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e
What is good forecasting performance’?

e Forecasting is important — that’s why we are all here!

* Evaluating forecasting performance is necessary, but what constitutes good
forecasting performance?

* Forecast bias: on average how much we over/under-forecast

* Forecast error magnitude (accuracy): how big are the errors irrespective of
direction

* A ‘good performing forecast’ should be fine at both = these are not always
highly correlated!

* How to measure accuracy and bias?
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e
Metrics

* Alot of research and innovations = mostly motivated by the statistical
properties of metrics

* Main focus on accuracy not bias

* What should a good metric do (not all necessary, but nice to have)?
* Be unbiased and symmetric (unless weighting is desirable), unlike MAPE
e Scale-independence, unlike MSE & MAE

* Possible to calculate in a wide range of circumstance, unlike MAPE &
GMRAE

* Easy tointerpret (correctly!) to non-statisticians, unlike SMAPE & MASE

* Report what is supposed to! E.g., for slow moving items most metrics are

misleading.
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Metrics of accuracy (1/3)

* Scale dependent: MSE, RMSE, MAE, ...

* Not useful for presenting accuracy across series

e Consider your loss function
* Percentage errors: MAPE, sSsMAPE, MAAPE, ...

e Biased (not symmetric) and problematic in calculation
 MAPE is regarded as easy to interpret, but in fact misleading (not
symmetric)

* SMAPE is just wrong

 Mean Arctangent Absolute Percentage Error:
* MAAPE =n™! Z (ﬂrctan( u ))

j=1 Yi

* Nice idea to avoid scaling issues, but: not-symmetric; undefined Q

when y =f = 0; low sensitivity; interpretation in radians! &
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-
Metrics of accuracy (2/3)

* Scaled errors: MAE/mean, sSMAE, sMSE, MASE, ...
*  MAE/mean scales on sample used for measurement, not great for slow
movers. SMAE & sMSE scale with in-sample mean so less problematic
* But assumes a lot: why is the mean an appropriate scaling factor?
« MASE:

* Similar to MAE/mean, but instead of mean use in-sample Naive
MAE - hard to interpret (different samples/horizons)

e Also biased, should be using geometric mean
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Metrics of accuracy (3/3)

* Relative errors (relative on individual errors): MRAE, MdRAE, GMRAE, ...

* Itis aratio 2 use geometric mean

* GMRAE:
e Easy to interpret and forces use of benchmark

e But can be problematic to calculate = Trimming is subjective
* Relative errors (relative on summary errors): RMAE (CumRAE), AvRelMAE, ...

* Retain interpretability while typically easy to calculate
e Ratio 2 use geometric mean = AvRelMAE

* AvRelMAE: almost great! What about slow movers (calculation and loss
function)?
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Metrics of bias (1/1 — There are not many!)

* Mean Error (ME)

* Flagship bias metric, but scale dependent

* Mean Percentage Error - do not use due to asymmetry!

* Scaled ME (sME) = similar to SMAE and sMSE, what is your scaling?
* One more point: ME is not ‘clean’ bias: MSE = Var(f) + ME? + o

 OK for researchers, but do users understand this?
 Mean Directional Bias (MDB)
e MDB=n""! (Z sgn(e;) + Z sgn(e;) | = n! (Tpos = Tneg)

e =0 e4<(

* Retains only direction, not size of bias = scale independent
* Bounded between [-1, 1] = so great for benchmarking comparisons

* Special metrics: Periods-In-Stock (PIS), ... Q

* Developed for particular applications and are not general. ﬁfr
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Root Error

 We propose a different loss function that brings some useful properties

* Retain more information

* Keep connection between accuracy and bias
* Geometric interpretation

e Symmetric & robust

* We calculate the square root of error, positive errors remain real, negative
become imaginary:

zj = /€ = a;j + ib; i = =1
SRE=Y) e;=) aj+i) b
j=1 j=1 j=1

J','urRE — H_ISRE.
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e
Root Error - Visualise

e Consider some forecasts with errors:
A = (_101 21 21 3) 3)1 B = (_501 21 _11 _11 50)1 C = (_31 31 _21 210)1 D = (_61 _51 21 1I O)

Mean Root Error
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Root Error — Properties

Geometric interpretation of
contribution of each forecast
error

Bias representation in the complex plane

Robust & symmetric loss
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-
Root Error — Representations

