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1. What is forecasting?
2. Forecasting, Decisions & Uncertainty
3. Promotional forecasting

4. New sources of information




500000

450000

400000

350000

300000

Sales

250000

200000

150000

100000

50000 [ [ [ [ [ [ [
2011wW1 2011wW2 2011wW3 2011w4 2011W5 2011W6 2011wW7

Week

What is forecasting? = A process perspective

1.

2.
3.
4

Identify systematic pattern in the past (historical data)

Select (& parameterise) of an adequate model (set)

Execute forecasting model = extrapolate structure into future
Assess the accuracy of the model(s) in set



Decision making in organisations has at its core an element of forecasting
— Accurate forecasts lead to reduced uncertainty = better decisions

— Forecasts maybe implicit or explicit
Forecasts aims to provide information about the future, conditional on historical and
current knowledge

Company targets and plans aim to provide direction towards a desirable future.

_v Forecast

- Target

__________ > Forecast

Difference between targets and forecasts, at different
horizons, provide useful feedback



Forecasts are central in decisions relating to:
* |nventory management
* Promotional and marketing activities
* Logistics
* Human resource planning
* Purchasing and procurement
e Cash flow management
* Building new production/storage unit

* Entering new markets

Accurate forecasts can support

- Decision making

- Identifying and capitalising on opportunities
- Cost saving



Forecasting and uncertainty

Sales

Statistical forecasts are (often) able to provide a forecast and a degree of uncertainty,

reflected in the prediction intervals = Probability that true value will lie within bounds.
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Additional useful information will lead to tighter prediction intervals

— Less uncertainty about the future



Where does this uncertainty come from?

Noise (or randomness) is inherently unforecastable = it has no structure, otherwise it
should be captured by the forecasting method used.

Noise in practice consists of all the information that is impossible to collect or observe,
such as the actions of individuals or the mechanics of ill-understood systems. As such it
follows an unknown distribution that has no structure.
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It is impossible to predict whether the noise time series will go up or down, as there is no
structure. We may be fooled in seeing patterns in the noise, but there are none! Typically
once more sample is collected this becomes clear 2 Noise cannot be forecasted!

Note that no structure means NO DYNAMICS, NO TREND and NO SEASONALITY in the
noise = just randomly fluctuates around zero.




Let us consider the following example. We collect a time series of stock prices every
minute:

% change

Hours

Is there a systematic pattern there? Sure, there is a repeating 45 minutes cycle
No! It's random

How do | know it is random?

a) | created it so!

b) | need to force the “pattern” to fit the data. Why am | changing its level? Why
am | leaving gaps between cycles?

c) | focus on only what | can “explain” and | am not being objective.
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Then for forecasters the key question is:
“What additional information can we source to reduce the uncertainty?”

We will investigate this in the context of promotional modelling:

* Advances in promotional models
* New sources of information
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Use statistics for structured tasks that can be automated
Use human expertise for events

Statistical
CEETE
Forecast

Expert

Judgement

Final
Forecast

Time series methods:
e.g. exponential
smoothing

Special events:
e.g. promotions,

Demand planning
forecast

calendar events, etc

Promotional and advertising activity is one of the main reasons for adjusting

statistical forecasts




Promotional Model Basics

What is the best forecast for this time series?

Out-of-stock: Promotion wasted
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No additional information?

Use univariate modelling;
e.g. exponential smoothing

24-May-2008  11-Oct-2008  28-Feb-2009 18-Jul-2009

Lets assume a company goes on with this forecast
- Take a look at the inventory side of things

(Also, how do you forecast the next promotion?)
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Promotional Model Basics

What is the best forecast for this time series?
Enough stock, but...
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Unstructured information
Use univariate modelling +
judgemental adjustments
(S&OP meetings = planners +
marketers)

Promotional modelling requires building formal
statistical models that capture promotions in their
forecasts (systematically - elasticities = decision
making) and therefore provide correct safety stolg:ks




Promotional Model Basics

If the inventory does not account for the uncertainty (due to events/promotions)
correctly, then...




