

Optimal combination of volatility forecasts to enhance solar irradiation prediction intervals estimation

Juan R. Trapero¹ Alberto Martin²

¹Universidad de Castilla-La Mancha

²Agencia Estatal de Meteorología, AEMET

June 2016

Juan R. Trapero , Alberto Martin

Outline

Motivation
Case study
Models
Experimental results
Conclusions

2/16

< => < => < => < =>

Why is it important?

 Short-term forecasts are required to optimize operational planning of solar-power plants

Why is it important?

 Short-term forecasts are required to optimize operational planning of solar-power plants

Forecast errors involve significant costs

Reduction of 47.6 % of penalty costs by improving the forecasting technique in a Concentrating solar power plant (Kraas et al., 2013)

Why is it important?

 Short-term forecasts are required to optimize operational planning of solar-power plants

Forecast errors involve significant costs

Reduction of 47.6 % of penalty costs by improving the forecasting technique in a Concentrating solar power plant (Kraas et al., 2013)

 Although stakeholders also require a measure of uncertainty (prediction interval), most of the works are focused on point forecasting

Why is it important?

 Short-term forecasts are required to optimize operational planning of solar-power plants

Forecast errors involve significant costs

Reduction of 47.6 % of penalty costs by improving the forecasting technique in a Concentrating solar power plant (Kraas et al., 2013)

- Although stakeholders also require a measure of uncertainty (prediction interval), most of the works are focused on point forecasting
- In addition, forecast error is assumed to be normally i.i.d.

Research objectives

• Extend solar energy forecasting research beyond point forecasting.

4/16

Image: Image:

ヨト・ヨト

Research objectives

- Extend solar energy forecasting research beyond point forecasting.
- Explore non-parametric approaches as Kernel density estimators if forecast errors are not normal.

4/16

∃ ► < ∃ ►</p>

Research objectives

- Extend solar energy forecasting research beyond point forecasting.
- Explore non-parametric approaches as Kernel density estimators if forecast errors are not normal.
- Explore time-varying parametric volatility estimators (SES and GARCH) if forecast errors are not independent.

∃ ► < ∃ ►</p>

Research objectives

- Extend solar energy forecasting research beyond point forecasting.
- Explore non-parametric approaches as Kernel density estimators if forecast errors are not normal.
- Explore time-varying parametric volatility estimators (SES and GARCH) if forecast errors are not independent.
- Explore combination methods if any of the assumptions is hold.

Idea

"Optimal" combination based on maximizing conditional coverage Christoffersen test p-value.

э

Case study

- We are going to focus on one-step-ahead uncertainty forecasts obtained from Global Horizontal Irradiation (GHI)
- This study can be extended to analyse the Direct Normal Irradiation (DNI)
- Spanish Institute of Concentrated-Photovoltaic Systems (ISFOC),

Juan R. Trapero , Alberto Martin

- 1,1 MW of Concentrated-Photovoltaic Energy (CPV)
- Hourly series: (01/2011)-(12/2011)

Case study

Example of hourly solar irradiation for GHI in winter (upper plot) and in summer (lower plot).

Juan R. Trapero , Alberto Martin

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

э

Literature review

- Prediction intervals.
 - Theoretical: $[L_{t+h}, U_{t+h}] = [F_{t+h} \pm z_{(1-p)/2} \cdot \sigma_{t+h}]$
 - L_{t+h}: lower interval
 - *U*_{t+h}: upper interval
 - *F*_{t+h}: point forecast
 - h: forecasting horizon
 - $z_{(1-p)/2}$: standard normal distribution table for a certain confidence level 100p%
 - σ_{t+h} : is the theoretical standard deviation determined by the h and the model forecasting parameters

Literature review

Prediction intervals.

- Theoretical: $[L_{t+h}, U_{t+h}] = [F_{t+h} \pm z_{(1-p)/2} \cdot \sigma_{t+h}]$
 - L_{t+h}: lower interval
 - U_{t+h}: upper interval
 - *F*_{t+h}: point forecast
 - h: forecasting horizon
 - $z_{(1-p)/2}$: standard normal distribution table for a certain confidence level 100p%
 - σ_{t+h} is the theoretical standard deviation determined by the h and the model forecasting parameters

Forecasting hazard!

