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What are multiple seasonalities?

• Time series are often broken down into three components:
I Trend - the rate of increase/decrease of the series.
I Seasonality - a pattern which repeats regularly over a fixed

period.
I Error - a random quantity.

• Implicit assumption that there is only one seasonal pattern.
• Holt-Winters exponential smoothing based on this

assumption, as are many other base forecasting methods.
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What are multiple seasonalities?

• Sometimes there is clearly more than one seasonal influence
on the time series.

• For instance, half-hour of day and half-hour of week both
have a seasonal effect on the demand of electricity in the
series below.
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Literature

Exponential-smoothing based approaches in the literature:

• Double/triple seasonal ES (Taylor 2003, 2010).

• Intraday ES (Gould 2008)

• TBATS (De Livera et al. 2011)

• Parsimonious ES (Taylor and Snyder 2012).

Main motivation has been short-term load forecasting for
electricity (other utilities as well).
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A new motivation - retail

Demand in retail may be subject to multiple seasonal influences:
• Can we use multiple seasonal techniques?
• What adaptations need to be made?

Retail forecasting differs from short-term electricity load
forecasting in a few respects:

• Exogenous variables (price, promotions, etc.)
• Substitutable/complementary product effects.
• More hierarchies/levels to forecast.
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Double-seasonal ES

Adaptation of Taylor (2003) to single-seasonal ES.
Additive version:

Level: lt = α(yt − st−m1 − dt−m2) + (1 − α)(lt−1 + bt−1)
Trend: bt = β(lt − lt−1) + (1 − β)bt−1

Seas 1: st = γ(yt − lt−1 − bt−1 − dt−m2) + (1 − γ)st−m1

Seas 2: dt = δ(yt − lt−1 − bt−1 − st−m1) + (1 − δ)dt−m2

with forecasting equation:

ŷt+1 = lt+bt+st+1−m1+dt+1−m2+φ(yt−lt−1−bt−1−st−m1−dt−m2)

for a horizon of 1.
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Double-seasonal ES
Adaptation of Taylor(2003) to single-seasonal ES.
Multiplicative version:

Level: lt = α
yt

st−m1dt−m2
+ (1 − α)(lt−1 + bt−1)

Trend: bt = β(lt − lt−1) + (1 − β)bt−1

Seas 1: st = γ
yt

ltdt−m2
+ (1 − γ)st−m1

Seas 2: dt = δ
yt

ltst−m1
+ (1 − δ)dt−m2

with forecasting equation:

ŷt+1 = (lt + bt)st+1−m1dt+1−m2 +φ(yt − (lt−1 + bt−1)st−m1dt−m2)

for a horizon of 1.
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Parsimonious ES
Proposed by Taylor and Snyder (2012), building on the work of
Gould (2008):

et = yt −
M∑

i=1
Iitsi,t−1

sit = si,t−1 + (α+ ωIit)et i = 1,2,. . . ,M

Iit =
{

1 if period t occurs in season i
0 otherwise

with forecasting equation:

ŷt+1 =
M∑

i=1
Ii,(t+1)si,t + φet
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Parsimonious ES

Advantages

• Allows unconstrained clustering of periods.
• Fewer number of initial terms to estimate.

Limitations

• Cannot incorporate exogenous information.
• Clustering of seasons non-automatic/non-scalable.
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Empirical testing

We use the example of fuel - below is a plot of demand:
• Daily totals
• Aggregated over a sample of retail sites
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Empirical setup

• Comparing three methods:
I Single-seasonal ES (benchmark)
I Double-seasonal ES
I Parsimonious ES

• Estimation: 1st 2 years (730 obs.)

• Holdout: Last year (365 obs.)

• Horizon - Up to 21 days
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PES Model Selection

23 seasons:
• 14 seasons around Christmas
• 2 seasons around Easter
• 7 seasons for ‘normal’ day of week
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Results
MAPE for one-step-ahead forecasts:

Table: Excluding Christmas/Easter

MAPE MAE
PES 3.33% 936,422
DSHW 4.79% 1,388,141
ES 3.95% 1,131,649

Table: Christmas/Easter only

MAPE MAE
PES 14.28% 3,286,438
DSHW 8.80% 1,800,825
ES 36.20% 4,908,546
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Accuracy vs. Horizon

Graph shows overall MAPE against horizons of up to 21
observations.
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Multivariate testing

Compare univariate results to 2 regression models:
• Seasonal dummies only.
• Inclusion of exogenous information:

I Price
I Weather vars x11

• Use näıve for future values of exogenous predictors.
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Results

• PES best at short horizons.
• Regression is robust at long horizons.
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Summary

Conclusions
• Multi-seasonal methods may hold promise in retail.
• Univariate PES is most accurate at short horizons.
• Longer horizons/short data histories potentially problematic.

Research Plan
• Extension of PES to multivariate case.
• Scalable/automatic approach to season clustering.
• Multiple series/hierarchies.
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Any questions?

Thank you for your attention!

Daniel Waller
Lancaster Centre for Forecasting

Lancaster University Management School

d.waller1@lancaster.ac.uk

Lancaster Centre for

Forecasting

mailto:d.waller1@lancaster.ac.uk

	Introduction and background
	Models
	Univariate testing
	Multivariate testing

