknown and has subjective pdf ϕ(δ) with support Rn. If

E(x) =

∫
· · ·
∫
∆

E [x |δ ] ϕ(δ)dδ1 · · · dδn exists, then

EU(z) =

 E(x)

(1− α)−1Eδ [Mx(1− α; δ)]

if α = 1,

if α 6= 1,
(12)

since Mx(1− α; δ) exists for all δ ∈ Rn and is finitely integrable with respect to δ.

For example, if x |(δ) ∼ SNP (δ) and di ∼ N(δi, q) ∀i = 1, ..., n,4 then, x ∼ SNP (δ). In

this case, it follows that

EU(z) =


δ1,

(1− α)−1e(1−α)2/2
[
1 +

n∑
s=1

δs(1− α)s,
] if α = 1,

if α 6= 1.
(13)

The example above illustrates the fact that the log-SNP pdf may be used to overcome the

fragility of rational expectations models under CRRA utility and reasonable assumptions

about the subjective distribution of SNP pdf parameters.

4 Conclusion

Recent evidence in the literature (see the seminal paper of Geweke (2001)) shows that

traditional equilibrium models of growth under the common assumptions of CRRA utility

and rational expectations may not be well-defined when macroeconomic variables exhibit

ways. Bidarkota et al. (2009) use a sub-family of α−stable distributions (the ones with maximal negative

skewness of −1) to provide an operational theory under uncertainty for that particular case. Bakshi and

Skoulakis (2010) develop further the model by Weitzman (2007) and obtain a model that (with subjective

expectations) yields well-defined expected utility and finite moment generating function of the predictive

distribution of consumption growth.
4E.g., given a prior di ∼ N(di, q) and T i.i.d. observations x1, ..., xT , q−1 = q−1 + T and di =

q
(
q−1di + Tx

)
. See Example 3 in Geweke (2001).
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heavy tails and/or learning is accomplished by Bayesian updating. In these cases the

existence of expected utility becomes very fragile with respect to the distributional

assumptions leading to a non-operational theory of choice, particularly when the model

tries to embody high levels of economic uncertainty through heavy-tailed distributions.

In this paper we follow an alternative approach to that of Geweke (2001) to recover an

operational theory of choice. We propose the replacement of the traditional assumption

of lognormality by (possibly heavy-tailed and skewed) log-semiparametrically distributed

random macroeconomic variables (e.g. log-consumption). The advantages of this approach

are twofold: a) As in Geweke (2001), it provides stability to the existence of the agents’

expected utility under CRRA and Bayesian learning, and b) it provides the agents with

the possibility to better identify the probabilities of extreme events which may occur under

economic situations of high uncertainty. Thus, while Geweke (2001) provides a solution

to the stability of expected utility through modifications of the agents’Bayesian learning

process still under lognormality, we focus on the whole distributional assumption for log-

consumption. We argue that our approach allows to recover an even more operational theory

of choice with CRRA utility, Bayesian learning and, in particular, heavy-tailed distributed

random consumption.

Appendix

Proof 1 . The cdf of the SNP distribution is given by,

Gx(a) =

∫ a

−∞
g(x; δ)dx =

∫ a

−∞
φ(x)dx+

n∑
s=1

δs

∫ a

−∞
Hs(x)φ(x)dx =

=

∫ a

−∞
φ(x)dx−

n∑
s=1

δsHs−1(x)φ(x)
∣∣a
−∞

=

∫ a

−∞
φ(x)dx− φ(a)

n∑
s=1

δsHs−1(a), (A1)

since limx→±∞Hs(x)φ(x) = 0 ∀s ≥ 1, we obtain∫
Hs(x)φ(x)dx =

∫
(−1)sd

sφ(x)

dxs
dxt = (−1)s

ds−1φ(x)

dxs−1

= (−1)s(−1)s−1Hs−1(x)φ(x) = −Hs−1(x)φ(x). (A2)
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Proof 2 . The mgf of the SNP distribution is given by,

Mx(t) =

∫ ∞
−∞

etxg(x; δ)dx =

∫ ∞
−∞

etxφ(x)dx+

n∑
s=1

δs

∫ ∞
−∞

etxHs(x)φ(x)dx

= et
2/2 +

n∑
s=1

δs

[
−etxHs−1(xt)φ(xt)

∣∣∞
−∞ +

∫ ∞
−∞

tetxHs−1(xt)φ(xt)dx

]

= et
2/2 +

n∑
s=1

δs

∫ ∞
−∞

tsetxφ(x)dx = et
2/2

[
1 +

n∑
s=1

δst
s

]
. (A3)

Integrating by parts and taking into account the property in (6) and etxHs(x)φ(x) −→
x→±∞

0

∀s ≥ 1, we have,

u = etx =⇒ du = tetxdx (A4)

dv = Hs(x)φ(x)dx =⇒ v = −Hs−1(x)φ(x). (A5)

Proof 3 . The four first central moments of the SNP distributions are:

dMx(t)

dt
|t=0 =

[
et
2/2

{
t+

n∑
s=1

δs
(
ts+1 + sts−1

)}]
t=0

= δ1. (A6)

d2Mx(t)

dt2
|t=0 =

[
et
2/2

{
1 + t2 +

n∑
s=1

δs
(
ts+2 + (2s+ 1)ts + s(s− 1)ts−2

)}]
t=0

= 1 + 2δ2. (A7)

d3Mx(t)

dt3
|t=0 =

[
et
2/2

{
3t+ t3 +

n∑
s=1

δs
(
ts+3 + 3(s+ 1)ts+1 + 3s2ts−1 + s(s− 1)(s− 2)ts−3

)}]
t=0

= 3δ1 + 6δ3. (A8)

d4Mx(t)

dt4
|t=0 =

[
et
2/2

{
3 + 6t2 + t4 +

n∑
s=1

δs
[
ts+4 + 3(s+ 1)ts+2

+(6s2 + 6s+ 3)ts + 2s(s− 1)(2s− 1)ts−2 + s(s− 1)(s− 2)(s− 3)ts−4
]
+
}]

t=0

= 3 + 12δ2 + 24δ4. (A9)
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