If the model is misspecified, the theoretical prediction intervals tend to be too narrow

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Literature review

- Prediction intervals: If there are doubts about the validity of the "true" model, go empirical
 - Parametric (Normal): $[L_{t+h}, U_{t+h}] = [F_{t+h} \pm z_{(1-p)/2} \cdot \sigma_{t+h}]$

$$\sigma_{t+h}^2 = \frac{\sum_{i=t-n}^{t-1} (\epsilon_{i+h})^2}{n}$$

- ϵ_{i+h} : forecasting error at i+h
- Non-parametric:

 $[L_{t+h}, U_{t+h}] = [F_{t+h} + Q_h((1-p)/2), F_{t+h} + Q_h((1+p)/2)]$

Q_h(p): 100*p* % forecast error quantile

Literature review

- Prediction intervals: If there are doubts about the validity of the "true" model, go empirical
 - Parametric (Normal): $[L_{t+h}, U_{t+h}] = [F_{t+h} \pm z_{(1-p)/2} \cdot \sigma_{t+h}]$

$$\sigma_{t+h}^2 = \frac{\sum_{i=t-n}^{t-1} (\epsilon_{i+h})^2}{n}$$

- ϵ_{i+h} : forecasting error at i+h
- Non-parametric:

 $[L_{t+h}, U_{t+h}] = [F_{t+h} + Q_h((1-p)/2), F_{t+h} + Q_h((1+p)/2)]$

Q_h(p): 100p % forecast error quantile

Bonus track :)

Deterministic (Numerical Weather Prediction) models are widely used. As they do not rely on a statistical model, the are well-suited for empirical approaches.

э

Benchmarks

Point Forecast (F_{t+1}) : $ARIMA(1,0,0) \times (1,1,0)_{24}$ (Reikard, 2009)

9/16

э

Benchmarks

- Point Forecast (F_{t+1}) : $ARIMA(1,0,0) \times (1,1,0)_{24}$ (Reikard, 2009)
- Empirical Quantile forecast (Q₁(p))
 - Parametric-Normal: $Q_1(p) = z_{(1-p)/2} \cdot \sigma_{t+1}$
 - Single Exponential Smoothing: $\sigma_{t+1}^2 = a\epsilon_t^2 + (1-a)\sigma_t^2$
 - GARCH(1,1): $\sigma_{t+1}^2 = \omega + a_1 \epsilon_t^2 + \beta_1 \sigma_t^2$

< □ > < @ > < 볼 > < 볼 > 볼 9/16

Benchmarks

- Point Forecast (F_{t+1}): ARIMA(1,0,0) × (1,1,0)₂₄ (Reikard, 2009)
- Empirical Quantile forecast (Q₁(p))
 - Parametric-Normal: $Q_1(p) = z_{(1-p)/2} \cdot \sigma_{t+1}$
 - Single Exponential Smoothing: $\sigma_{t+1}^2 = a\epsilon_t^2 + (1-a)\sigma_t^2$
 - GARCH(1,1): $\sigma_{t+1}^2 = \omega + a_1 \epsilon_t^2 + \beta_1 \sigma_t^2$
 - **Non-parametric**: Kernel Density estimator $f(x) = \frac{1}{Nh} \sum_{j=1}^{N} K\left(\frac{x-X_j}{h}\right)$
 - f(x) is probability density function of the forecast errors
 - N is the sample size
 - $K(\cdot)$ is the kernel smoothing function
 - h is the bandwidth.

Experimental setup

- Data (8,760 observations) have been split down in two parts.
- First part (4,392 observations)
 - to estimate ARIMA-GARCH model (in-sample data)
 - With nights (seasonality=24 hours)
 - Maximum likelihood based on a *t*-distribution with the Econometrics toolbox from MATLAB
 - to estimate SES parameter
 - Using ARIMA forecasts
 - Without nights
 - Minimisation of the sum of one-step-ahead prediction errors

10/16

Experimental setup

- Data (8,760 observations) have been split down in two parts.
- First part (4,392 observations)
 - to estimate ARIMA-GARCH model (in-sample data)
 - With nights (seasonality=24 hours)
 - Maximum likelihood based on a *t*-distribution with the Econometrics toolbox from MATLAB
 - to estimate SES parameter
 - Using ARIMA forecasts
 - Without nights
 - Minimisation of the sum of one-step-ahead prediction errors
- Second part (4,368 observations) as out-of-sample data. Rolling origin experiment.

