COMBINING AND POOLING FORECASTS BASED ON SELECTION CRITERIA

Cover

DEVON BARROW | SCHOOL OF STRATEGY AND LEADERSHIP | COVENTRY UNIVERSITY NIKOLAOS KOURENTZES, | DEPARTMENT OF MANAGEMENT SCIENCE | LANCASTER UNIVERSITY FOTIOS PETROPOULOS | CARDIFF UNIVERSITY

OUTLINE

- M3 Competition data
- Selection and combination The state of play
- Comparing selection methods: information criteria versus cross-validation
- Comparing combination methods based on selection approaches
- Pooling forecasts The state of play
- Comparing methods of pooling a new approach to pooling

Time interval	Types of	Types of time series data									
observations	Micro	Industry	Macro	Finance	Demographic	Other	Total				
Yearly	146	102	83	58	245	11	645				
Quarterly	204	83	336	76	57		756				
Monthly	474	334	312	145	111	52	1428				
Other	4			29		141	174				
Total	828	519	731	308	413	204	3003				

M3-COMPETITION DATASET

Frequency	# of time series	Forecast horizon	# of forecasts	Max # of observations
Yearly	645	6	8	41
Quarterly	756	8	19	64
Monthly	1428	18	19	126
Other	174	8	8	96

EXPERIMENT DESIGN

SELECTION – THE STATE OF PLAY

- Selecting forecasts for planning (inventory, scheduling, etc.):
 - Hold-out set Withhold a set of observations and measure performance using MAE, MSE, MASE, MAPE, etc.. (Our preferred approach)
 - Cross-validation (rolling origin) extension of the Hold-out method using multiple origins and lead times and measure performance using MAE, MSE, MASE, MAPE, etc.. (Our preferred approach)
 - Information criteria: Akaike Information Criteria, (Akakie, 1974) and Bayesian Information Criterion (Schwarz, 1978)

Agreement between AIC and BIC in selecting models

Family of Models	Yearly	Quarterly	Monthly
Exponential Smoothing	86.5%	72.7%	57.1%
ARIMA	Selectio	on %	38.7%
No. of Series	uncertair selection a	nty =	1428

The correct identification of the <u>best model</u> for each series individually may lead to significant accuracy improvements (Fildes, 2001), in some cases up to 20-30% (Fildes and Petropoulos, 2014).

Spot-on selection is difficult: Model selection often does not outperform the performance of a single model (Fildes, 2001; Theta model, Assimakopoulos and Nikolopoulos, 2000; Hyndman et al., 2002).

RESULTS ON SELECTION METHODS

		Mean		
	Annual	Quarterly	Monthly	Other
AIC	18.86%	9.89%	14.38%	4.28 %
BIC	17.86%	9.77%	I 4.29 %	4.37%
HQ	18.22%	9.84%	I 4.29 %	4.32%
Validation	I 7.85 %	9.95%	I 4.79%	4.56%

		Median		
	Annual	Quarterly	Monthly	Other
AIC	9.68%	4.57%	6.78 %	I.9 1%
BIC	9.36%	4.75%	6.86%	I.97%
HQ	9.47%	4.60%	6.78 %	I.95%
Validation	9.53%	4.39 %	6.95%	I.97%

COMBINATION – THE STATE OF PLAY

- Combining forecasts for planning (inventory, scheduling, etc.):
 - Equal weights: all forecasts are weighted equally
 - Simple weights: weights are normalised based on based on the size of the criteria used e.g. MAE, MSE, MASE, MAPE, etc.. (Our preferred approach)
 - Information criteria: so called Akaike Weights (Kolassa, 2011). Calculated based on AIC differences, Δ_{AIC} and likelihood relative to minimal model given as $\exp(-\frac{1}{2}\Delta_{AIC}(M))$

RESULTS ON COMBINATION METHODS

Mean									
	Annual	Quarterly	Monthly	Other					
Equal weights	I6.65 %	9.64%	15.20%	4.38%					
Akaike weights	17.59%	9.59 %	I 4.06%	4.29 %					

Median										
	Annual	Quarterly	Monthly	Other						
Equal weights	9.20%	4.40%	6.91%	2.03%						
Akaike weights	9.14%	4.37%	6.68%	I.92%						

RESULTS ON SELECTION VERSUS COMBINATION

Mean									
	Annual	Quarterly	Monthly	Other					
Best selection	17.85%	9.77%	14.79%	4.28%					
Best combination	I6.65 %	9.59 %	I 4.06%	4.29 %					

