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Parametric distributions often recommended for inventory models 

 Normal 

 Gamma 

 Bernoulli (and Compound Bernoulli)  

 Poisson  (and Compound Poisson) 

 Negative Binomial 

Empirical evidence 

 Good support for Bernoulli / Poisson models of demand incidence          
for intermittent demand items.  

 Quite good support for Negative Binomial Distribution model of demand 

 BUT: many demands not well modelled by any parametric distribution.  

 

Introduction: Parametric Approaches  



Introduction: Non-Parametric Approaches 

Example (History = 10 periods) 

    P1     P2     P3     P4     P5     P6     P7     P8    P9    P10 

Suppose LT = 3  and  Block-Size (m) = 3   [Natural application in inventory context] 

1. Non-Overlapping Blocks 
 
Block 1 = {P2, P3, P4},  Block 2 = {P5, P6, P7},  Block 3 = {P8, P9, P10} 
 
2. Overlapping Blocks 
 
Block 1 = {P1, P2, P3},  Block 2 = {P2, P3, P4} , ... , Block 8 = {P8, P9, P10} 
 
3. Bootstrapping 
 
Randomly drawn from all combinations (with replacement) – extensions not considered 
 
eg:  Block 1 = {P7, P2, P9},  Block 2 = {P2, P3, P3}, .... 
 



Introduction: Bootstrapping Software 

 Smart Software incorporates Markov Chain switching (between ‘demand ‘ 
and ‘non-demand’ states), and “jittering”.   

 These extensions not addressed in this research so far.  



Motivation of this Research   

    Bootstrapping approaches for intermittent demand have some 
empirical evidence in their support (Willemain, 2004). 

    Theoretical properties not investigated in an inventory context in 
which cumulative distributions need to be estimated.   

 This study aims to investigate the bias and variance properties of 
bootstrapping methods: 

• With replacement 

• Without replacement  

 and compare the performance of these methods with other non-
parametric methods.    

 

 

 



Previous Research  

 Normal distribution: biased estimate of CSL                                         
(Strijbosch et al, 1997; Janssen et al, 2009)  

 Gamma distribution: biased estimate of CSL                                               
(Janssen et al, 2007) 

Poisson Demand 

 

 

     is the estimate of the mean parameter 

 Suppose      is unbiased 

 Then the Poisson estimate of CSL is not necessarily unbiased   

     because                  for c  2.  

Properties of Parametric Methods 

...)ˆ(
!2)!3(

)2)(1(
)ˆ(

)!2(

1
)ˆ(

)!1(

1
1

!

]ˆ[
)]([ 321

0

ˆ













 





 yyy
y

a

a
Poiss E

y

yy
E

y

y
E

ya

eE
yPE 



̂

̂

ccE  )ˆ(



Properties of Non-Overlapping Blocks 

Estimation Problem  

 Suppose History Length = n and we are given an (integer-valued) quantity y                                       
and the population cumulative distribution function is           for total demand 
over m periods  

 We produce an estimate,          , based on k=n/m Non-Overlapping Blocks 

 Statistical properties are well established for stationary i.i.d. demand:                            

Unbiased Estimate 

 

Variance of the Estimate 
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 Variance depends only on number of blocks (k) and CSL (Pm(y)) 



Properties of Overlapping Blocks  
(Boylan and Babai, IJPE, 2016) 

Number of Blocks 

        

Unbiased Estimate      .                               

•                                     

Variance of the Estimate 

                                                            

                                                          

 

 This increases from          to                                    
(eg from 12 to 34 for History Length=n=36 and Block Size=m=3 ).   
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 s : number of overlapping observations between two blocks 

 p : probability mass function (pmf) of the demand in one period  

 Performance also depends on block size (m) and the pmf (p) 



Comparison of Variances  

 Let             denote the variance reduction ratio from using OB instead of 

NOB (for fixed LT, m) 
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 The NOB approach has lower variance than the OB approach if and only if:  
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Variance Reduction using OB instead of NOB 

 Poisson distributed demand with   [0,10]; n  [3,20]and m = 2 

 In almost all cases, the OB approach leads to a variance reduction.  

 For very low values of  (i.e. slow moving demand), the benefit from 

using OB instead of NOB is very low when n is low.  

 There are very few values where NOB outperforms OB; these cases                 

occur when both  and n are very low.  



Bootstrapping without Replacement: Properties 

Unbiased Estimate 

 

Variance of the Estimate 

 

 

 

Special Case (m=2) 
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 Same   factors as in the Overlapping Blocks approach.   

 Other special cases are obtained straightforwardly.  

# combinations   

of i from m 
# permutations   

of i from m 



Bootstrapping with Replacement: Bias Properties 

Biased Estimate 

 

Special Case (m=2) 

 

 

 

Special Case (m=3) 

 

 Different factor (   ) than in the Overlapping Blocks approach.   

 New factor takes into account repeated selection of same time index.  
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Quantifying Bias for Bootstrap with Replacement 

 Underestimates CSL 

 Bias in CSL can be significant for short histories.  

 The stronger the intermittence, the greater the bias. .  

y=1 

Poisson Demand (non-lumpy) 



Quantifying Bias for Bootstrap with Replacement (2) 

 Overestimates CSL 

 Bias in CSL can be significant for short histories.  

 So, bias can be positive or negative depending on the distribution of 

demand.  

y=1 

Lumpy Demand [p(0)=0.6, p(1)=0.1, p(10)=0.3] 



Bootstrapping with Replacement: Variance Properties 

 

 

 

 

 

Special Case (m=2) 

 

 

 

 

 

 First term – selection of same indices in same sequence   

 Second term – some indices different 

 Third term – same indices in different sequence  
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 Special case for m=3 has been derived – very messy! 



Bootstrapping with Replacement:  
compared with OB for y=1  

 Variance always reduced by using Bootstrapping with Replacement  

 Strong reduction across most parameters 

 Exception is for short demand histories.  

. .  

Variance Reduction Ratio of bootstrapping with 

replacement compared to OB (y=1) 



Bootstrapping with Replacement:  
compared with OB for y=2  

Relative performance of bootstrapping with 

replacement compared to OB (y=2) 

 Variance always reduced by using Bootstrapping with Replacement  

 Stronger reductions for y=2 compared with y=1 

 Stronger effect of the length of demand histories 

 



Bootstrapping without Replacement:  
compared with OB for y=2  

Variance Reduction Ratio of bootstrapping without 

replacement compared to OB (y=2) 

 Variance always reduced by using Bootstrapping without Replacement  

 Demand history effect as before 

 For fast-moving, very modest reduction. 

 



Comparison of Bootstrapping 
With and Without Replacement (y=1) 

 With Replacement always gives lower variance 

 For highly intermittent demand, little difference 

 For shorter histories, difference may become significant for less 

intermittent demand . 

 

Poisson Demand  



Comparison of Bootstrapping 
With and Without Replacement (y=3) 

 With Replacement does not always give lower variance 

 For highly intermittent demand, Without Replacement can give lower 

variance 

 

Poisson Demand  



Conclusions 

• Bias and variance properties of Bootstrapping (with and 
without replacement) have been derived for CDF estimates.  

• Bootstrapping with Replacement is generally biased in its 
estimate of the CDF. 

• Direction of bias depends on the nature of the distribution. 

• Bootstrapping (with and without replacement) has lower 
variance than Overlapping Blocks approach.  

• Comparison of variance of Bootstrapping With and Without 
Replacement  estimates depends on the value for which the 
CDF is being estimated.  

• Further research needed to examine this further.  

 

 

 



Thank you for your attention! 
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