* Any complex number has a polar coordinates view

* Using the polar we can get the magnitude r and angle y

Bias representation in the complex plane

4 .dll.
This is accuracy!
r=+va?+ b = |z,
52 17
arctan(2), ifa >0 Eina
o ar
=4 /2, if a = £ £
g /2, ifa=0and b= 0 55 0ol N
w4, ifa=b=0 ZE
0.47
0.2r -
Y
 So the root error always % 05 1
contains both bias and L oA
This is bias!
accuracy and shows how they e
are connected! &




e
The bias coefficient k

* T1t/4is the unbiased behaviour. We can normalise y to a scale and unit free bias
metric, the bias coefficient k:

 Bounded between [-1, 1]. -1 is always negatively biased, and 1 is the opposite. 0
is unbiased.

* No units or scale: can be used to benchmark across forecasts, forecasters,
companies, sectors, ...

e (Can be calculated always

e Has an intuitive interpretation: you are biased 100 k %
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e
Comments on Root Error

* (Can be scaled to become scale independent (important for the accuracy side)

t?j Ej

. = —_— =
) =T

* Scaling factor can be anything (mean, standard deviation, MAE of in-sample
Naive, ...). Scaling does not affect the bias side of the metric.

* |t can be shown that accuracy part of RE can be translated into GMRAE (or
equivalently GMRSE).

|t can be shown that MDB is RE without the size of errors.

 The 'bias’ of RE is not the bias of ME! As the accuracy of MAE is not the
accuracy of MSE...
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e
Fast Moving Goods

* Experiment on 229 FMCG

Metric Naive ETS MAPA Naive ETS MAPA

Mean Median
sME 0.029 -0.020 -0.014 0.020 -0.036  -0.038
MPE % —00 —00 —00 -19.84% -20.91% -22.42%
sMSE 1.961 1.205  1.165 1.641 0.943 0.921
sMAE 0.955  0.756  0.744 0.954 0.746 0.728
MAPE % ¢ 50 50 49.43% 43.39% 42.11%
MAAPE 0.437  0.498 0.495 0.436 0.472 0.468
sGRMSE 0.595 0.562  0.553 0.612 0.553 0.541
k % 6.31% -10.56% -11.60% 5.66% -10.50% -14.46%
|sMRE] 0.752  0.633  0.625 0.764 0.631 0.622

 The table tells us: it can be calculated always, robust to extremes (small

difference mean vs. median) and therefore retains ranking of methods. E
&
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e
Slow Moving Goods

e 5,000 slow moving series. Compare against the meaningless zero-forecast.

Metric SBA  MAPA _ Zero SBA  MApA  Zero
Forecast Forecast
Mean Median

sME -0.013 -0.006 0265 v -0.153 -0.146 0.117 -
sAPIS 22474 22281 20.172 - 17.488 17.154 6.327 -
sMSE 5.348  5.350 5419 v 0.167 0.163 0.131 -
sMAE 0.497 0491 0.265 -  0.363 0.359  0.117 -
MAAPE*  1.498 1.498 - — 1501 1.501 - -
k % “70.7%  -70.2% 100.0% v -T7.1% -76.4% 100.0%
IsMRE]| 0.513 0.507 0.127 -  0.513 0.504  0.104 -

MAAPE could not be calculated for the Zero Forecast as in many cases AAPE
was indeterminate. Therefore no best method is identified.

=

&

LCF

18/21



e
Visualisations
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e
Conclusions

* Alot of work on accuracy, limited work on bias metrics = both are important
* A new metric: Root Error that contains both accuracy and bias
* The metric itself is complex, but the calculation of its components is trivial:
e Accuracy: symmetric & robust and can be scaled
* Bias: Robust & scale independent
* Bias coefficient: great for benchmarking
* Powerful visualisations = geometric interpretation of metric.
* Works as intended for several types of application.

* Connection between bias & accuracy permits modelling highly nonlinear
behaviour easily.
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Thank you for your attention!
Questions?

Working paper available on request!

Nikolaos Kourentzes

email: n.kourentzes@Ilancaster.ac.uk

blog: http://nikolaos.kourentzes.com

@ Lancaster University Lancaster Centre for
(33 Forecasting
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e
Fast Moving Goods

Bias Coefficient
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Judgemental adjustments: RE trick!

* Fit a polynomial to explain the connection between forecast bias and forecast
error of final adjusted forecasts.
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* Retains the connection between bias & accuracy, allows capturing highly E
nonlinear behaviours easily. an