Sales

We can build a forecast using statistical models, enhanced by:

Promotions
Price

Store

Events
Competition
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What can go wrong? A lot!

Effects across SKUs, categories, ...

Cannibalisation, how to identify it?

Multiple effects = multicollinearity (i.e. things happening together and
then it is difficult to identify which causes what)

Modelling with limited data (or no data!)

Scalability = run the model for multiple time series within reasonable
times



Promotional Forecasting: Case Study

Used a subset of 60 SKUSs:

« Sales

* One-step-ahead system forecasts (SF)

* One-step-ahead adjusted or final forecasts (FF)
* Promotional information:

Price cuts

Feature advertising

Shelf display

Product category (22 categories)

Customer (2 main customers)

Days promoted in each week

o 0hAWNE

Data withheld for out-of-sample forecast evaluation
Some products do not contain promotions in the parameterisation (historical)
sample
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Promotional Forecasting: Case Study
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Periods highlighted in grey have some type of promotion
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Promotional Forecasting: Case Study

The advanced promotional model contains the following elements:

* Principal component analysis of promotional inputs: The 26
promotional inputs are combined a new composite inputs that are no
longer multicollinear — Only a few new inputs are needed now, simplifying
the model.

* Pooled regression: When an SKU does not have promotions in each
history, we pool together information from other SKUs (the product
category information is available to the model) to identify an average
promotional effect. When enough promotional history for an SKU is
available we do not pool information from other products

« Dynamics of promotions: Carry-over effects of promotions, after they are
finished, are captured

 Dynamics of the time series: Demand dynamics are modelled for both
promotional and non-promotional periods.
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Let’s assume that we have 3 different products with promotions and a 4t that is new,
without any promotional history. All products have promotion type A and some
promotion type B.

Product| PromoA PromoB Productll PromoA PromoB Product lll Promo A Product IV PromoA PromoB

144 0 0 134 0 0 159 0 155 0 0
1032 1 1 184 0 0 420 1 153 0 0
1046 1 1 120 0 0 511 1 180 0 0
1128 1 1 161 0 0 577 1 0 1
997 1 1 771 0 1 530 1 1 1
111 0 0 495 1 0 145 0 1 1
118 0 0 711 0 1 129 0
156 0 0 522 1 0 112 0
123 0 0 507 1 0 192 0
159 0 0 482 1 0 113 0
138 0 0 180 0 0 128 0 _
131 0 0 175 0 0 197 0 No promotional

1 1 0 1 0 history

1 1 0 1 0

0 0 0 0 0

A prolonged
Multicollinearity Fine promotion seen

only once =




Modelling tricks

With pool regression, instead of fitting four models, we pool the datasets and fit only a
single one.

Sales PromoA PromoB : : ;
144 0 0 Pooled estimation lifts ]
1032 1 1 multicollinearity
1046 1 1 [ _—
Product | PromoA Promo B
134 0 0 e 144 0 0
184 0 0 103 1 1
120 0 0 104¢ Product Il Promo A Promo B
\ 112¢ 121 8 8 and provides estimates
129 s = : =+ 120 |Product Il Promo A for products with no
0 1 0 S~ )
c11 . 0 \ 161 | 159 0 history
420 1 —
511|Product IV Promo A Promo B
155 0 0 =9 155 0 0
153 0 0 \

180 0

T~ 4 .| 153 0 0

Now we estimate the model on the pooled data.
Sometimes it is helpful to include indicator dummies
for each different product.
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Promotional Forecasting: Case Study

A series of benchmark models are used to assess the performance of the
proposed promotional model

« System Forecast (SF): The baseline forecast of the case study company

» Final Forecast (FF): This is the SF adjusted by human experts in the
company

« Naive: A simple benchmark that assumes no structure in the demand data

« Exponential Smoothing (SES): An established benchmark that has been
shown to perform well in supply chain forecasting problems. It cannot
capture promotions