Experimental setup

- Data (8,760 observations) have been split down in two parts.
- First part (4,392 observations)
 - to estimate ARIMA-GARCH model (in-sample data)
 - With nights (seasonality=24 hours)
 - Maximum likelihood based on a *t*-distribution with the Econometrics toolbox from MATLAB
 - to estimate SES parameter
 - Using ARIMA forecasts
 - Without nights
 - Minimisation of the sum of one-step-ahead prediction errors
- Second part (4,368 observations) as out-of-sample data. Rolling origin experiment.
- SES slightly outperforms GARCH (RMSE of the variance)

Prediction intervals performance

- Comparison prediction intervals performance
 - prediction interval coverage: proportion of times that a forecast is included within the prediction interval (hit rate)
 - average interval width: interval range divided by its midpoint
 - Conditional coverage test: (Christoffersen, 1998) as a combination of tests for unconditional coverage and independence

Prediction intervals performance

- Comparison prediction intervals performance
 - prediction interval coverage: proportion of times that a forecast is included within the prediction interval (hit rate)
 - average interval width: interval range divided by its midpoint
 - Conditional coverage test: (Christoffersen, 1998) as a combination of tests for unconditional coverage and independence

In summary

An ideal method should provide a *close prediction interval coverage* with regards to the desired confidence level, a *low average interval* width and pass the conditional coverage test.

・ロト・日本・モート ヨー ろくの

Results

Method	p(%)	Hit Rate (%)	LR _u	LR _i	LR_c	Av. width
KERNEL	80	84.13	0.06	0.00	0.00	1.33
	85	89.21	0.03	0.00	0.00	1.46
	90	94.60	0.00	0.00	0.00	1.60
	95	97.14	0.06	0.24	0.09	1.74
SES	80	73.02	0.00	0.16	0.00	0.86
	85	78.10	0.00	0.55	0.00	0.93
	90	83.81	0.00	0.77	0.00	1.00
	95	87.94	0.00	0.75	0.00	1.09

- Likelihood ratio tests p-values for unconditional coverage (LR_u), independence (LR_i) and conditional coverage (LR_c)
- P-values lower than 0.05 mean that the null hypothesis of unconditional coverage, independence and conditional coverage, respectively, are rejected at the 5 % significance level.

Results

- KERNEL provides a higher hit rate, although it does not pass the independence test.
- SES passes the independence test, although it does not pass the unconditional coverage test.
- In conclusion, none of them pass the conditional coverage test.

A B F A B F

< □ > < / >

Results

- KERNEL provides a higher hit rate, although it does not pass the independence test.
- SES passes the independence test, although it does not pass the unconditional coverage test.
- In conclusion, none of them pass the conditional coverage test.
- Why don't we combine them?
- Combined prediction interval $[\hat{L}_c, \hat{U}_c]$:

$$\begin{split} \hat{L}_{c} &= w \cdot \hat{L}_{Kernel} + (1 - w) \cdot \hat{L}_{SES} \\ \hat{U}_{c} &= w \cdot \hat{U}_{Kernel} + (1 - w) \cdot \hat{U}_{SES} \end{split}$$

where 0 < w < 1 is a constant that maximizes the LR_c

Results

Method	p(%)	Hit Rate (%)	LR _u	LR _i	LR _c	Av. width
KERNEL	80	84.13	0.06	0.00	0.00	1.33
	85	89.21	0.03	0.00	0.00	1.46
	90	94.60	0.00	0.00	0.00	1.60
	95	97.14	0.06	0.24	0.09	1.74
SES	80	73.02	0.00	0.16	0.00	0.86
	85	78.10	0.00	0.55	0.00	0.93
	90	83.81	0.00	0.77	0.00	1.00
	95	87.94	0.00	0.75	0.00	1.09
COMBINED	080	78.41	0.47	0.09	0.18	0.92
	85	83.49	0.44	0.09	0.17	0.99
	90	89.84	0.91	0.66	0.90	1.15
	95	95.24	0.86	0.74	0.93	1.32

三 つへの

Conclusions

- Kernel (non-parametric) provide a high prediction interval coverage but it also yields a high average interval width and lack of independence.
- SES (parametric) pass the independence test but they offer a prediction interval coverage excessively low.
- This work proposes a novel approach that combines a non-parametric and a parametric approach.
- The combination weight is obtained by maximizing the Christoffersen conditional coverage test p-value.
- The results show a good compromise between coverage and average interval width.

Thank you for your attention!

e-mail: juanramon.trapero@uclm.es blog: http://blog.uclm.es/juanramontrapero/

This work has been supported by the Spanish Ministerio de Economía y Competitividad, under Research Grant no. DPI2015-64133-R (MINECO/FEDER/UE)

16/16