Median									
	Annual	Quarterly	Monthly	Other					
Best selection	9.36%	4.39%	6.78%	I.9 %					
Best combination	9.14%	4.37%	6.68%	1.92%					

POOLING FORECASTS – THE STATE OF PLAY

- Pooling forecasts for planning (inventory, scheduling, etc.):
 - Top 2 and Top 3: selecting the second and third best forecasting models according to some criteria.
 - Trimming: discard top best and worst forecasts (10%, 20%, 30%,)
 - Quartile pooling: assign each forecast model to a quartile and combination Ist quartile (Aiolfi and Timmermann, 2004) which first.
 - Islands? Proposed Method

FORECAST ISLANDS

- A heuristic to form forecast pools
- Model and method independent
- Use of any criteria: information criterion like AIC, a Cross-Validation statistic, or adjusted R2

FORECAST ISLANDS

Differenced AIC

FORECAST ISLANDS: THE ALGORITHM

- I. Let $C = \{c_i\}$ be the values of an appropriate criterion to assess the forecasts for i = 1, ..., k forecasts
- 2. Transform the criterion to ensure that a smaller value is best
- 3. Order the forecasts from best to worst.
- 4. From the sorted metric construct $C' = \{0, \Delta C\}$, where Δ is the differencing operator
- 5. Island Threshold T = Q3 + 1.5IQR, where Q3 is the 3rd quartile and IQR is the inter-quartile range.
- 6. Include all forecasts in the pool up until $C' \ge T$.

RESULTS ON POOLING: INFORMATION CRITERIA

	Mean				Median			
	Annual	Quarterly	Monthly	Other	Annual	Quarterly	Monthly	Other
Islands, equal weights	16.86%	9.42%	14.13%	4.29%	9.15%	4.22%	6.55%	1.94%
I st Quartile, equal weights	16.42%	9.93%	15.15%	4.97%	9.18%	4.67%	7.15%	2.77%

	Mean				Median			
	Annual	Quarterly	Monthly	Other	Annual	Quarterly	Monthly	Other
Islands,Akaike weights	17.62%	9.59%	14.07%	4.29%	9.13%	4.37%	6.68%	I.93%
I st Quartile, Akaike weights	16.47%	9.82%	14.37%	4.27%	8.96%	4.56%	6.79%	I.83%

RESULTS ON POOLING: CROSS-VALIDATION

	Mean				Median			
	Annual	Quarterly	Monthly	Other	Annual	Quarterly	Monthly	Other
Islands, equal weights	16.71%	9.53%	4.44%	4.30%	9.03%	4.15%	6.69%	I.98%
I st Quartile, equal weights	16.42%	9.93%	15.15%	4.96%	9.25%	4.67%	7.15%	2.76%

	Mean				Median			
	Annual	Quarterly	Monthly	Other	Annual	Quarterly	Monthly	Other
Islands, CV weights	16.77%	9.48%	I 4.29%	4.39%	9.14%	4.22%	6.66%	I.98%
I st Quartile, CV weights	16.68%	9.67%	14.45%	4.33%	9.51%	4.36%	6.82%	I.88%

CONCLUSIONS

- Little difference in AIC and BIC (agrees with Billah et al., 2006) and now cross-validation (extension to Billah et al., 2006)
- The combine all approach is always better
- Pooling improves on the combine all approach, results consistent across combination methods
- Performance benefits of pooling improves with number of models combined

SIMULATION SETUP

Monthly airline passenger time series.

- Time series: Airline Passenger Data
- Fitting sample: 108 observations
- Fitted Models: SARIMA(p,d,q)(P,D,Q) models with p = q = (0; 1; 2; 3; 4; 5), d = (0; 1; 2), P = Q = (0; 1; 2) and D = (0; 1)
- Combining forecasts k=2:1944, k = 1 is model selection
- Minimum of 50 different randomly selected sets of models,
- Distribution of MAE,: min, 20%, median, 80% and max

RESULTS OF A SIMULATION

MAE for different pool sizes with mean combination operator.

MAE for different pool sizes with median combination operator

RESULTS OF A SIMULATION

BIC-weights All 37.3019.5718.50Islands 18.4018.8118.52Model selection 19.7319.7319.73

Mean

Pool

Combination method

Median

MAE for different pool sizes with **BIC-weights** combination operator.

RESULTS OF A SIMULATION

Pool size as a percentage of all available forecasts.