First results	Temporal Aggregation	Methodology	Conclusion

Variable Selection for long-term forecasting using temporal aggregation

Yves R. Sagaert, El-Houssaine Aghezzaf, Nikolaos Kourentzes, Bram Desmet

Department of Industrial Management, Ghent University

21/06/2016

Supply Chain Management constraints

Long term decisions require a good sales forecast

- Raw material
- Procurement negotiations
- Manufacturing and labor scheduling
- Capacity constraints
- Transportation

ISF 2016

Ghent University, Lancaster Centre for Forecasting, Solventure

Traditional Sales Forecasting

Long term sales forecasting are formulated:

- Historical data patterns (level, trend, seasonality, ...)
- Promotions
- Judgemental adjustments:
 - Collaborative input from clients
 - Newspapers and industry magazines
 - Rumors in the corridors

Judgemental input is known to be biased and inconsistent (Fildes and Goodwin 2007, Trapero et al. 2013)

- Information of exogenous leading indicators
 - Capturing market sentiment in external big data (Russom et al. 2011)

Leading Indicator Example: Tires for passenger cars (US)

The amount of newly registered cars (blue) is a leading indicator to the sudden drop (bold) in car tire sales (US) during the economic crisis of 2009-2010.

Ghent University, Lancaster Centre for Forecasting, Solventure

The curses of leading indicators

Curse of dimensionality

- Short fat data problem
- p > n : much more predictors than training sample

Curse of optimal leading effect

- Leading indicators exhibit leading information in advance
- \blacksquare pl \gg n : detecting optimal lead expands dimensionality

Curse of missing future information

- Indicators only exhibit information up to a certain point in time
- Clear need for unconditional forecasting

ISF 2016

Ghent University, Lancaster Centre for Forecasting, Solventure

	First results	Temporal Aggregation	Methodology	Conclusion
First results				

LASSO with limited sales history can improve on the company benchmark and on $\ensuremath{\mathsf{ETS}}$

Model	MAPE
Naive	17.205
Holt-Winters	18.590
Exponential Smoothing (ETS)	15.323
LASSO	13.781

Ghent University, Lancaster Centre for Forecasting, Solventure

Temporal aggregation

- Lower levels contain more noise and short term dynamics
- Cycles cannot be detected on lower frequency
- Capturing cycles is interesting for long term predictions

Temporal aggregation

- Indicator selected on lower levels contains more variance
- Indicator selected on high level is slower moving

ISF 2016

Variable selection

Low level:

$$\hat{Y}_{i} = \beta_{0} + \sum_{k=1}^{S} \beta_{k} D_{k} + \sum_{j=1}^{P} \beta_{i} x_{ij}, \qquad (1)$$

seasonality selected on AIC

High level:

$$\hat{Y}_i = \beta_0 + \sum_{j=1}^{P} \beta_j x_{ij} \tag{2}$$

Forecast modeling on low level:

- Seasonality if selected
- Predictors selected on low/high level

	First results	Temporal Aggregation	Methodology	Conclusion
Example	results			

The relative MAPE improvement between both variable selection methods

	1-6 months	6-12 months
Low level	5 - 7 %	
High level		1 - 6 %

Questions?

Thank you for your attention !

Yves Sagaert - yves.sagaert@ugent.be