Measuring forecasting performance A complex task!

Nikolaos Kourentzes^a Juan R. Trapero^b Ivan Svetunkov^a

^aLancaster University; ^bUniversidad de Castilla-La Mancha

International Symposium on Forecasting 2016 21/06/2106

Lancaster Centre for

Agenda

What is good `forecasting performance'?

- Forecasting is important that's why we are all here!
- Evaluating forecasting performance is necessary, but what constitutes good forecasting performance?
 - Forecast bias: on average how much we over/under-forecast
 - Forecast error magnitude (accuracy): how big are the errors irrespective of direction
- A `good performing forecast' should be fine at both → these are not always highly correlated!
- How to measure accuracy and bias?

Metrics

- A lot of research and innovations → mostly motivated by the statistical properties of metrics
- Main focus on accuracy not bias
- What should a good metric do (not all necessary, but nice to have)?
 - Be unbiased and symmetric (unless weighting is desirable), unlike MAPE
 - Scale-independence, unlike MSE & MAE
 - Possible to calculate in a wide range of circumstance, unlike MAPE & GMRAE
 - Easy to interpret (correctly!) to non-statisticians, unlike sMAPE & MASE
 - Report what is supposed to! E.g., for slow moving items most metrics are misleading.

Metrics of accuracy (1/3)

- Scale dependent: MSE, RMSE, MAE, ...
 - Not useful for presenting accuracy across series
 - Consider your loss function
- Percentage errors: MAPE, sMAPE, MAAPE, ...
 - Biased (not symmetric) and problematic in calculation
 - MAPE is regarded as easy to interpret, but in fact misleading (not symmetric)
 - sMAPE is just wrong
 - Mean Arctangent Absolute Percentage Error:

• MAAPE =
$$n^{-1} \sum_{j=1}^{n} \left(\arctan\left(\left| \frac{y_j - f_j}{y_j} \right| \right) \right)$$

 Nice idea to avoid scaling issues, but: not-symmetric; undefined when y = f = 0; low sensitivity; interpretation in radians!

Metrics of accuracy (2/3)

- Scaled errors: MAE/mean, sMAE, sMSE, MASE, ...
 - MAE/mean scales on sample used for measurement, not great for slow movers. sMAE & sMSE scale with in-sample mean so less problematic
 - But assumes a lot: why is the mean an appropriate scaling factor?
 - MASE:
 - Similar to MAE/mean, but instead of mean use in-sample Naïve
 MAE → hard to interpret (different samples/horizons)
 - Also biased, should be using geometric mean

Metrics of accuracy (3/3)

- Relative errors (relative on individual errors): MRAE, MdRAE, GMRAE, ...
 - It is a ratio \rightarrow use geometric mean
 - GMRAE:
 - Easy to interpret and forces use of benchmark
 - But can be problematic to calculate \rightarrow Trimming is subjective
- Relative errors (relative on summary errors): RMAE (CumRAE), AvRelMAE, ...
 - Retain interpretability while typically easy to calculate
 - Ratio \rightarrow use geometric mean \rightarrow AvRelMAE
 - AvReIMAE: almost great! What about slow movers (calculation and loss function)?

Metrics of bias (1/1 – There are not many!)

- Mean Error (ME)
 - Flagship bias metric, but scale dependent
 - Mean Percentage Error \rightarrow do not use due to asymmetry!
 - Scaled ME (sME) \rightarrow similar to sMAE and sMSE, what is your scaling?
 - One more point: ME is not `clean' bias: MSE = Var(f) + ME² + σ
 - OK for researchers, but do users understand this?
- Mean Directional Bias (MDB)

• MDB =
$$n^{-1} \left(\sum_{e_j > 0} \operatorname{sgn}(e_j) + \sum_{e_j < 0} \operatorname{sgn}(e_j) \right) = n^{-1} \left(n_{pos} - n_{neg} \right)$$

- Retains only direction, not size of bias \rightarrow scale independent
- Bounded between [-1, 1] \rightarrow so great for benchmarking comparisons
- Special metrics: Periods-In-Stock (PIS), ...
 - Developed for particular applications and are not general.

Agenda

Root Error

- We propose a different loss function that brings some useful properties
 - Retain more information
 - Keep connection between accuracy and bias
 - Geometric interpretation
 - Symmetric & robust
- We calculate the square root of error, positive errors remain real, negative become imaginary:

$$z_j = \sqrt{e_j} = a_j + ib_j \qquad i^2 = -1$$
$$SRE = \sum_{j=1}^n \sqrt{e_j} = \sum_{j=1}^n a_j + i\sum_{j=1}^n b_j$$
$$MRE = n^{-1}SRE.$$

Root Error - Visualise

Consider some forecasts with errors:

A = (-10, 2, 2, 3, 3); B = (-50, 2, -1, -1, 50); C = (-3, 3, -2, 2, 0); D = (-6, -5, 2, 1, 0)

Mean Root Error

Root Error – Properties

Geometric interpretation of contribution of each forecast error

Robust & symmetric loss

Root Error – Representations

- Any complex number has a polar coordinates view
- Using the polar we can get the magnitude r and angle γ

$$r = \sqrt{a^2 + b^2} = |z|,$$

$$\gamma = \begin{cases} \arctan(\frac{b}{a}), & \text{if } a > 0 \\ \pi/2, & \text{if } a = 0 \text{ and } b > 0 \\ \pi/4, & \text{if } a = b = 0 \end{cases}$$
So the root error always contains both bias and accuracy and shows how they are connected!