» Last Like promotion (LL): This is a SES forecast adjusted by the last
observed promotion. When a promotion occurs the forecast is adjusted by
the impact of the last observed promotion

Note that only FF and LL can capture promotions from our benchmarks
24



Promotional Forecasting Case Study

Forecast accuracy under promotions Human judgment
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DR is more accurate than human experts and statistical benchmarks in promotional
periods




Promotional Forecasting Case Study

High error

No promotions Promotions Overall

Low error

* Advanced promotional model is consistently Improvement of DR over FF

the most accurate
Overall +14.4%

e Substantially outperforms current case study -

company practice (FF) Promotions

* Major improvements during promotional No promotions

periods ' ' '
0.0% 10.0% 20.0% 30.0% 40.0%
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Tracking market and economic development under financial uncertainty (or
crisis) is notoriously difficult. Let us try a difficult task:

* Can we predict better the movements of the Greek economy looking at online
information?

The focus for nowcasting is to "predict’ the current state of a variable, often the GDP,
when it is currently unknown, due to substantial publication lags of itself or its
covariates. Also, its publication frequency may be lower than our decision making.

For a company such nowcasts can be important for strategic decision making.



It is fairly easy to either download online text, or access online using a crawler. Let
us assume that we have a database containing online textual content.

We can mine the text for keywords of interest, however just the frequency of word
occurrence is not useful, as it is out of context.

Instead we can look for pairs of words. The hypothesis is:

“If two keywords are close by in a text (not necessarily in the same sentence) then
the author implicitly or explicitly places some semantic association on them’

1.Define © keywords 2.Find all keyword 3.Find keyword
Th be identified pairs distances & count
€s€ can be ldentitie — (© frequency per period
using experts or mined There.are. P = (2) q AL
tag clouds combinations, but Find location of
maybe not all are keywords and then

meaningful intra-pair distances
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0.04
002,
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5588528885882 32388388:33885838%835 |
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06 '
recession - deficit -0.745
euro - stock exchange 0.730
IMF - Troika -0.702
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A key problem for building statistical models using such variables is the identification and
selection of the appropriate ones:

* Large number of variables causes the “fat regression’ problem - more variables than
datapoints

* Spurious correlations and multicollinearity = weak forecasting models

* Selection a small subset of variables = better estimation/performance, more
transparency -2 less chance of overfitting

Two popular approaches in resolving this issue is regularisation (e.g. LASSO regression)
and Principal Components Analysis.

The first tries to build parsimonious models by penalising heavily the inclusion of new
variables

The second tries to combine the variables in a way that the maximum amount of
variance is explained by only a handful of composite variables.



Having identified and selected variables we can create statistical now-/forecasting

models.

Greece GDP growth

GDP growth
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Using online information we were able to nowcast more accurately the movements of
the economy, and crucially predict the existence and timing of the observed triple dip in
the growth of GDP, which had been notoriously difficult.

Similar techniques can be applied to increase the information base for various business
forecasts, such as market share, evolution of segments, demand forecasting, etc.



Take-aways

* Forecasting vs target: keep them separate and use them!
* Model and manage uncertainty: you improve your forecast accuracy = so what?
* Itis not the point forecast that matters, but the uncertainty around it.
* Forecasting for a retailer, many complex problems
— Noisy & limited data
— Multiple lines and categories
— Statistical complications
- Recent advances in modelling can address effectively many of these.

* Use of innovative sources of information: listen to your customers
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Thank you for your attention!

Nikolaos Kourentzes

Lancaster University Management School
Lancaster Centre for Forecasting - Lancaster, LA1 4YX
email: n.kourentzes@Iancaster.ac.uk
URL: http://nikolaos.kourentzes.com

www.forecasting-centre.com/

Full or partial reproduction of the slides is not permitted without author’s consent. Please contact
n.kourentzes@lancaster.ac.uk for more information.
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