The bias coefficient κ

• $\pi/4$ is the unbiased behaviour. We can normalise γ to a scale and unit free bias metric, the bias coefficient κ :

$$\kappa = 1 - \frac{\gamma}{\pi/4}$$

- Bounded between [-1, 1]. -1 is always negatively biased, and 1 is the opposite. 0 is unbiased.
- No units or scale: can be used to benchmark across forecasts, forecasters, companies, sectors, ...
- Can be calculated always
- Has an intuitive interpretation: you are biased 100 κ %

Comments on Root Error

• Can be scaled to become scale independent (important for the accuracy side)

$$\eta_j = \sqrt{\frac{e_j}{s}} = \frac{z_j}{\sqrt{s}}$$

- Scaling factor can be anything (mean, standard deviation, MAE of in-sample Naïve, ...). Scaling does not affect the bias side of the metric.
- It can be shown that accuracy part of RE can be translated into GMRAE (or equivalently GMRSE).
- It can be shown that MDB is RE without the size of errors.
- The `bias' of RE is not the bias of ME! As the accuracy of MAE is not the accuracy of MSE...

Agenda

Fast Moving Goods

• Experiment on 229 FMCG

Metric	Naïve	ETS	MAPA	Naïv	ve	ETS	MAPA
		Mean				Median	
sME	0.029	-0.020	-0.014	0.02	20	-0.036	-0.038
MPE $\%$	$-\infty$	$-\infty$	$-\infty$	-19.8	4%	-20.91%	-22.42%
sMSE	1.961	1.205	1.165	1.64	1	0.943	0.921
sMAE	0.955	0.756	0.744	0.95	54	0.746	0.728
MAPE $\%$	∞	∞	∞	49.43	3%	43.39%	42.11%
MAAPE	0.437	0.498	0.495	0.43	36	0.472	0.468
sGRMSE	0.595	0.562	0.553	0.61	2	0.553	0.541
κ %	6.31%	-10.56%	-11.60%	5.66	5%	-10.50%	-14.46%
sMRE	0.752	0.633	0.625	0.76	64	0.631	0.622

• The table tells us: **it can be calculated always**, **robust to extremes** (small difference mean vs. median) and therefore retains ranking of methods.

Slow Moving Goods

• 5,000 slow moving series. Compare against the meaningless zero-forecast.

Metric	SBA	MAPA	Zero		SBA	MAPA	Zero	
			Forecast				Forecast	
	Mean				Median			
sME	-0.013	-0.006	0.265	_√_	-0.153	-0.146	0.117	_
sAPIS	22.474	22.281	20.172	_	17.488	17.154	6.327	-
sMSE	5.348	5.350	5.419	\checkmark	0.167	0.163	0.131	-
sMAE	0.497	0.491	0.265	_	0.363	0.359	0.117	_
MAAPE*	1.498	1.498	-	-	1.501	1.501	-	-
к %	-70.7%	-70.2%	100.0%	\checkmark	-77.1%	-76.4%	100.0%	\checkmark
sMRE	0.513	0.507	0.127	-	0.513	0.504	0.104	_

MAAPE could not be calculated for the Zero Forecast as in many cases AAPE was indeterminate. Therefore no best method is identified.

Visualisations

19/21

Conclusions

- A lot of work on accuracy, limited work on bias metrics \rightarrow both are important
- A new metric: Root Error that contains both accuracy and bias
- The metric itself is complex, but the calculation of its components is trivial:
 - Accuracy: symmetric & robust and can be scaled
 - Bias: Robust & scale independent
- Bias coefficient: great for benchmarking
- Powerful visualisations \rightarrow geometric interpretation of metric.
- Works as intended for several types of application.
- Connection between bias & accuracy permits modelling highly nonlinear behaviour easily.

Thank you for your attention! Questions?

Working paper available on request!

Nikolaos Kourentzes email: <u>n.kourentzes@lancaster.ac.uk</u> blog: <u>http://nikolaos.kourentzes.com</u>

Appendix

Fast Moving Goods

Judgemental adjustments: RE trick!

• Fit a polynomial to explain the connection between forecast bias and forecast error of **final adjusted forecasts**.

• Retains the connection between bias & accuracy, allows capturing highly nonlinear behaviours easily.

